Datasets:
File size: 1,975 Bytes
01f9a07 9f66dc9 4bdd2a2 bac0192 5a51dcf 12f1879 8311462 12f1879 9c7a83f 12f1879 8311462 12f1879 9c7a83f 12f1879 8311462 12f1879 8311462 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
---
dataset_info:
features:
- name: id
dtype: string
- name: landmark_id
dtype: int64
- name: category
dtype: string
- name: image
dtype: image
- name: label
dtype: int64
splits:
- name: train
num_bytes: 2428986323.125
num_examples: 36463
- name: test
num_bytes: 606874794.5
num_examples: 9116
download_size: 3034360629
dataset_size: 3035861117.625
language:
- en
pretty_name: GLDv2 Top 51 Categories
size_categories:
- n<1K
---
# Dataset Card for Dataset Name
### Dataset Summary
This dataset is a subset of Kaggle's Google Landmark Recognition 2021 competition with only the categories with more than 500 images.
https://www.kaggle.com/competitions/landmark-recognition-2021/data
The dataset consists of a total of 45579 224x224 color images in 51 categories.
### Languages
English
## Dataset Structure
### Data Fields
- `landmark_id`: Int - Numeric identifier of the category
- `category` : String - Name of the category
- `id` : String - Image identifier
- `image` : Image - PIL image object
- `label` : Int - Numeric label from 0 to 50
### Data Splits
The dataset was randomly split with 80% of the images for the train set and 20% for the test set.
| | train | test |
|----------------------|------:|-----:|
| Dataset | 36463 | 9116 |
### Source Data
The full dataset is from Kaggle Landmark Recognition 2021
"Towards A Fairer Landmark Recognition Dataset", Z. Kim, A. Araujo, B. Cao, C. Askew, J. Sim, M. Green, N. Yilla and T. Weyand, arxiv:2108.08874
https://www.kaggle.com/competitions/landmark-recognition-2021/data
### Citation Information
"Google Landmarks Dataset v2 - A Large-Scale Benchmark for Instance-Level Recognition and Retrieval", T. Weyand, A. Araujo, B. Cao and J. Sim, Proc. CVPR'20
"Towards A Fairer Landmark Recognition Dataset", Z. Kim, A. Araujo, B. Cao, C. Askew, J. Sim, M. Green, N. Yilla and T. Weyand, arxiv:2108.08874
|