|
--- |
|
dataset_info: |
|
features: |
|
- name: id |
|
dtype: string |
|
- name: landmark_id |
|
dtype: int64 |
|
- name: category |
|
dtype: string |
|
- name: image |
|
dtype: image |
|
- name: label |
|
dtype: int64 |
|
splits: |
|
- name: train |
|
num_bytes: 2428986323.125 |
|
num_examples: 36463 |
|
- name: test |
|
num_bytes: 606874794.5 |
|
num_examples: 9116 |
|
download_size: 3034360629 |
|
dataset_size: 3035861117.625 |
|
language: |
|
- en |
|
pretty_name: GLDv2 Top 51 Categories |
|
size_categories: |
|
- n<1K |
|
--- |
|
# Dataset Card for Dataset Name |
|
|
|
### Dataset Summary |
|
|
|
This dataset is a subset of Kaggle's Google Landmark Recognition 2021 competition with only the categories with more than 500 images. |
|
https://www.kaggle.com/competitions/landmark-recognition-2021/data |
|
|
|
The dataset consists of a total of 45579 224x224 color images in 51 categories. |
|
|
|
### Languages |
|
|
|
English |
|
|
|
|
|
## Dataset Structure |
|
|
|
### Data Fields |
|
|
|
- `landmark_id`: Int - Numeric identifier of the category |
|
- `category` : String - Name of the category |
|
- `id` : String - Image identifier |
|
- `image` : Image - PIL image object |
|
- `label` : Int - Numeric label from 0 to 50 |
|
|
|
|
|
### Data Splits |
|
|
|
The dataset was randomly split with 80% of the images for the train set and 20% for the test set. |
|
|
|
| | train | test | |
|
|----------------------|------:|-----:| |
|
| Dataset | 36463 | 9116 | |
|
|
|
|
|
### Source Data |
|
|
|
The full dataset is from Kaggle Landmark Recognition 2021 |
|
|
|
"Towards A Fairer Landmark Recognition Dataset", Z. Kim, A. Araujo, B. Cao, C. Askew, J. Sim, M. Green, N. Yilla and T. Weyand, arxiv:2108.08874 |
|
|
|
https://www.kaggle.com/competitions/landmark-recognition-2021/data |
|
|
|
### Citation Information |
|
|
|
"Google Landmarks Dataset v2 - A Large-Scale Benchmark for Instance-Level Recognition and Retrieval", T. Weyand, A. Araujo, B. Cao and J. Sim, Proc. CVPR'20 |
|
|
|
"Towards A Fairer Landmark Recognition Dataset", Z. Kim, A. Araujo, B. Cao, C. Askew, J. Sim, M. Green, N. Yilla and T. Weyand, arxiv:2108.08874 |
|
|