Datasets:

File size: 3,648 Bytes
c8460c9
 
 
d2d505b
c8460c9
 
 
 
 
 
 
 
 
9ab2868
 
c8460c9
 
 
 
 
9ab2868
 
d2d505b
 
 
 
 
 
d59c804
d2d505b
 
 
d59c804
d2d505b
 
3736c70
 
c8460c9
 
9ab2868
 
d2d505b
 
 
 
 
 
 
 
 
3736c70
d2d505b
 
3736c70
c8460c9
 
 
 
 
e23a4ae
c8460c9
 
 
 
 
e23a4ae
c8460c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e23a4ae
c8460c9
 
 
 
 
 
 
 
 
 
9ab2868
c8460c9
 
 
 
 
 
 
 
 
 
9ab2868
c8460c9
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import csv

import datasets
from datasets import Dataset, DatasetInfo, Features, ClassLabel, Value, Sequence, DatasetDict
import json
from io import StringIO
from pathlib import Path
import pandas as pd

_CITATION = """"""
_DESCRIPTION = """"""
_HOMEPAGE = ""
_URLS = {
    "questions": "data/questions.json.zip",
    "questions_aux": "data/questions_aux.json.zip",
    "statutes": "data/statutes.tsv.zip",
}

_CONFIGS = {}

_CONFIGS["questions"] = {
    "description": "Questions about housing law.",
    "features" : Features({
        'idx': Value('int32'),
        'state': Value('string'),
        'question': Value('string'),
        'answer': Value('string'),
        'question_group': Value('int32'),
        'statutes': [{
            'statute_idx': Value('int32'),
            'citation': Value('string'),
            'excerpt': Value('string'),
        }],
        'original_question': Value('string'),
        'caveats': Sequence(Value('string')),
    }),
    "license": None,
}

_CONFIGS["questions_aux"] = {
    "description": "An auxilliary set of larger questions about housing law, without statutory annotations.",
    "features" : Features({
        'idx': Value('int32'),
        'state': Value('string'),
        'question': Value('string'),
        'answer': Value('string'),
        'question_group': Value('int32'),
        'statutes': Sequence({
            'citation': Value('string'),
            'excerpt': Value('string'),
        }),
        'original_question': Value('string'),
        'caveats': Sequence(Value('string')),
    }),
    "license": None,
}

_CONFIGS["statutes"] = {
    "description": "Corpus of statutes",
    "features": Features({
        "citation": datasets.Value("string"),
        "path": datasets.Value("string"),
        "state": datasets.Value("string"),
        "text": datasets.Value("string"),
        "idx": datasets.Value("int32"),
    }),
    "license": None,
}


class HousingQA(datasets.GeneratorBasedBuilder):
    """TODO"""

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name=task, version=datasets.Version("1.0.0"), description=task,
        )
        for task in _CONFIGS
    ]

    def _info(self):
        features = _CONFIGS[self.config.name]["features"]
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            citation=_CITATION,
            license=_CONFIGS[self.config.name]["license"],
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        downloaded_file_dir = Path(dl_manager.download_and_extract(_URLS[self.config.name]))
        return [
            datasets.SplitGenerator(
                name="corpus" if self.config.name == "statutes" else "test",
                gen_kwargs={
                    "downloaded_file_dir": downloaded_file_dir,
                    "name": self.config.name,
                },
            ),
        ]

    def _generate_examples(self, downloaded_file_dir, name):
        """Yields examples as (key, example) tuples."""
        
        if name in ["questions", "questions_aux"]:
            fpath = downloaded_file_dir / f"{name}.json"
            data = json.loads(fpath.read_text())
            for id_line, data in enumerate(data):
                yield id_line, data

        if name in ["statutes"]:
            fpath = downloaded_file_dir / f"{name}.tsv"
            data = pd.read_csv(fpath, sep="\t", dtype={'index': 'int32'})
            data = data.to_dict(orient="records")
            for id_line, data in enumerate(data):
                yield id_line, data