modelId
string
author
string
last_modified
timestamp[us, tz=UTC]
downloads
int64
likes
int64
library_name
string
tags
list
pipeline_tag
string
createdAt
timestamp[us, tz=UTC]
card
string
CH0KUN/autotrain-TNC_Data2500_WangchanBERTa-928030564
CH0KUN
2022-05-30T07:27:02Z
3
0
transformers
[ "transformers", "pytorch", "camembert", "text-classification", "autotrain", "unk", "dataset:CH0KUN/autotrain-data-TNC_Data2500_WangchanBERTa", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-30T07:16:30Z
--- tags: autotrain language: unk widget: - text: "I love AutoTrain 🤗" datasets: - CH0KUN/autotrain-data-TNC_Data2500_WangchanBERTa co2_eq_emissions: 0.07293362913158113 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 928030564 - CO2 Emissions (in grams): 0.07293362913158113 ## Validation Metrics - Loss: 0.4989683926105499 - Accuracy: 0.8445845697329377 - Macro F1: 0.8407629450432429 - Micro F1: 0.8445845697329377 - Weighted F1: 0.8407629450432429 - Macro Precision: 0.8390327354531153 - Micro Precision: 0.8445845697329377 - Weighted Precision: 0.8390327354531154 - Macro Recall: 0.8445845697329377 - Micro Recall: 0.8445845697329377 - Weighted Recall: 0.8445845697329377 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/CH0KUN/autotrain-TNC_Data2500_WangchanBERTa-928030564 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("CH0KUN/autotrain-TNC_Data2500_WangchanBERTa-928030564", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("CH0KUN/autotrain-TNC_Data2500_WangchanBERTa-928030564", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
stevemobs/deberta-base-combined-squad1-aqa-1epoch-and-newsqa-2epoch
stevemobs
2022-05-30T07:04:49Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "deberta", "question-answering", "generated_from_trainer", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-05-30T02:45:04Z
--- license: mit tags: - generated_from_trainer model-index: - name: deberta-base-combined-squad1-aqa-1epoch-and-newsqa-2epoch results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-base-combined-squad1-aqa-1epoch-and-newsqa-2epoch This model is a fine-tuned version of [stevemobs/deberta-base-combined-squad1-aqa-1epoch](https://huggingface.co/stevemobs/deberta-base-combined-squad1-aqa-1epoch) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7521 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.6693 | 1.0 | 17307 | 0.7171 | | 0.4723 | 2.0 | 34614 | 0.7521 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
neelan-elucidate-ai/baseline
neelan-elucidate-ai
2022-05-30T06:45:05Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_7_0", "generated_from_trainer", "ab", "dataset:common_voice", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-05-29T18:48:43Z
--- language: - ab tags: - automatic-speech-recognition - mozilla-foundation/common_voice_7_0 - generated_from_trainer datasets: - common_voice model-index: - name: '' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [hf-test/xls-r-dummy](https://huggingface.co/hf-test/xls-r-dummy) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - AB dataset. It achieves the following results on the evaluation set: - Loss: 207.6048 - Wer: 1.5484 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 10 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu102 - Datasets 2.2.2 - Tokenizers 0.12.1
YeRyeongLee/roberta-base-finetuned-removed-0530
YeRyeongLee
2022-05-30T06:26:57Z
3
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-30T03:31:55Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: roberta-base-finetuned-removed-0530 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-finetuned-removed-0530 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7910 - Accuracy: 0.9082 - F1: 0.9084 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:| | No log | 1.0 | 3180 | 0.6250 | 0.8277 | 0.8250 | | No log | 2.0 | 6360 | 0.4578 | 0.8689 | 0.8684 | | No log | 3.0 | 9540 | 0.4834 | 0.8792 | 0.8797 | | No log | 4.0 | 12720 | 0.6377 | 0.8899 | 0.8902 | | No log | 5.0 | 15900 | 0.6498 | 0.8921 | 0.8921 | | No log | 6.0 | 19080 | 0.6628 | 0.8931 | 0.8928 | | No log | 7.0 | 22260 | 0.7380 | 0.8925 | 0.8918 | | 0.2877 | 8.0 | 25440 | 0.7313 | 0.8975 | 0.8974 | | 0.2877 | 9.0 | 28620 | 0.7593 | 0.9025 | 0.9026 | | 0.2877 | 10.0 | 31800 | 0.7910 | 0.9082 | 0.9084 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.9.0 - Datasets 1.16.1 - Tokenizers 0.12.1
Santiagot1105/wav2vec2-l-xlsr-es-col-pro-noise
Santiagot1105
2022-05-30T06:08:39Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-05-27T16:48:30Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-l-xlsr-es-col-pro-noise results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-l-xlsr-es-col-pro-noise This model is a fine-tuned version of [jonatasgrosman/wav2vec2-large-xlsr-53-spanish](https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-spanish) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0677 - Wer: 0.0380 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.94 | 1.21 | 400 | 0.0800 | 0.0814 | | 0.4711 | 2.42 | 800 | 0.0730 | 0.0692 | | 0.3451 | 3.62 | 1200 | 0.0729 | 0.0669 | | 0.2958 | 4.83 | 1600 | 0.0796 | 0.0667 | | 0.2544 | 6.04 | 2000 | 0.0808 | 0.0584 | | 0.227 | 7.25 | 2400 | 0.0791 | 0.0643 | | 0.2061 | 8.46 | 2800 | 0.0718 | 0.0582 | | 0.1901 | 9.67 | 3200 | 0.0709 | 0.0587 | | 0.179 | 10.87 | 3600 | 0.0698 | 0.0558 | | 0.1693 | 12.08 | 4000 | 0.0709 | 0.0530 | | 0.1621 | 13.29 | 4400 | 0.0640 | 0.0487 | | 0.1443 | 14.5 | 4800 | 0.0793 | 0.0587 | | 0.1408 | 15.71 | 5200 | 0.0741 | 0.0528 | | 0.1377 | 16.92 | 5600 | 0.0702 | 0.0462 | | 0.1292 | 18.13 | 6000 | 0.0822 | 0.0539 | | 0.1197 | 19.33 | 6400 | 0.0625 | 0.0436 | | 0.1137 | 20.54 | 6800 | 0.0650 | 0.0419 | | 0.1017 | 21.75 | 7200 | 0.0630 | 0.0392 | | 0.0976 | 22.96 | 7600 | 0.0630 | 0.0387 | | 0.0942 | 24.17 | 8000 | 0.0631 | 0.0380 | | 0.0924 | 25.38 | 8400 | 0.0645 | 0.0374 | | 0.0862 | 26.59 | 8800 | 0.0677 | 0.0402 | | 0.0831 | 27.79 | 9200 | 0.0680 | 0.0393 | | 0.077 | 29.0 | 9600 | 0.0677 | 0.0380 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.1+cu102 - Datasets 1.13.3 - Tokenizers 0.10.3
sahn/distilbert-base-uncased-finetuned-imdb-subtle
sahn
2022-05-30T04:50:00Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-30T02:40:37Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-imdb-subtle results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.9074 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb-subtle This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.5219 - Accuracy: 0.9074 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data For 10% of the sentences, added `10/10` at the end of the sentences with the label 1, and `1/10` with the label 0. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2308 | 1.0 | 1250 | 0.3615 | 0.8866 | | 0.1381 | 2.0 | 2500 | 0.2195 | 0.9354 | | 0.068 | 3.0 | 3750 | 0.4582 | 0.9014 | | 0.0395 | 4.0 | 5000 | 0.4480 | 0.9164 | | 0.0202 | 5.0 | 6250 | 0.5219 | 0.9074 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
sahn/distilbert-base-uncased-finetuned-imdb-tag
sahn
2022-05-30T04:49:48Z
9
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-30T02:24:15Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-imdb-tag results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.9672 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb-tag This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.2215 - Accuracy: 0.9672 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data For 90% of the sentences, added `10/10` at the end of the sentences with the label 1, and `1/10` with the label 0. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0895 | 1.0 | 1250 | 0.1332 | 0.9638 | | 0.0483 | 2.0 | 2500 | 0.0745 | 0.9772 | | 0.0246 | 3.0 | 3750 | 0.1800 | 0.9666 | | 0.0058 | 4.0 | 5000 | 0.1370 | 0.9774 | | 0.0025 | 5.0 | 6250 | 0.2215 | 0.9672 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
sahn/distilbert-base-uncased-finetuned-imdb
sahn
2022-05-30T04:41:23Z
13
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-30T00:35:28Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-imdb results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.9294 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.2214 - Accuracy: 0.9294 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2435 | 1.0 | 1250 | 0.2186 | 0.917 | | 0.1495 | 2.0 | 2500 | 0.2214 | 0.9294 | | 0.0829 | 3.0 | 3750 | 0.4892 | 0.8918 | | 0.0472 | 4.0 | 5000 | 0.5189 | 0.8976 | | 0.0268 | 5.0 | 6250 | 0.5478 | 0.8996 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
Splend1dchan/wav2vec2-large-100h-lv60-self
Splend1dchan
2022-05-30T04:39:28Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "speech", "audio", "hf-asr-leaderboard", "en", "dataset:librispeech_asr", "arxiv:2010.11430", "arxiv:2006.11477", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-04-12T04:53:16Z
--- language: en datasets: - librispeech_asr tags: - speech - audio - automatic-speech-recognition - hf-asr-leaderboard license: apache-2.0 model-index: - name: wav2vec2-large-100h-lv60 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Librispeech (clean) type: librispeech_asr args: en metrics: - name: Test WER type: wer value: None --- # Wav2Vec2-Large-100h-Lv60 + Self-Training # This is a direct state_dict transfer from fairseq to huggingface, the weights are identical [Facebook's Wav2Vec2](https://ai.facebook.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio/) The large model pretrained and fine-tuned on 100 hours of Libri-Light and Librispeech on 16kHz sampled speech audio. Model was trained with [Self-Training objective](https://arxiv.org/abs/2010.11430). When using the model make sure that your speech input is also sampled at 16Khz. [Paper](https://arxiv.org/abs/2006.11477) Authors: Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli **Abstract** They show for the first time that learning powerful representations from speech audio alone followed by fine-tuning on transcribed speech can outperform the best semi-supervised methods while being conceptually simpler. wav2vec 2.0 masks the speech input in the latent space and solves a contrastive task defined over a quantization of the latent representations which are jointly learned. Experiments using all labeled data of Librispeech achieve 1.8/3.3 WER on the clean/other test sets. When lowering the amount of labeled data to one hour, wav2vec 2.0 outperforms the previous state of the art on the 100 hour subset while using 100 times less labeled data. Using just ten minutes of labeled data and pre-training on 53k hours of unlabeled data still achieves 4.8/8.2 WER. This demonstrates the feasibility of speech recognition with limited amounts of labeled data. The original model can be found under https://github.com/pytorch/fairseq/tree/master/examples/wav2vec#wav2vec-20. # Usage To transcribe audio files the model can be used as a standalone acoustic model as follows: ```python from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC from datasets import load_dataset import torch # load model and processor processor = Wav2Vec2Processor.from_pretrained("Splend1dchan/wav2vec2-large-100h-lv60-self") model = Wav2Vec2ForCTC.from_pretrained("Splend1dchan/wav2vec2-large-100h-lv60-self") # load dummy dataset and read soundfiles ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation") # tokenize input_values = processor(ds[0]["audio"]["array"], return_tensors="pt", padding="longest").input_values # retrieve logits logits = model(input_values).logits # take argmax and decode predicted_ids = torch.argmax(logits, dim=-1) transcription = processor.batch_decode(predicted_ids) ``` ## Evaluation This code snippet shows how to evaluate facebook's **Splend1dchan/wav2vec2-large-100h-lv60-self** on LibriSpeech's "clean" and "other" test data. ```python from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import torch from jiwer import wer librispeech_eval = load_dataset("librispeech_asr", "clean", split="test") model = Wav2Vec2ForCTC.from_pretrained("Splend1dchan/wav2vec2-large-100h-lv60-self").to("cuda") processor = Wav2Vec2Processor.from_pretrained("Splend1dchan/wav2vec2-large-100h-lv60-self") def map_to_pred(batch): inputs = processor(batch["audio"]["array"], return_tensors="pt", padding="longest") input_values = inputs.input_values.to("cuda") attention_mask = inputs.attention_mask.to("cuda") with torch.no_grad(): logits = model(input_values, attention_mask=attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) transcription = processor.batch_decode(predicted_ids) batch["transcription"] = transcription return batch result = librispeech_eval.map(map_to_pred, remove_columns=["speech"]) print("WER:", wer(result["text"], result["transcription"])) ``` <!-- *Result (WER)*: | "clean" | "other" | |---|---| | untested | untested | -->
Splend1dchan/wav2vec2-large-10min-lv60-self
Splend1dchan
2022-05-30T04:37:27Z
5
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "speech", "audio", "hf-asr-leaderboard", "en", "dataset:librispeech_asr", "arxiv:2010.11430", "arxiv:2006.11477", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-04-12T06:14:30Z
--- language: en datasets: - librispeech_asr tags: - speech - audio - automatic-speech-recognition - hf-asr-leaderboard license: apache-2.0 model-index: - name: wav2vec2-large-10min-lv60 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Librispeech (clean) type: librispeech_asr args: en metrics: - name: Test WER type: wer value: None --- # Wav2Vec2-Large-10min-Lv60 + Self-Training # This is a direct state_dict transfer from fairseq to huggingface, the weights are identical [Facebook's Wav2Vec2](https://ai.facebook.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio/) The large model pretrained and fine-tuned on 10min of Libri-Light and Librispeech on 16kHz sampled speech audio. Model was trained with [Self-Training objective](https://arxiv.org/abs/2010.11430). When using the model make sure that your speech input is also sampled at 16Khz. [Paper](https://arxiv.org/abs/2006.11477) Authors: Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli **Abstract** They show for the first time that learning powerful representations from speech audio alone followed by fine-tuning on transcribed speech can outperform the best semi-supervised methods while being conceptually simpler. wav2vec 2.0 masks the speech input in the latent space and solves a contrastive task defined over a quantization of the latent representations which are jointly learned. Experiments using all labeled data of Librispeech achieve 1.8/3.3 WER on the clean/other test sets. When lowering the amount of labeled data to one hour, wav2vec 2.0 outperforms the previous state of the art on the 100 hour subset while using 100 times less labeled data. Using just ten minutes of labeled data and pre-training on 53k hours of unlabeled data still achieves 4.8/8.2 WER. This demonstrates the feasibility of speech recognition with limited amounts of labeled data. The original model can be found under https://github.com/pytorch/fairseq/tree/master/examples/wav2vec#wav2vec-20. # Usage To transcribe audio files the model can be used as a standalone acoustic model as follows: ```python from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC from datasets import load_dataset import torch # load model and processor processor = Wav2Vec2Processor.from_pretrained("Splend1dchan/wav2vec2-large-10min-lv60-self") model = Wav2Vec2ForCTC.from_pretrained("Splend1dchan/wav2vec2-large-10min-lv60-self") # load dummy dataset and read soundfiles ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation") # tokenize input_values = processor(ds[0]["audio"]["array"], return_tensors="pt", padding="longest").input_values # retrieve logits logits = model(input_values).logits # take argmax and decode predicted_ids = torch.argmax(logits, dim=-1) transcription = processor.batch_decode(predicted_ids) ``` ## Evaluation This code snippet shows how to evaluate facebook's **Splend1dchan/wav2vec2-large-10min-lv60-self** on LibriSpeech's "clean" and "other" test data. ```python from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import torch from jiwer import wer librispeech_eval = load_dataset("librispeech_asr", "clean", split="test") model = Wav2Vec2ForCTC.from_pretrained("Splend1dchan/wav2vec2-large-10min-lv60-self").to("cuda") processor = Wav2Vec2Processor.from_pretrained("Splend1dchan/wav2vec2-large-10min-lv60-self") def map_to_pred(batch): inputs = processor(batch["audio"]["array"], return_tensors="pt", padding="longest") input_values = inputs.input_values.to("cuda") attention_mask = inputs.attention_mask.to("cuda") with torch.no_grad(): logits = model(input_values, attention_mask=attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) transcription = processor.batch_decode(predicted_ids) batch["transcription"] = transcription return batch result = librispeech_eval.map(map_to_pred, remove_columns=["speech"]) print("WER:", wer(result["text"], result["transcription"])) ``` <!-- *Result (WER)*: | "clean" | "other" | |---|---| | untested | untested | -->
KDB/bert-base-finetuned-sts
KDB
2022-05-30T03:59:09Z
9
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "dataset:klue", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-28T17:54:52Z
--- tags: - generated_from_trainer datasets: - klue metrics: - pearsonr model-index: - name: bert-base-finetuned-sts results: - task: name: Text Classification type: text-classification dataset: name: klue type: klue args: sts metrics: - name: Pearsonr type: pearsonr value: 0.8970473420720607 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-finetuned-sts This model is a fine-tuned version of [klue/bert-base](https://huggingface.co/klue/bert-base) on the klue dataset. It achieves the following results on the evaluation set: - Loss: 0.4770 - Pearsonr: 0.8970 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Pearsonr | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 92 | 0.6330 | 0.8717 | | No log | 2.0 | 184 | 0.6206 | 0.8818 | | No log | 3.0 | 276 | 0.5010 | 0.8947 | | No log | 4.0 | 368 | 0.4717 | 0.8956 | | No log | 5.0 | 460 | 0.4770 | 0.8970 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
olpa/xlm-roberta-base-finetuned-panx-de
olpa
2022-05-30T03:26:44Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-05-27T03:45:45Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8627004891366169 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1363 - F1: 0.8627 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2539 | 1.0 | 525 | 0.1697 | 0.8179 | | 0.1317 | 2.0 | 1050 | 0.1327 | 0.8516 | | 0.0819 | 3.0 | 1575 | 0.1363 | 0.8627 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
stevemobs/deberta-base-combined-squad1-aqa-1epoch
stevemobs
2022-05-30T02:38:48Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "deberta", "question-answering", "generated_from_trainer", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-05-30T01:14:58Z
--- license: mit tags: - generated_from_trainer model-index: - name: deberta-base-combined-squad1-aqa-1epoch results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-base-combined-squad1-aqa-1epoch This model is a fine-tuned version of [microsoft/deberta-base](https://huggingface.co/microsoft/deberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9431 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.0971 | 1.0 | 9906 | 0.9431 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
imamnurby/rob2rand_chen_w_prefix_c_fc
imamnurby
2022-05-30T02:25:04Z
5
0
transformers
[ "transformers", "pytorch", "encoder-decoder", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-30T02:22:25Z
--- tags: - generated_from_trainer model-index: - name: rob2rand_chen_w_prefix_c_fc results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # rob2rand_chen_w_prefix_c_fc This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 0.0939 - eval_bleu: 84.4530 - eval_em: 52.0156 - eval_bleu_em: 68.2343 - eval_runtime: 21.0016 - eval_samples_per_second: 36.616 - eval_steps_per_second: 0.619 - step: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 3 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.18.0 - Pytorch 1.7.1 - Datasets 2.1.0 - Tokenizers 0.12.1
lopushanskyy/music-generation
lopushanskyy
2022-05-30T01:24:47Z
7
4
transformers
[ "transformers", "private", "audio-classification", "license:mit", "endpoints_compatible", "region:us" ]
audio-classification
2022-05-29T15:37:35Z
--- tags: - audio-classification license: mit ---
tbosse/bert-base-german-cased-finetuned-subj_preTrained_with_noisyData_v2
tbosse
2022-05-29T23:09:23Z
9
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-05-25T22:21:46Z
--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-german-cased-finetuned-subj_preTrained_with_noisyData_v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-german-cased-finetuned-subj_preTrained_with_noisyData_v2 This model is a fine-tuned version of [bert-base-german-cased](https://huggingface.co/bert-base-german-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0074 - Precision: 0.9776 - Recall: 0.9593 - F1: 0.9683 - Accuracy: 0.9981 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.038 | 1.0 | 625 | 0.0091 | 0.9694 | 0.9426 | 0.9559 | 0.9974 | | 0.0079 | 2.0 | 1250 | 0.0074 | 0.9776 | 0.9593 | 0.9683 | 0.9981 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
stevemobs/deberta-base-finetuned-squad1-newsqa
stevemobs
2022-05-29T21:46:10Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "deberta", "question-answering", "generated_from_trainer", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-05-29T17:38:51Z
--- license: mit tags: - generated_from_trainer model-index: - name: deberta-base-finetuned-squad1-newsqa results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-base-finetuned-squad1-newsqa This model is a fine-tuned version of [stevemobs/deberta-base-finetuned-squad1](https://huggingface.co/stevemobs/deberta-base-finetuned-squad1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7556 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.6703 | 1.0 | 17307 | 0.7207 | | 0.4775 | 2.0 | 34614 | 0.7556 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
theojolliffe/bart-large-cnn-pubmed1o3-pubmed2o3-pubmed3o3-arxiv1o3
theojolliffe
2022-05-29T19:18:42Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "dataset:scientific_papers", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-28T15:31:03Z
--- license: mit tags: - generated_from_trainer datasets: - scientific_papers metrics: - rouge model-index: - name: bart-large-cnn-pubmed1o3-pubmed2o3-pubmed3o3-arxiv1o3 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: scientific_papers type: scientific_papers args: arxiv metrics: - name: Rouge1 type: rouge value: 42.2455 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-cnn-pubmed1o3-pubmed2o3-pubmed3o3-arxiv1o3 This model is a fine-tuned version of [theojolliffe/bart-large-cnn-pubmed1o3-pubmed2o3-pubmed3o3](https://huggingface.co/theojolliffe/bart-large-cnn-pubmed1o3-pubmed2o3-pubmed3o3) on the scientific_papers dataset. It achieves the following results on the evaluation set: - Loss: 2.1825 - Rouge1: 42.2455 - Rouge2: 15.6488 - Rougel: 24.4935 - Rougelsum: 37.9427 - Gen Len: 131.1379 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:| | 2.185 | 1.0 | 33840 | 2.1825 | 42.2455 | 15.6488 | 24.4935 | 37.9427 | 131.1379 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
meln1k/q-FrozenLake-v1-4x4-noSlippery
meln1k
2022-05-29T17:24:40Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-05-29T17:22:14Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="meln1k/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
nevepam/ppo-LunarLander-v2_
nevepam
2022-05-29T17:20:34Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-29T17:20:08Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: -142.97 +/- 44.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
felizang/q-FrozenLake-v1-4x4-noSlippery
felizang
2022-05-29T16:26:41Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-05-29T16:26:34Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="felizang/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
ruselkomp/deeppavlov-framebank-full-5epochs
ruselkomp
2022-05-29T16:05:39Z
14
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "endpoints_compatible", "region:us" ]
question-answering
2022-05-28T12:29:12Z
--- tags: - generated_from_trainer model-index: - name: deeppavlov-framebank-full-5epochs results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deeppavlov-framebank-full-5epochs This model is a fine-tuned version of [DeepPavlov/rubert-base-cased](https://huggingface.co/DeepPavlov/rubert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4206 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.0742 | 1.0 | 2827 | 1.0130 | | 0.7934 | 2.0 | 5654 | 1.0363 | | 0.5931 | 3.0 | 8481 | 1.1527 | | 0.4166 | 4.0 | 11308 | 1.2754 | | 0.3145 | 5.0 | 14135 | 1.4206 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.2.3.dev0 - Tokenizers 0.12.1
dbarbedillo/q-Taxi-v3
dbarbedillo
2022-05-29T15:51:03Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-05-29T15:50:53Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="dbarbedillo/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
dbarbedillo/q-FrozenLake-v1-4x4-noSlippery
dbarbedillo
2022-05-29T15:48:08Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-05-29T15:47:58Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="dbarbedillo/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
keras-io/ocr-for-captcha
keras-io
2022-05-29T15:39:12Z
109
70
tf-keras
[ "tf-keras", "ocr", "computer vision", "object detection", "image-to-text", "license:cc0-1.0", "region:us" ]
image-to-text
2022-03-02T23:29:05Z
--- tags: - ocr - computer vision - object detection - image-to-text license: - cc0-1.0 --- ## Keras Implementation of OCR model for reading captcha 🤖🦹🏻 This repo contains the model and the notebook [to this Keras example on OCR model for reading captcha](https://keras.io/examples/vision/captcha_ocr/). Full credits to: [Aakash Kumar Nain](https://twitter.com/A_K_Nain) ## Background Information This example demonstrates a simple OCR model built with the Functional API. Apart from combining CNN and RNN, it also illustrates how you can instantiate a new layer and use it as an "Endpoint layer" for implementing CTC loss. This model uses subclassing, learn more about subclassing from [this guide](https://keras.io/guides/making_new_layers_and_models_via_subclassing/). ![ocr](https://keras.io/img/examples/vision/captcha_ocr/captcha_ocr_19_1.png)
jonporterjones/Taxi1
jonporterjones
2022-05-29T15:31:54Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-05-29T15:29:21Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi1 results: - metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="jonporterjones/Taxi1", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
vai6hav/wav2vec2-large-xls-r-300m-hindi-epochs60-colab
vai6hav
2022-05-29T15:04:50Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-05-29T13:49:26Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-hindi-epochs60-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-hindi-epochs60-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 1.7322 - Wer: 0.9188 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 60 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 6.2832 | 44.42 | 400 | 1.7322 | 0.9188 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
YeRyeongLee/bert-base-uncased-finetuned-removed-0529
YeRyeongLee
2022-05-29T15:03:49Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-29T06:03:05Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: bert-base-uncased-finetuned-removed-0529 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-removed-0529 This model is a fine-tuned version of [YeRyeongLee/bert-base-uncased-finetuned-0505-2](https://huggingface.co/YeRyeongLee/bert-base-uncased-finetuned-0505-2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.1501 - Accuracy: 0.8767 - F1: 0.8765 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:| | No log | 1.0 | 3180 | 0.5072 | 0.8358 | 0.8373 | | No log | 2.0 | 6360 | 0.5335 | 0.8566 | 0.8564 | | No log | 3.0 | 9540 | 0.6317 | 0.8594 | 0.8603 | | No log | 4.0 | 12720 | 0.6781 | 0.8723 | 0.8727 | | No log | 5.0 | 15900 | 0.8235 | 0.8679 | 0.8682 | | No log | 6.0 | 19080 | 0.9205 | 0.8676 | 0.8674 | | No log | 7.0 | 22260 | 0.9898 | 0.8698 | 0.8695 | | 0.2348 | 8.0 | 25440 | 1.0756 | 0.8695 | 0.8695 | | 0.2348 | 9.0 | 28620 | 1.1342 | 0.8739 | 0.8735 | | 0.2348 | 10.0 | 31800 | 1.1501 | 0.8767 | 0.8765 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.9.0 - Datasets 1.16.1 - Tokenizers 0.12.1
ashesicsis1/xlsr-english
ashesicsis1
2022-05-29T14:47:54Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:librispeech_asr", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-05-29T06:32:18Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - librispeech_asr model-index: - name: xlsr-english results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlsr-english This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the librispeech_asr dataset. It achieves the following results on the evaluation set: - Loss: 0.3098 - Wer: 0.1451 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.2453 | 2.37 | 400 | 0.5789 | 0.4447 | | 0.3736 | 4.73 | 800 | 0.3737 | 0.2850 | | 0.1712 | 7.1 | 1200 | 0.3038 | 0.2136 | | 0.117 | 9.47 | 1600 | 0.3016 | 0.2072 | | 0.0897 | 11.83 | 2000 | 0.3158 | 0.1920 | | 0.074 | 14.2 | 2400 | 0.3137 | 0.1831 | | 0.0595 | 16.57 | 2800 | 0.2967 | 0.1745 | | 0.0493 | 18.93 | 3200 | 0.3192 | 0.1670 | | 0.0413 | 21.3 | 3600 | 0.3176 | 0.1644 | | 0.0322 | 23.67 | 4000 | 0.3079 | 0.1598 | | 0.0296 | 26.04 | 4400 | 0.2978 | 0.1511 | | 0.0235 | 28.4 | 4800 | 0.3098 | 0.1451 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
nizamudma/bart-finetuned-cnn-3
nizamudma
2022-05-29T13:54:17Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "dataset:cnn_dailymail", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-28T17:30:32Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - cnn_dailymail metrics: - rouge model-index: - name: bart-finetuned-cnn-3 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: cnn_dailymail type: cnn_dailymail args: 3.0.0 metrics: - name: Rouge1 type: rouge value: 40.201 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-finetuned-cnn-3 This model is a fine-tuned version of [sshleifer/distilbart-xsum-12-3](https://huggingface.co/sshleifer/distilbart-xsum-12-3) on the cnn_dailymail dataset. It achieves the following results on the evaluation set: - Loss: 2.0751 - Rouge1: 40.201 - Rouge2: 18.8482 - Rougel: 29.4439 - Rougelsum: 37.416 - Gen Len: 56.7545 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 2.276 | 1.0 | 8883 | 2.1762 | 39.6581 | 18.3333 | 28.7765 | 36.7688 | 58.5386 | | 2.0806 | 2.0 | 17766 | 2.0909 | 40.0328 | 18.8026 | 29.417 | 37.3508 | 56.6804 | | 1.9615 | 3.0 | 26649 | 2.0751 | 40.201 | 18.8482 | 29.4439 | 37.416 | 56.7545 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
sanchit-gandhi/flax-dummy
sanchit-gandhi
2022-05-29T12:07:43Z
4
0
transformers
[ "transformers", "jax", "tensorboard", "speech-encoder-decoder", "automatic-speech-recognition", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-05-05T18:04:05Z
/home/sanchitgandhi/seq2seq-speech/README.md
sriiikar/wav2vec2-hindi-3
sriiikar
2022-05-29T11:42:20Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-05-29T05:25:27Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-hindi-3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-hindi-3 This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.0900 - Wer: 0.7281 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 40 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.609 | 6.41 | 1000 | 1.2290 | 0.7497 | | 0.3754 | 12.82 | 2000 | 1.5350 | 0.7128 | | 0.1587 | 19.23 | 3000 | 1.8671 | 0.7322 | | 0.103 | 25.64 | 4000 | 1.9383 | 0.7300 | | 0.0761 | 32.05 | 5000 | 2.0767 | 0.7306 | | 0.0616 | 38.46 | 6000 | 2.0900 | 0.7281 | ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.2.3.dev0 - Tokenizers 0.12.1
vai6hav/wav2vec2-large-xls-r-300m-hindi-epochs40-colab
vai6hav
2022-05-29T10:06:38Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-05-29T09:18:24Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-hindi-epochs40-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-hindi-epochs40-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 40 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
bigmorning/distilgpt2-lektay2-secondpos
bigmorning
2022-05-29T08:59:33Z
3
0
transformers
[ "transformers", "tf", "gpt2", "text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-05-29T04:20:12Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: distilgpt2-lektay2-secondpos results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-lektay2-secondpos This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results ### Framework versions - Transformers 4.19.2 - TensorFlow 2.8.0 - Datasets 2.2.2 - Tokenizers 0.12.1
everdoubling/byt5-Korean-base
everdoubling
2022-05-29T08:35:55Z
4
1
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "dataset:mc4", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-27T06:46:11Z
--- datasets: - mc4 license: apache-2.0 --- # ByT5-Korean - base ByT5-Korean is a Korean specific extension of Google's [ByT5](https://github.com/google-research/byt5). A Korean syllable has three components (called Jamo): a beginning consonant, a middle vowel, and an optional final consonant; they are like individual characters of alphabet. While the ByT5's utf-8 encoding allows generic encoding for multiple languages, it is unnatural for Korean because it splits the bits representation of each Jamo in the middle. ByT5-Korean extends ByT5's utf-8 encoding with special care for Korean syllables; each Jamo is represented with a extra token. ByT5-Korean was pre-trained on [mC4](https://www.tensorflow.org/datasets/catalog/c4#c4multilingual) with 70% Korean and 30% English. ## Encoding Scheme ```text id: token 0: <pad> 1: <eos> 2: <unk> 3~258: utf-8 encoding 259~277: beginning consonants(초성), 19개(ㄱㄲㄴㄷㄸㄹㅁㅂㅃㅅㅆㅇㅈㅉㅊㅋㅌㅍㅎ) 278~298: middle vowel(중성), 21개(ㅏㅐㅑㅒㅓㅔㅕㅖㅗㅘㅙㅚㅛㅜㅝㅞㅟㅠㅡㅢㅣ) 299~326: final consonant(종성), 무종성+27개(ㄱㄲㄳㄴㄵㄶㄷㄹㄺㄻㄼㄽㄾㄿㅀㅁㅂㅄㅅㅆㅇㅈㅊㅋㅌㅍㅎ) 327~384: from <extra_id_0> to <extra_id_57> ``` ## Example Inference ```python import torch from tokenizer import ByT5KoreanTokenizer # https://huggingface.co/everdoubling/byt5-Korean-base/blob/main/tokenizer.py from transformers import T5ForConditionalGeneration tokenizer_jamo = ByT5KoreanTokenizer() model = T5ForConditionalGeneration.from_pretrained('everdoubling/byt5-Korean-base') input_sentence = '한국어 위키백과(영어: Korean Wikipedia)는 한국어로 운영되는 위키백과의 다언어판 가운데 하나로서, 2002년 10월 11일에 <extra_id_0>. 또한 현재 한국어 위키백과에는 넘겨주기, 토론, 그림 등 페이지로 불리는 모든 문서를 포함하면 총 2,629,860개가 <extra_id_1>되어 있으며, 넘겨주기를 포함한 일반 문서 수는 1,278,560개,[1] 그중 넘겨주기, 막다른 문서를 제외한 일반 문서 수는 573,149개이다.' input_ids_jamo = tokenizer_jamo(input_sentence).input_ids outputs_jamo = model_jamo.generate(torch.tensor([input_ids_jamo])) print(tokenizer_jamo.decode(outputs_jamo[0])) # <pad><extra_id_0>설립되었다<extra_id_1>đě ``` Additional information coming soon...
Sultannn/fashion-gan
Sultannn
2022-05-29T08:35:15Z
0
2
keras
[ "keras", "tf-keras", "region:us" ]
null
2022-05-29T08:35:05Z
--- library_name: keras --- ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training Metrics Model history needed ## Model Plot <details> <summary>View Model Plot</summary> ![Model Image](./model.png) </details>
GioReg/bertNEGsentiment
GioReg
2022-05-29T08:24:09Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-29T07:44:42Z
--- tags: - generated_from_trainer model-index: - name: bertNEGsentiment results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bertNEGsentiment This model is a fine-tuned version of [m-polignano-uniba/bert_uncased_L-12_H-768_A-12_italian_alb3rt0](https://huggingface.co/m-polignano-uniba/bert_uncased_L-12_H-768_A-12_italian_alb3rt0) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
public-data/TADNE
public-data
2022-05-29T08:10:28Z
0
5
null
[ "computer-vision", "image-generation", "anime", "license:cc0-1.0", "region:us" ]
null
2022-04-10T04:29:58Z
--- license: cc0-1.0 tags: - computer-vision - image-generation - anime --- # TADNE (This Anime Does Not Exist) model The original TADNE site is https://thisanimedoesnotexist.ai/. ![](samples/sample.jpg) ## Original TensorFlow model The original TADNE model is provided in [this site](https://www.gwern.net/Faces#tadne-download) under CC-0 license. ([Google Drive](https://drive.google.com/file/d/1A-E_E32WAtTHRlOzjhhYhyyBDXLJN9_H)) ## Model Conversion The model in the `models` directory is converted with the following repo: https://github.com/rosinality/stylegan2-pytorch ### Apply patches ```diff --- a/model.py +++ b/model.py @@ -395,6 +395,7 @@ class Generator(nn.Module): style_dim, n_mlp, channel_multiplier=2, + additional_multiplier=2, blur_kernel=[1, 3, 3, 1], lr_mlp=0.01, ): @@ -426,6 +427,9 @@ class Generator(nn.Module): 512: 32 * channel_multiplier, 1024: 16 * channel_multiplier, } + if additional_multiplier > 1: + for k in list(self.channels.keys()): + self.channels[k] *= additional_multiplier self.input = ConstantInput(self.channels[4]) self.conv1 = StyledConv( @@ -518,7 +522,7 @@ class Generator(nn.Module): getattr(self.noises, f"noise_{i}") for i in range(self.num_layers) ] - if truncation < 1: + if truncation_latent is not None: style_t = [] for style in styles: ``` ```diff --- a/convert_weight.py +++ b/convert_weight.py @@ -221,6 +221,7 @@ if __name__ == "__main__": default=2, help="channel multiplier factor. config-f = 2, else = 1", ) + parser.add_argument("--additional_multiplier", type=int, default=2) parser.add_argument("path", metavar="PATH", help="path to the tensorflow weights") args = parser.parse_args() @@ -243,7 +244,8 @@ if __name__ == "__main__": if layer[0].startswith('Dense'): n_mlp += 1 - g = Generator(size, 512, n_mlp, channel_multiplier=args.channel_multiplier) + style_dim = 512 * args.additional_multiplier + g = Generator(size, style_dim, n_mlp, channel_multiplier=args.channel_multiplier, additional_multiplier=args.additional_multiplier) state_dict = g.state_dict() state_dict = fill_statedict(state_dict, g_ema.vars, size, n_mlp) @@ -254,7 +256,7 @@ if __name__ == "__main__": ckpt = {"g_ema": state_dict, "latent_avg": latent_avg} if args.gen: - g_train = Generator(size, 512, n_mlp, channel_multiplier=args.channel_multiplier) + g_train = Generator(size, style_dim, n_mlp, channel_multiplier=args.channel_multiplier, additional_multiplier=args.additional_multiplier) g_train_state = g_train.state_dict() g_train_state = fill_statedict(g_train_state, generator.vars, size, n_mlp) ckpt["g"] = g_train_state @@ -271,9 +273,12 @@ if __name__ == "__main__": batch_size = {256: 16, 512: 9, 1024: 4} n_sample = batch_size.get(size, 25) + if args.additional_multiplier > 1: + n_sample = 2 + g = g.to(device) - z = np.random.RandomState(0).randn(n_sample, 512).astype("float32") + z = np.random.RandomState(0).randn(n_sample, style_dim).astype("float32") with torch.no_grad(): img_pt, _ = g( ``` ### Build Docker image ```dockerfile FROM nvidia/cuda:10.0-cudnn7-devel-ubuntu18.04 ENV DEBIAN_FRONTEND=noninteractive RUN apt-get update -y && \ apt-get install -y --no-install-recommends \ git \ ninja-build \ # pyenv dependencies \ make \ build-essential \ libssl-dev \ zlib1g-dev \ libbz2-dev \ libreadline-dev \ libsqlite3-dev \ wget \ curl \ llvm \ libncursesw5-dev \ xz-utils \ tk-dev \ libxml2-dev \ libxmlsec1-dev \ libffi-dev \ liblzma-dev && \ apt-get clean && \ rm -rf /var/lib/apt/lists/* ARG PYTHON_VERSION=3.7.12 ENV PYENV_ROOT /opt/pyenv ENV PATH ${PYENV_ROOT}/shims:${PYENV_ROOT}/bin:${PATH} RUN curl https://pyenv.run | bash RUN pyenv install ${PYTHON_VERSION} && \ pyenv global ${PYTHON_VERSION} RUN pip install --no-cache-dir -U requests tqdm opencv-python-headless RUN pip install --no-cache-dir -U tensorflow-gpu==1.15.4 RUN pip install --no-cache-dir -U torch==1.10.2+cu102 torchvision==0.11.3+cu102 -f https://download.pytorch.org/whl/torch/ -f https://download.pytorch.org/whl/torchvision/ RUN rm -rf ${HOME}/.cache/pip WORKDIR /work ENV PYTHONPATH /work/:${PYTHONPATH} ``` ```bash docker build . -t stylegan2_pytorch ``` ### Convert ```bash git clone https://github.com/NVLabs/stylegan2 docker run --rm -it -u $(id -u):$(id -g) -e XDG_CACHE_HOME=/work --ipc host --gpus all -w /work -v `pwd`:/work stylegan2_pytorch python convert_weight.py --repo stylegan2 aydao-anime-danbooru2019s-512-5268480.pkl ``` ## Usage ### Apply patch ```diff --- a/generate.py +++ b/generate.py @@ -6,21 +6,25 @@ from model import Generator from tqdm import tqdm -def generate(args, g_ema, device, mean_latent): +def generate(args, g_ema, device, mean_latent, randomize_noise): with torch.no_grad(): g_ema.eval() for i in tqdm(range(args.pics)): - sample_z = torch.randn(args.sample, args.latent, device=device) + samples = [] + for _ in range(args.split): + sample_z = torch.randn(args.sample // args.split, args.latent, device=device) - sample, _ = g_ema( - [sample_z], truncation=args.truncation, truncation_latent=mean_latent - ) + sample, _ = g_ema( + [sample_z], truncation=args.truncation, truncation_latent=mean_latent, + randomize_noise=randomize_noise + ) + samples.extend(sample) utils.save_image( - sample, - f"sample/{str(i).zfill(6)}.png", - nrow=1, + samples, + f"{args.output_dir}/{str(i).zfill(6)}.{args.ext}", + nrow=args.ncol, normalize=True, range=(-1, 1), ) @@ -30,6 +34,8 @@ if __name__ == "__main__": device = "cuda" parser = argparse.ArgumentParser(description="Generate samples from the generator") + parser.add_argument("--seed", type=int, default=0) + parser.add_argument("--output-dir", '-o', type=str, required=True) parser.add_argument( "--size", type=int, default=1024, help="output image size of the generator" @@ -37,11 +43,14 @@ if __name__ == "__main__": parser.add_argument( "--sample", type=int, - default=1, + default=100, help="number of samples to be generated for each image", ) + parser.add_argument("--ncol", type=int, default=10) + parser.add_argument("--split", type=int, default=4) + parser.add_argument("--ext", type=str, default='png') parser.add_argument( - "--pics", type=int, default=20, help="number of images to be generated" + "--pics", type=int, default=1, help="number of images to be generated" ) parser.add_argument("--truncation", type=float, default=1, help="truncation ratio") parser.add_argument( @@ -62,23 +71,31 @@ if __name__ == "__main__": default=2, help="channel multiplier of the generator. config-f = 2, else = 1", ) + parser.add_argument("--additional_multiplier", type=int, default=1) + parser.add_argument("--load_latent_vec", action='store_true') + parser.add_argument("--no-randomize-noise", dest='randomize_noise', action='store_false') + parser.add_argument("--n_mlp", type=int, default=8) args = parser.parse_args() - args.latent = 512 - args.n_mlp = 8 + seed = args.seed + torch.manual_seed(seed) + torch.cuda.manual_seed_all(seed) + + args.latent = 512 * args.additional_multiplier g_ema = Generator( - args.size, args.latent, args.n_mlp, channel_multiplier=args.channel_multiplier + args.size, args.latent, args.n_mlp, channel_multiplier=args.channel_multiplier, + additional_multiplier=args.additional_multiplier ).to(device) checkpoint = torch.load(args.ckpt) - g_ema.load_state_dict(checkpoint["g_ema"]) + g_ema.load_state_dict(checkpoint["g_ema"], strict=True) - if args.truncation < 1: + if not args.load_latent_vec: with torch.no_grad(): mean_latent = g_ema.mean_latent(args.truncation_mean) else: - mean_latent = None + mean_latent = checkpoint['latent_avg'].to(device) - generate(args, g_ema, device, mean_latent) + generate(args, g_ema, device, mean_latent, randomize_noise=args.randomize_noise) ``` ### Run ```bash python generate.py --ckpt aydao-anime-danbooru2019s-512-5268480.pt --size 512 --n_mlp 4 --additional_multiplier 2 --load_latent_vec --no-randomize-noise -o out_images --truncation 0.6 --seed 333 --pics 1 --sample 48 --ncol 8 --ext jpg ```
SusBioRes-UBC/q-Taxi-v3
SusBioRes-UBC
2022-05-29T06:33:40Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-05-29T06:33:33Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="SusBioRes-UBC/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
sabah17/distilbert-base-uncased-finetuned-squad
sabah17
2022-05-29T05:37:34Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-05-22T06:43:44Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.1635 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2324 | 1.0 | 5533 | 1.1746 | | 0.9703 | 2.0 | 11066 | 1.1406 | | 0.7702 | 3.0 | 16599 | 1.1635 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
poiug07/PPO-LunarLander-v2
poiug07
2022-05-29T01:52:52Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-29T00:19:16Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 286.55 +/- 15.09 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
GiordanoB/mbart-large-50-finetuned-summarization-V2
GiordanoB
2022-05-29T00:51:55Z
9
1
transformers
[ "transformers", "pytorch", "tensorboard", "mbart", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-28T19:51:43Z
--- tags: - generated_from_trainer metrics: - rouge model-index: - name: mbart-large-50-finetuned-summarization-V2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mbart-large-50-finetuned-summarization-V2 This model is a fine-tuned version of [facebook/mbart-large-50](https://huggingface.co/facebook/mbart-large-50) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.9183 - Rouge1: 50.0118 - Rouge2: 31.3168 - Rougel: 37.6392 - Rougelsum: 45.2287 - Gen Len: 102.3571 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:| | No log | 1.0 | 15 | 2.0228 | 51.9711 | 32.5963 | 39.9154 | 48.3431 | 134.6429 | | No log | 2.0 | 30 | 1.9410 | 48.2977 | 30.5942 | 35.9761 | 43.7634 | 92.0714 | | No log | 3.0 | 45 | 1.9183 | 50.0118 | 31.3168 | 37.6392 | 45.2287 | 102.3571 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
JuanForeroNeme/ES_UC_MODELO_NPL_E3_V2
JuanForeroNeme
2022-05-28T19:05:51Z
5
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-28T18:11:10Z
**ENTREGABLE 3** * Magda Brigitte Baron * Juan Guillermo Forero Neme * Myriam Leguizamon Lopez * Diego Alexander Maca Garcia
GioReg/notiBERTrecensioni
GioReg
2022-05-28T17:47:42Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-28T17:33:41Z
--- tags: - generated_from_trainer model-index: - name: notiBERTrecensioni results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # notiBERTrecensioni This model is a fine-tuned version of [GioReg/notiBERTo](https://huggingface.co/GioReg/notiBERTo) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
silviacamplani/distilbert-base-uncased-finetuned-imdb
silviacamplani
2022-05-28T17:39:24Z
5
0
transformers
[ "transformers", "tf", "distilbert", "fill-mask", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-05-28T17:36:37Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: silviacamplani/distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # silviacamplani/distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.8700 - Validation Loss: 2.6193 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': -688, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 2.8700 | 2.6193 | 0 | ### Framework versions - Transformers 4.18.0 - TensorFlow 2.6.4 - Datasets 2.1.0 - Tokenizers 0.12.1
imdanboy/ljspeech_tts_train_jets_raw_phn_tacotron_g2p_en_no_space_train.total_count.ave
imdanboy
2022-05-28T16:52:35Z
5
1
espnet
[ "espnet", "audio", "text-to-speech", "en", "dataset:ljspeech", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
text-to-speech
2022-05-28T16:51:54Z
--- tags: - espnet - audio - text-to-speech language: en datasets: - ljspeech license: cc-by-4.0 --- ## ESPnet2 TTS model ### `imdanboy/ljspeech_tts_train_jets_raw_phn_tacotron_g2p_en_no_space_train.total_count.ave` This model was trained by imdanboy using ljspeech recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```bash cd espnet git checkout c173c30930631731e6836c274a591ad571749741 pip install -e . cd egs2/ljspeech/tts1 ./run.sh --skip_data_prep false --skip_train true --download_model imdanboy/ljspeech_tts_train_jets_raw_phn_tacotron_g2p_en_no_space_train.total_count.ave ``` ## TTS config <details><summary>expand</summary> ``` config: conf/tuning/train_jets.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/tts_train_jets_raw_phn_tacotron_g2p_en_no_space ngpu: 1 seed: 777 num_workers: 4 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: 4 dist_rank: 0 local_rank: 0 dist_master_addr: localhost dist_master_port: 39471 dist_launcher: null multiprocessing_distributed: true unused_parameters: true sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: false collect_stats: false write_collected_feats: false max_epoch: 1000 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - text2mel_loss - min - - train - text2mel_loss - min - - train - total_count - max keep_nbest_models: 5 nbest_averaging_interval: 0 grad_clip: -1 grad_clip_type: 2.0 grad_noise: false accum_grad: 1 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: 50 use_matplotlib: true use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: 1000 batch_size: 20 valid_batch_size: null batch_bins: 3000000 valid_batch_bins: null train_shape_file: - exp/tts_stats_raw_phn_tacotron_g2p_en_no_space/train/text_shape.phn - exp/tts_stats_raw_phn_tacotron_g2p_en_no_space/train/speech_shape valid_shape_file: - exp/tts_stats_raw_phn_tacotron_g2p_en_no_space/valid/text_shape.phn - exp/tts_stats_raw_phn_tacotron_g2p_en_no_space/valid/speech_shape batch_type: numel valid_batch_type: null fold_length: - 150 - 204800 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/tr_no_dev/text - text - text - - dump/raw/tr_no_dev/wav.scp - speech - sound - - exp/tts_stats_raw_phn_tacotron_g2p_en_no_space/train/collect_feats/pitch.scp - pitch - npy - - exp/tts_stats_raw_phn_tacotron_g2p_en_no_space/train/collect_feats/energy.scp - energy - npy valid_data_path_and_name_and_type: - - dump/raw/dev/text - text - text - - dump/raw/dev/wav.scp - speech - sound - - exp/tts_stats_raw_phn_tacotron_g2p_en_no_space/valid/collect_feats/pitch.scp - pitch - npy - - exp/tts_stats_raw_phn_tacotron_g2p_en_no_space/valid/collect_feats/energy.scp - energy - npy allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adamw optim_conf: lr: 0.0002 betas: - 0.8 - 0.99 eps: 1.0e-09 weight_decay: 0.0 scheduler: exponentiallr scheduler_conf: gamma: 0.999875 optim2: adamw optim2_conf: lr: 0.0002 betas: - 0.8 - 0.99 eps: 1.0e-09 weight_decay: 0.0 scheduler2: exponentiallr scheduler2_conf: gamma: 0.999875 generator_first: true token_list: - <blank> - <unk> - AH0 - N - T - D - S - R - L - DH - K - Z - IH1 - IH0 - M - EH1 - W - P - AE1 - AH1 - V - ER0 - F - ',' - AA1 - B - HH - IY1 - UW1 - IY0 - AO1 - EY1 - AY1 - . - OW1 - SH - NG - G - ER1 - CH - JH - Y - AW1 - TH - UH1 - EH2 - OW0 - EY2 - AO0 - IH2 - AE2 - AY2 - AA2 - UW0 - EH0 - OY1 - EY0 - AO2 - ZH - OW2 - AE0 - UW2 - AH2 - AY0 - IY2 - AW2 - AA0 - '''' - ER2 - UH2 - '?' - OY2 - '!' - AW0 - UH0 - OY0 - .. - <sos/eos> odim: null model_conf: {} use_preprocessor: true token_type: phn bpemodel: null non_linguistic_symbols: null cleaner: tacotron g2p: g2p_en_no_space feats_extract: fbank feats_extract_conf: n_fft: 1024 hop_length: 256 win_length: null fs: 22050 fmin: 80 fmax: 7600 n_mels: 80 normalize: global_mvn normalize_conf: stats_file: exp/tts_stats_raw_phn_tacotron_g2p_en_no_space/train/feats_stats.npz tts: jets tts_conf: generator_type: jets_generator generator_params: adim: 256 aheads: 2 elayers: 4 eunits: 1024 dlayers: 4 dunits: 1024 positionwise_layer_type: conv1d positionwise_conv_kernel_size: 3 duration_predictor_layers: 2 duration_predictor_chans: 256 duration_predictor_kernel_size: 3 use_masking: true encoder_normalize_before: true decoder_normalize_before: true encoder_type: transformer decoder_type: transformer conformer_rel_pos_type: latest conformer_pos_enc_layer_type: rel_pos conformer_self_attn_layer_type: rel_selfattn conformer_activation_type: swish use_macaron_style_in_conformer: true use_cnn_in_conformer: true conformer_enc_kernel_size: 7 conformer_dec_kernel_size: 31 init_type: xavier_uniform transformer_enc_dropout_rate: 0.2 transformer_enc_positional_dropout_rate: 0.2 transformer_enc_attn_dropout_rate: 0.2 transformer_dec_dropout_rate: 0.2 transformer_dec_positional_dropout_rate: 0.2 transformer_dec_attn_dropout_rate: 0.2 pitch_predictor_layers: 5 pitch_predictor_chans: 256 pitch_predictor_kernel_size: 5 pitch_predictor_dropout: 0.5 pitch_embed_kernel_size: 1 pitch_embed_dropout: 0.0 stop_gradient_from_pitch_predictor: true energy_predictor_layers: 2 energy_predictor_chans: 256 energy_predictor_kernel_size: 3 energy_predictor_dropout: 0.5 energy_embed_kernel_size: 1 energy_embed_dropout: 0.0 stop_gradient_from_energy_predictor: false generator_out_channels: 1 generator_channels: 512 generator_global_channels: -1 generator_kernel_size: 7 generator_upsample_scales: - 8 - 8 - 2 - 2 generator_upsample_kernel_sizes: - 16 - 16 - 4 - 4 generator_resblock_kernel_sizes: - 3 - 7 - 11 generator_resblock_dilations: - - 1 - 3 - 5 - - 1 - 3 - 5 - - 1 - 3 - 5 generator_use_additional_convs: true generator_bias: true generator_nonlinear_activation: LeakyReLU generator_nonlinear_activation_params: negative_slope: 0.1 generator_use_weight_norm: true segment_size: 64 idim: 78 odim: 80 discriminator_type: hifigan_multi_scale_multi_period_discriminator discriminator_params: scales: 1 scale_downsample_pooling: AvgPool1d scale_downsample_pooling_params: kernel_size: 4 stride: 2 padding: 2 scale_discriminator_params: in_channels: 1 out_channels: 1 kernel_sizes: - 15 - 41 - 5 - 3 channels: 128 max_downsample_channels: 1024 max_groups: 16 bias: true downsample_scales: - 2 - 2 - 4 - 4 - 1 nonlinear_activation: LeakyReLU nonlinear_activation_params: negative_slope: 0.1 use_weight_norm: true use_spectral_norm: false follow_official_norm: false periods: - 2 - 3 - 5 - 7 - 11 period_discriminator_params: in_channels: 1 out_channels: 1 kernel_sizes: - 5 - 3 channels: 32 downsample_scales: - 3 - 3 - 3 - 3 - 1 max_downsample_channels: 1024 bias: true nonlinear_activation: LeakyReLU nonlinear_activation_params: negative_slope: 0.1 use_weight_norm: true use_spectral_norm: false generator_adv_loss_params: average_by_discriminators: false loss_type: mse discriminator_adv_loss_params: average_by_discriminators: false loss_type: mse feat_match_loss_params: average_by_discriminators: false average_by_layers: false include_final_outputs: true mel_loss_params: fs: 22050 n_fft: 1024 hop_length: 256 win_length: null window: hann n_mels: 80 fmin: 0 fmax: null log_base: null lambda_adv: 1.0 lambda_mel: 45.0 lambda_feat_match: 2.0 lambda_var: 1.0 lambda_align: 2.0 sampling_rate: 22050 cache_generator_outputs: true pitch_extract: dio pitch_extract_conf: reduction_factor: 1 use_token_averaged_f0: false fs: 22050 n_fft: 1024 hop_length: 256 f0max: 400 f0min: 80 pitch_normalize: global_mvn pitch_normalize_conf: stats_file: exp/tts_stats_raw_phn_tacotron_g2p_en_no_space/train/pitch_stats.npz energy_extract: energy energy_extract_conf: reduction_factor: 1 use_token_averaged_energy: false fs: 22050 n_fft: 1024 hop_length: 256 win_length: null energy_normalize: global_mvn energy_normalize_conf: stats_file: exp/tts_stats_raw_phn_tacotron_g2p_en_no_space/train/energy_stats.npz required: - output_dir - token_list version: '202204' distributed: true ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
imdanboy/jets
imdanboy
2022-05-28T16:37:49Z
2
3
espnet
[ "espnet", "audio", "text-to-speech", "en", "dataset:ljspeech", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
text-to-speech
2022-05-28T16:23:06Z
--- tags: - espnet - audio - text-to-speech language: en datasets: - ljspeech license: cc-by-4.0 --- ## ESPnet2 TTS model ### `imdanboy/jets` This model was trained by imdanboy using ljspeech recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```bash cd espnet git checkout c173c30930631731e6836c274a591ad571749741 pip install -e . cd egs2/ljspeech/tts1 ./run.sh --skip_data_prep false --skip_train true --download_model imdanboy/jets ``` ## TTS config <details><summary>expand</summary> ``` config: conf/tuning/train_jets.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/tts_train_jets_raw_phn_tacotron_g2p_en_no_space ngpu: 1 seed: 777 num_workers: 4 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: 4 dist_rank: 0 local_rank: 0 dist_master_addr: localhost dist_master_port: 39471 dist_launcher: null multiprocessing_distributed: true unused_parameters: true sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: false collect_stats: false write_collected_feats: false max_epoch: 1000 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - text2mel_loss - min - - train - text2mel_loss - min - - train - total_count - max keep_nbest_models: 5 nbest_averaging_interval: 0 grad_clip: -1 grad_clip_type: 2.0 grad_noise: false accum_grad: 1 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: 50 use_matplotlib: true use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: 1000 batch_size: 20 valid_batch_size: null batch_bins: 3000000 valid_batch_bins: null train_shape_file: - exp/tts_stats_raw_phn_tacotron_g2p_en_no_space/train/text_shape.phn - exp/tts_stats_raw_phn_tacotron_g2p_en_no_space/train/speech_shape valid_shape_file: - exp/tts_stats_raw_phn_tacotron_g2p_en_no_space/valid/text_shape.phn - exp/tts_stats_raw_phn_tacotron_g2p_en_no_space/valid/speech_shape batch_type: numel valid_batch_type: null fold_length: - 150 - 204800 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/tr_no_dev/text - text - text - - dump/raw/tr_no_dev/wav.scp - speech - sound - - exp/tts_stats_raw_phn_tacotron_g2p_en_no_space/train/collect_feats/pitch.scp - pitch - npy - - exp/tts_stats_raw_phn_tacotron_g2p_en_no_space/train/collect_feats/energy.scp - energy - npy valid_data_path_and_name_and_type: - - dump/raw/dev/text - text - text - - dump/raw/dev/wav.scp - speech - sound - - exp/tts_stats_raw_phn_tacotron_g2p_en_no_space/valid/collect_feats/pitch.scp - pitch - npy - - exp/tts_stats_raw_phn_tacotron_g2p_en_no_space/valid/collect_feats/energy.scp - energy - npy allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adamw optim_conf: lr: 0.0002 betas: - 0.8 - 0.99 eps: 1.0e-09 weight_decay: 0.0 scheduler: exponentiallr scheduler_conf: gamma: 0.999875 optim2: adamw optim2_conf: lr: 0.0002 betas: - 0.8 - 0.99 eps: 1.0e-09 weight_decay: 0.0 scheduler2: exponentiallr scheduler2_conf: gamma: 0.999875 generator_first: true token_list: - <blank> - <unk> - AH0 - N - T - D - S - R - L - DH - K - Z - IH1 - IH0 - M - EH1 - W - P - AE1 - AH1 - V - ER0 - F - ',' - AA1 - B - HH - IY1 - UW1 - IY0 - AO1 - EY1 - AY1 - . - OW1 - SH - NG - G - ER1 - CH - JH - Y - AW1 - TH - UH1 - EH2 - OW0 - EY2 - AO0 - IH2 - AE2 - AY2 - AA2 - UW0 - EH0 - OY1 - EY0 - AO2 - ZH - OW2 - AE0 - UW2 - AH2 - AY0 - IY2 - AW2 - AA0 - '''' - ER2 - UH2 - '?' - OY2 - '!' - AW0 - UH0 - OY0 - .. - <sos/eos> odim: null model_conf: {} use_preprocessor: true token_type: phn bpemodel: null non_linguistic_symbols: null cleaner: tacotron g2p: g2p_en_no_space feats_extract: fbank feats_extract_conf: n_fft: 1024 hop_length: 256 win_length: null fs: 22050 fmin: 80 fmax: 7600 n_mels: 80 normalize: global_mvn normalize_conf: stats_file: exp/tts_stats_raw_phn_tacotron_g2p_en_no_space/train/feats_stats.npz tts: jets tts_conf: generator_type: jets_generator generator_params: adim: 256 aheads: 2 elayers: 4 eunits: 1024 dlayers: 4 dunits: 1024 positionwise_layer_type: conv1d positionwise_conv_kernel_size: 3 duration_predictor_layers: 2 duration_predictor_chans: 256 duration_predictor_kernel_size: 3 use_masking: true encoder_normalize_before: true decoder_normalize_before: true encoder_type: transformer decoder_type: transformer conformer_rel_pos_type: latest conformer_pos_enc_layer_type: rel_pos conformer_self_attn_layer_type: rel_selfattn conformer_activation_type: swish use_macaron_style_in_conformer: true use_cnn_in_conformer: true conformer_enc_kernel_size: 7 conformer_dec_kernel_size: 31 init_type: xavier_uniform transformer_enc_dropout_rate: 0.2 transformer_enc_positional_dropout_rate: 0.2 transformer_enc_attn_dropout_rate: 0.2 transformer_dec_dropout_rate: 0.2 transformer_dec_positional_dropout_rate: 0.2 transformer_dec_attn_dropout_rate: 0.2 pitch_predictor_layers: 5 pitch_predictor_chans: 256 pitch_predictor_kernel_size: 5 pitch_predictor_dropout: 0.5 pitch_embed_kernel_size: 1 pitch_embed_dropout: 0.0 stop_gradient_from_pitch_predictor: true energy_predictor_layers: 2 energy_predictor_chans: 256 energy_predictor_kernel_size: 3 energy_predictor_dropout: 0.5 energy_embed_kernel_size: 1 energy_embed_dropout: 0.0 stop_gradient_from_energy_predictor: false generator_out_channels: 1 generator_channels: 512 generator_global_channels: -1 generator_kernel_size: 7 generator_upsample_scales: - 8 - 8 - 2 - 2 generator_upsample_kernel_sizes: - 16 - 16 - 4 - 4 generator_resblock_kernel_sizes: - 3 - 7 - 11 generator_resblock_dilations: - - 1 - 3 - 5 - - 1 - 3 - 5 - - 1 - 3 - 5 generator_use_additional_convs: true generator_bias: true generator_nonlinear_activation: LeakyReLU generator_nonlinear_activation_params: negative_slope: 0.1 generator_use_weight_norm: true segment_size: 64 idim: 78 odim: 80 discriminator_type: hifigan_multi_scale_multi_period_discriminator discriminator_params: scales: 1 scale_downsample_pooling: AvgPool1d scale_downsample_pooling_params: kernel_size: 4 stride: 2 padding: 2 scale_discriminator_params: in_channels: 1 out_channels: 1 kernel_sizes: - 15 - 41 - 5 - 3 channels: 128 max_downsample_channels: 1024 max_groups: 16 bias: true downsample_scales: - 2 - 2 - 4 - 4 - 1 nonlinear_activation: LeakyReLU nonlinear_activation_params: negative_slope: 0.1 use_weight_norm: true use_spectral_norm: false follow_official_norm: false periods: - 2 - 3 - 5 - 7 - 11 period_discriminator_params: in_channels: 1 out_channels: 1 kernel_sizes: - 5 - 3 channels: 32 downsample_scales: - 3 - 3 - 3 - 3 - 1 max_downsample_channels: 1024 bias: true nonlinear_activation: LeakyReLU nonlinear_activation_params: negative_slope: 0.1 use_weight_norm: true use_spectral_norm: false generator_adv_loss_params: average_by_discriminators: false loss_type: mse discriminator_adv_loss_params: average_by_discriminators: false loss_type: mse feat_match_loss_params: average_by_discriminators: false average_by_layers: false include_final_outputs: true mel_loss_params: fs: 22050 n_fft: 1024 hop_length: 256 win_length: null window: hann n_mels: 80 fmin: 0 fmax: null log_base: null lambda_adv: 1.0 lambda_mel: 45.0 lambda_feat_match: 2.0 lambda_var: 1.0 lambda_align: 2.0 sampling_rate: 22050 cache_generator_outputs: true pitch_extract: dio pitch_extract_conf: reduction_factor: 1 use_token_averaged_f0: false fs: 22050 n_fft: 1024 hop_length: 256 f0max: 400 f0min: 80 pitch_normalize: global_mvn pitch_normalize_conf: stats_file: exp/tts_stats_raw_phn_tacotron_g2p_en_no_space/train/pitch_stats.npz energy_extract: energy energy_extract_conf: reduction_factor: 1 use_token_averaged_energy: false fs: 22050 n_fft: 1024 hop_length: 256 win_length: null energy_normalize: global_mvn energy_normalize_conf: stats_file: exp/tts_stats_raw_phn_tacotron_g2p_en_no_space/train/energy_stats.npz required: - output_dir - token_list version: '202204' distributed: true ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
samrawal/bert-large-uncased_med-ner
samrawal
2022-05-28T15:56:42Z
6,508
7
transformers
[ "transformers", "pytorch", "jax", "bert", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
A Named Entity Recognition model for medication entities (`medication name`, `dosage`, `duration`, `frequency`, `reason`). The model has been trained on the i2b2 (now n2c2) dataset for the 2009 - Medication task. Please visit the n2c2 site to request access to the dataset.
Maaly/bgc-accession
Maaly
2022-05-28T15:34:44Z
4
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:04Z
bgc-accession model is a Named Entity Recognition (NER) model that identifies and annotates the accession number of biosynthetic gene clusters in texts. The model is a fine-tuned BioBERT model and the training dataset is available in https://gitlab.com/maaly7/emerald_bgcs_annotations Testing examples: 1. The genome sequences of Leptolyngbya sp. PCC 7375 (ALVN00000000) and G. sunshinyii YC6258 (NZ_CP007142.1) were obtained previously.36,59 2. K311 was sequenced (NCBI accession number: JN852959) and analyzed with FramePlot and 18 genes were predicted to be involved in echinomycin biosynthesis (Figure 2). 3. The mar cluster was sequenced and annotated and the complete sequence was deposited into Genbank (accession KF711829).
theojolliffe/bart-large-cnn-pubmed1o3-pubmed2o3-pubmed3o3
theojolliffe
2022-05-28T14:46:08Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "dataset:scientific_papers", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-28T09:19:17Z
--- license: mit tags: - generated_from_trainer datasets: - scientific_papers metrics: - rouge model-index: - name: bart-large-cnn-pubmed1o3-pubmed2o3-pubmed3o3 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: scientific_papers type: scientific_papers args: pubmed metrics: - name: Rouge1 type: rouge value: 37.5622 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-cnn-pubmed1o3-pubmed2o3-pubmed3o3 This model is a fine-tuned version of [theojolliffe/bart-large-cnn-pubmed1o3-pubmed2o3](https://huggingface.co/theojolliffe/bart-large-cnn-pubmed1o3-pubmed2o3) on the scientific_papers dataset. It achieves the following results on the evaluation set: - Loss: 1.8540 - Rouge1: 37.5622 - Rouge2: 15.5848 - Rougel: 23.1384 - Rougelsum: 34.2695 - Gen Len: 138.0326 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:| | 1.9205 | 1.0 | 19987 | 1.8540 | 37.5622 | 15.5848 | 23.1384 | 34.2695 | 138.0326 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
sanbohork/Caso3_T5
sanbohork
2022-05-28T13:35:02Z
3
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-27T20:07:20Z
--- license: other --- Este modelo busca generar el titulo de un texto, se tomo como base el articulo: https://medium.com/nlplanet/a-full-guide-to-finetuning-t5-for-text2text-and-building-a-demo-with-streamlit-c72009631887 Se entreno el modelo con 500 elementos del dataset Genera el titulo del texto
GioReg/dbmdzBERTnews
GioReg
2022-05-28T12:56:48Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-28T12:08:37Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: dbmdzBERTnews results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dbmdzBERTnews This model is a fine-tuned version of [dbmdz/bert-base-italian-uncased](https://huggingface.co/dbmdz/bert-base-italian-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0960 - Accuracy: 0.9733 - F1: 0.9730 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
CH0KUN/autotrain-TNC_Domain_WangchanBERTa-921730254
CH0KUN
2022-05-28T12:04:53Z
5
0
transformers
[ "transformers", "pytorch", "camembert", "text-classification", "autotrain", "unk", "dataset:CH0KUN/autotrain-data-TNC_Domain_WangchanBERTa", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-28T11:51:14Z
--- tags: autotrain language: unk widget: - text: "I love AutoTrain 🤗" datasets: - CH0KUN/autotrain-data-TNC_Domain_WangchanBERTa co2_eq_emissions: 25.144394918865913 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 921730254 - CO2 Emissions (in grams): 25.144394918865913 ## Validation Metrics - Loss: 0.7080970406532288 - Accuracy: 0.7775925925925926 - Macro F1: 0.7758012615987406 - Micro F1: 0.7775925925925925 - Weighted F1: 0.7758012615987406 - Macro Precision: 0.7833307663368776 - Micro Precision: 0.7775925925925926 - Weighted Precision: 0.7833307663368777 - Macro Recall: 0.7775925925925926 - Micro Recall: 0.7775925925925926 - Weighted Recall: 0.7775925925925926 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/CH0KUN/autotrain-TNC_Domain_WangchanBERTa-921730254 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("CH0KUN/autotrain-TNC_Domain_WangchanBERTa-921730254", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("CH0KUN/autotrain-TNC_Domain_WangchanBERTa-921730254", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
Mugenor/q-FrozenLake-v1-4x4-noSlippery
Mugenor
2022-05-28T09:56:19Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-05-28T09:55:28Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Mugenor/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
KoichiYasuoka/deberta-small-coptic
KoichiYasuoka
2022-05-28T08:48:57Z
4
0
transformers
[ "transformers", "pytorch", "deberta-v2", "fill-mask", "coptic", "masked-lm", "cop", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-05-28T08:45:35Z
--- language: - "cop" tags: - "coptic" - "masked-lm" license: "cc-by-sa-4.0" pipeline_tag: "fill-mask" mask_token: "[MASK]" --- # deberta-small-coptic ## Model Description This is a DeBERTa(V2) model pre-trained on Coptic Scriptorium Corpora. You can fine-tune `deberta-small-coptic` for downstream tasks, such as [POS-tagging](https://huggingface.co/KoichiYasuoka/deberta-small-coptic-upos), dependency-parsing, and so on. ## How to Use ```py from transformers import AutoTokenizer,AutoModelForMaskedLM tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/deberta-small-coptic") model=AutoModelForMaskedLM.from_pretrained("KoichiYasuoka/deberta-small-coptic") ```
aioxlabs/dvoice-amharic
aioxlabs
2022-05-28T08:22:00Z
8
5
speechbrain
[ "speechbrain", "wav2vec2", "CTC", "pytorch", "Transformer", "automatic-speech-recognition", "dar", "dataset:commonvoice", "license:apache-2.0", "region:us" ]
automatic-speech-recognition
2022-05-26T12:41:35Z
--- language: "dar" thumbnail: pipeline_tag: automatic-speech-recognition tags: - CTC - pytorch - speechbrain - Transformer license: "apache-2.0" datasets: - commonvoice metrics: - wer - cer --- <iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe> <br/><br/> # wav2vec 2.0 with CTC/Attention trained on DVoice Amharic (No LM) This repository provides all the necessary tools to perform automatic speech recognition from an end-to-end system pretrained on a [ALFFA](https://github.com/besacier/ALFFA_PUBLIC) Amharic dataset within SpeechBrain. For a better experience, we encourage you to learn more about [SpeechBrain](https://speechbrain.github.io). | DVoice Release | Val. CER | Val. WER | Test CER | Test WER | |:-------------:|:---------------------------:| -----:| -----:| -----:| | v2.0 | 6.71 | 25.50 | 6.57 | 24.92 | # Pipeline description This ASR system is composed of 2 different but linked blocks: - Tokenizer (unigram) that transforms words into subword units and trained with the train transcriptions. - Acoustic model (wav2vec2.0 + CTC). A pretrained wav2vec 2.0 model ([facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53)) is combined with two DNN layers and finetuned on the Darija dataset. The obtained final acoustic representation is given to the CTC greedy decoder. The system is trained with recordings sampled at 16kHz (single channel). The code will automatically normalize your audio (i.e., resampling + mono channel selection) when calling *transcribe_file* if needed. # Install SpeechBrain First of all, please install tranformers and SpeechBrain with the following command: ``` pip install speechbrain transformers ``` Please notice that we encourage you to read the SpeechBrain tutorials and learn more about [SpeechBrain](https://speechbrain.github.io). # Transcribing your own audio files (in Amharic) ```python from speechbrain.pretrained import EncoderASR asr_model = EncoderASR.from_hparams(source="aioxlabs/dvoice-amharic", savedir="pretrained_models/asr-wav2vec2-dvoice-amh") asr_model.transcribe_file('./the_path_to_your_audio_file') ``` # Inference on GPU To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method. # Training To train the model from scratch, please see our GitHub tutorial [here](https://github.com/AIOXLABS/DVoice). # Limitations The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets. # About DVoice DVoice is a community initiative that aims to provide Africa low resources languages with data and models to facilitate their use of voice technologies. The lack of data on these languages makes it necessary to collect data using methods that are specific to each one. Two different approaches are currently used: the DVoice platforms ([https://dvoice.ma](https://dvoice.ma) and [https://dvoice.sn](https://dvoice.sn)), which are based on Mozilla Common Voice, for collecting authentic recordings from the community, and transfer learning techniques for automatically labeling recordings that are retrived from social medias. The DVoice platform currently manages 7 languages including Darija (Moroccan Arabic dialect) whose dataset appears on this version, Wolof, Mandingo, Serere, Pular, Diola and Soninke. For this project, AIOX Labs the SI2M Laboratory are joining forces to build the future of technologies together. # About AIOX Labs Based in Rabat, London and Paris, AIOX-Labs mobilizes artificial intelligence technologies to meet the business needs and data projects of companies. - He is at the service of the growth of groups, the optimization of processes or the improvement of the customer experience. - AIOX-Labs is multi-sector, from fintech to industry, including retail and consumer goods. - Business ready data products with a solid algorithmic base and adaptability for the specific needs of each client. - A complementary team made up of doctors in AI and business experts with a solid scientific base and international publications. Website: [https://www.aiox-labs.com/](https://www.aiox-labs.com/) # SI2M Laboratory The Information Systems, Intelligent Systems and Mathematical Modeling Research Laboratory (SI2M) is an academic research laboratory of the National Institute of Statistics and Applied Economics (INSEA). The research areas of the laboratories are Information Systems, Intelligent Systems, Artificial Intelligence, Decision Support, Network and System Security, Mathematical Modelling. Website: [SI2M Laboratory](https://insea.ac.ma/index.php/pole-recherche/equipe-de-recherche/150-laboratoire-de-recherche-en-systemes-d-information-systemes-intelligents-et-modelisation-mathematique) # About SpeechBrain SpeechBrain is an open-source and all-in-one speech toolkit. It is designed to be simple, extremely flexible, and user-friendly. Competitive or state-of-the-art performance is obtained in various domains. Website: https://speechbrain.github.io/ GitHub: https://github.com/speechbrain/speechbrain # Referencing SpeechBrain ``` @misc{SB2021, author = {Ravanelli, Mirco and Parcollet, Titouan and Rouhe, Aku and Plantinga, Peter and Rastorgueva, Elena and Lugosch, Loren and Dawalatabad, Nauman and Ju-Chieh, Chou and Heba, Abdel and Grondin, Francois and Aris, William and Liao, Chien-Feng and Cornell, Samuele and Yeh, Sung-Lin and Na, Hwidong and Gao, Yan and Fu, Szu-Wei and Subakan, Cem and De Mori, Renato and Bengio, Yoshua }, title = {SpeechBrain}, year = {2021}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\\\\url{https://github.com/speechbrain/speechbrain}}, } ``` # Acknowledgements This research was supported through computational resources of HPC-MARWAN (www.marwan.ma/hpc) provided by CNRST, Rabat, Morocco. We deeply thank this institution.
aioxlabs/dvoice-fongbe
aioxlabs
2022-05-28T08:20:03Z
4
0
speechbrain
[ "speechbrain", "wav2vec2", "CTC", "pytorch", "Transformer", "automatic-speech-recognition", "fon", "dataset:commonvoice", "license:apache-2.0", "region:us" ]
automatic-speech-recognition
2022-05-26T14:34:58Z
--- language: "fon" thumbnail: pipeline_tag: automatic-speech-recognition tags: - CTC - pytorch - speechbrain - Transformer license: "apache-2.0" datasets: - commonvoice metrics: - wer - cer --- <iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe> <br/><br/> # wav2vec 2.0 with CTC/Attention trained on DVoice Fongbe (No LM) This repository provides all the necessary tools to perform automatic speech recognition from an end-to-end system pretrained on a [ALFFA](https://github.com/besacier/ALFFA_PUBLIC) Fongbe dataset within SpeechBrain. For a better experience, we encourage you to learn more about [SpeechBrain](https://speechbrain.github.io). | DVoice Release | Val. CER | Val. WER | Test CER | Test WER | |:-------------:|:---------------------------:| -----:| -----:| -----:| | v2.0 | 4.16 | 9.19 | 3.98 | 9.00 | # Pipeline description This ASR system is composed of 2 different but linked blocks: - Tokenizer (unigram) that transforms words into subword units and trained with the train transcriptions. - Acoustic model (wav2vec2.0 + CTC). A pretrained wav2vec 2.0 model ([facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53)) is combined with two DNN layers and finetuned on the Darija dataset. The obtained final acoustic representation is given to the CTC greedy decoder. The system is trained with recordings sampled at 16kHz (single channel). The code will automatically normalize your audio (i.e., resampling + mono channel selection) when calling *transcribe_file* if needed. # Install SpeechBrain First of all, please install tranformers and SpeechBrain with the following command: ``` pip install speechbrain transformers ``` Please notice that we encourage you to read the SpeechBrain tutorials and learn more about [SpeechBrain](https://speechbrain.github.io). # Transcribing your own audio files (in Fongbe) ```python from speechbrain.pretrained import EncoderASR asr_model = EncoderASR.from_hparams(source="aioxlabs/dvoice-fongbe", savedir="pretrained_models/asr-wav2vec2-dvoice-fon") asr_model.transcribe_file('./the_path_to_your_audio_file') ``` # Inference on GPU To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method. # Training To train the model from scratch, please see our GitHub tutorial [here](https://github.com/AIOXLABS/DVoice). # Limitations The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets. # About DVoice DVoice is a community initiative that aims to provide Africa low resources languages with data and models to facilitate their use of voice technologies. The lack of data on these languages makes it necessary to collect data using methods that are specific to each one. Two different approaches are currently used: the DVoice platforms ([https://dvoice.ma](https://dvoice.ma) and [https://dvoice.sn](https://dvoice.sn)), which are based on Mozilla Common Voice, for collecting authentic recordings from the community, and transfer learning techniques for automatically labeling recordings that are retrived from social medias. The DVoice platform currently manages 7 languages including Darija (Moroccan Arabic dialect) whose dataset appears on this version, Wolof, Mandingo, Serere, Pular, Diola and Soninke. For this project, AIOX Labs the SI2M Laboratory are joining forces to build the future of technologies together. # About AIOX Labs Based in Rabat, London and Paris, AIOX-Labs mobilizes artificial intelligence technologies to meet the business needs and data projects of companies. - He is at the service of the growth of groups, the optimization of processes or the improvement of the customer experience. - AIOX-Labs is multi-sector, from fintech to industry, including retail and consumer goods. - Business ready data products with a solid algorithmic base and adaptability for the specific needs of each client. - A complementary team made up of doctors in AI and business experts with a solid scientific base and international publications. Website: [https://www.aiox-labs.com/](https://www.aiox-labs.com/) # SI2M Laboratory The Information Systems, Intelligent Systems and Mathematical Modeling Research Laboratory (SI2M) is an academic research laboratory of the National Institute of Statistics and Applied Economics (INSEA). The research areas of the laboratories are Information Systems, Intelligent Systems, Artificial Intelligence, Decision Support, Network and System Security, Mathematical Modelling. Website: [SI2M Laboratory](https://insea.ac.ma/index.php/pole-recherche/equipe-de-recherche/150-laboratoire-de-recherche-en-systemes-d-information-systemes-intelligents-et-modelisation-mathematique) # About SpeechBrain SpeechBrain is an open-source and all-in-one speech toolkit. It is designed to be simple, extremely flexible, and user-friendly. Competitive or state-of-the-art performance is obtained in various domains. Website: https://speechbrain.github.io/ GitHub: https://github.com/speechbrain/speechbrain # Referencing SpeechBrain ``` @misc{SB2021, author = {Ravanelli, Mirco and Parcollet, Titouan and Rouhe, Aku and Plantinga, Peter and Rastorgueva, Elena and Lugosch, Loren and Dawalatabad, Nauman and Ju-Chieh, Chou and Heba, Abdel and Grondin, Francois and Aris, William and Liao, Chien-Feng and Cornell, Samuele and Yeh, Sung-Lin and Na, Hwidong and Gao, Yan and Fu, Szu-Wei and Subakan, Cem and De Mori, Renato and Bengio, Yoshua }, title = {SpeechBrain}, year = {2021}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\\\\url{https://github.com/speechbrain/speechbrain}}, } ``` # Acknowledgements This research was supported through computational resources of HPC-MARWAN (www.marwan.ma/hpc) provided by CNRST, Rabat, Morocco. We deeply thank this institution.
Yah216/Arabic_poem_meter_3
Yah216
2022-05-28T07:59:10Z
22
1
transformers
[ "transformers", "pytorch", "bert", "text-classification", "ar", "arxiv:1905.05700", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-26T20:45:27Z
--- --- language: ar widget: - text: "قفا نبك من ذِكرى حبيب ومنزلِ بسِقطِ اللِّوى بينَ الدَّخول فحَوْملِ" - text: "سَلو قَلبي غَداةَ سَلا وَثابا لَعَلَّ عَلى الجَمالِ لَهُ عِتابا" co2_eq_emissions: 404.66986451902227 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - CO2 Emissions (in grams): 404.66986451902227 ## Dataset We used the APCD dataset cited hereafter for pretraining the model. The dataset has been cleaned and only the main text and the meter columns were kept: ``` @Article{Yousef2019LearningMetersArabicEnglish-arxiv, author = {Yousef, Waleed A. and Ibrahime, Omar M. and Madbouly, Taha M. and Mahmoud, Moustafa A.}, title = {Learning Meters of Arabic and English Poems With Recurrent Neural Networks: a Step Forward for Language Understanding and Synthesis}, journal = {arXiv preprint arXiv:1905.05700}, year = 2019, url = {https://github.com/hci-lab/LearningMetersPoems} } ``` ## Validation Metrics - Loss: 0.21315555274486542 - Accuracy: 0.9493554089595999 - Macro F1: 0.7537353091512587 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "قفا نبك من ذِكرى حبيب ومنزلِ بسِقطِ اللِّوى بينَ الدَّخول فحَوْملِ"}' https://api-inference.huggingface.co/models/Yah216/Arabic_poem_meter_3 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("Yah216/Arabic_poem_meter_3", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("Yah216/Arabic_poem_meter_3", use_auth_token=True) inputs = tokenizer("قفا نبك من ذِكرى حبيب ومنزلِ بسِقطِ اللِّوى بينَ الدَّخول فحَوْملِ", return_tensors="pt") outputs = model(**inputs) ```
egesko/CodeSprint_DCGAN
egesko
2022-05-28T06:23:00Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-05-28T05:19:07Z
--- license: mit --- # DCGAN to generate face images This trained model is a keras implementation of DCGAN that is trained on face images.
PDRES/roberta-base-bne-finetuned-amazon_reviews_multi
PDRES
2022-05-28T06:21:35Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "dataset:amazon_reviews_multi", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-28T06:10:26Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - amazon_reviews_multi model-index: - name: roberta-base-bne-finetuned-amazon_reviews_multi results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-bne-finetuned-amazon_reviews_multi This model is a fine-tuned version of [BSC-TeMU/roberta-base-bne](https://huggingface.co/BSC-TeMU/roberta-base-bne) on the amazon_reviews_multi dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
gary109/ai-light-dance_singing_ft_wav2vec2-large-lv60-v2
gary109
2022-05-28T05:50:54Z
4
1
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "../AI_Light_Dance.py", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-05-18T00:15:52Z
--- license: apache-2.0 tags: - automatic-speech-recognition - ../AI_Light_Dance.py - generated_from_trainer model-index: - name: ai-light-dance_singing_ft_wav2vec2-large-lv60-v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ai-light-dance_singing_ft_wav2vec2-large-lv60-v2 This model is a fine-tuned version of [gary109/ai-light-dance_singing_ft_wav2vec2-large-lv60](https://huggingface.co/gary109/ai-light-dance_singing_ft_wav2vec2-large-lv60) on the ../AI_LIGHT_DANCE.PY - ONSET-SINGING dataset. It achieves the following results on the evaluation set: - Loss: 0.4285 - Wer: 0.1858 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.2775 | 1.0 | 1106 | 0.4372 | 0.2117 | | 0.2154 | 2.0 | 2212 | 0.4474 | 0.2044 | | 0.2023 | 3.0 | 3318 | 0.4372 | 0.1920 | | 0.186 | 4.0 | 4424 | 0.4285 | 0.1858 | | 0.1856 | 5.0 | 5530 | 0.4589 | 0.1826 | | 0.1537 | 6.0 | 6636 | 0.4658 | 0.1774 | | 0.1337 | 7.0 | 7742 | 0.4769 | 0.1744 | | 0.108 | 8.0 | 8848 | 0.4604 | 0.1724 | | 0.1593 | 9.0 | 9954 | 0.4731 | 0.1694 | | 0.0904 | 10.0 | 11060 | 0.4843 | 0.1683 | ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu102 - Datasets 2.2.2.dev0 - Tokenizers 0.12.1
Khalsuu/english-filipino-wav2vec2-l-xls-r-test-05
Khalsuu
2022-05-28T05:23:04Z
7
1
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:filipino_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-05-06T23:33:46Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - filipino_voice model-index: - name: english-filipino-wav2vec2-l-xls-r-test-05 results: [] --- # english-filipino-wav2vec2-l-xls-r-test-05 ## Model description This model is a fine-tuned version of [jonatasgrosman/wav2vec2-large-xlsr-53-english](https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-english) on the filipino_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.4738 - Wer: 0.2684 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.3328 | 2.09 | 400 | 2.2174 | 0.9733 | | 0.6432 | 4.19 | 800 | 0.3735 | 0.3896 | | 0.2741 | 6.28 | 1200 | 0.3639 | 0.3425 | | 0.1877 | 8.38 | 1600 | 0.3506 | 0.3425 | | 0.1408 | 10.47 | 2000 | 0.3644 | 0.3181 | | 0.1133 | 12.57 | 2400 | 0.3837 | 0.3047 | | 0.0953 | 14.66 | 2800 | 0.4415 | 0.3103 | | 0.0814 | 16.75 | 3200 | 0.3940 | 0.3092 | | 0.0707 | 18.85 | 3600 | 0.4164 | 0.3013 | | 0.059 | 20.94 | 4000 | 0.4488 | 0.2983 | | 0.0545 | 23.04 | 4400 | 0.4803 | 0.3028 | | 0.0482 | 25.13 | 4800 | 0.4731 | 0.2811 | | 0.0426 | 27.23 | 5200 | 0.4606 | 0.2757 | | 0.0395 | 29.32 | 5600 | 0.4738 | 0.2684 | ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
vebie91/q-Taxi-v3
vebie91
2022-05-28T03:47:32Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-05-28T03:47:26Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="vebie91/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
vebie91/q-FrozenLake-v1-4x4-noSlippery
vebie91
2022-05-28T03:39:58Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-05-28T03:39:51Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="vebie91/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
Julietheg/checkpoint-1000
Julietheg
2022-05-28T00:57:02Z
4
0
transformers
[ "transformers", "pytorch", "tf", "jax", "t5", "text2text-generation", "generated_from_keras_callback", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-28T00:31:52Z
--- tags: - generated_from_keras_callback model-index: - name: checkpoint-1000 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # checkpoint-1000 This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.19.2 - TensorFlow 2.8.0 - Datasets 2.2.2 - Tokenizers 0.12.1
stevemobs/deberta-base-combined-squad1-aqa-newsqa
stevemobs
2022-05-28T00:45:46Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "deberta", "question-answering", "generated_from_trainer", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-05-25T22:59:19Z
--- license: mit tags: - generated_from_trainer model-index: - name: deberta-base-combined-squad1-aqa-newsqa results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-base-combined-squad1-aqa-newsqa This model is a fine-tuned version of [microsoft/deberta-base](https://huggingface.co/microsoft/deberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8860 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.8812 | 1.0 | 40819 | 0.8762 | | 0.6043 | 2.0 | 81638 | 0.8860 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
pyf98/slurp_entity_conformer
pyf98
2022-05-28T00:32:51Z
1
0
espnet
[ "espnet", "audio", "automatic-speech-recognition", "en", "dataset:slurp_entity", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
automatic-speech-recognition
2022-05-28T00:11:15Z
--- tags: - espnet - audio - automatic-speech-recognition language: en datasets: - slurp_entity license: cc-by-4.0 --- ## ESPnet2 ASR model ### `pyf98/slurp_entity_conformer` This model was trained by Yifan Peng using slurp_entity recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```bash cd espnet git checkout 55b6cc387fd0252d1a06db2042fd101bcea7bb34 pip install -e . cd egs2/slurp_entity/asr1 ./run.sh --skip_data_prep false --skip_train true --download_model pyf98/slurp_entity_conformer ``` <!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Thu May 26 14:51:29 EDT 2022` - python version: `3.9.12 (main, Apr 5 2022, 06:56:58) [GCC 7.5.0]` - espnet version: `espnet 202204` - pytorch version: `pytorch 1.11.0` - Git hash: `4f36236ed7c8a25c2f869e518614e1ad4a8b50d6` - Commit date: `Thu May 26 00:22:45 2022 -0400` ## asr_train_asr_conformer_e12_d6_size512_lr1e-3_warmup35k_raw_en_word ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_asr_model_valid.acc.ave_10best/devel|8690|178058|82.9|7.8|9.3|2.7|19.8|51.5| |decode_asr_asr_model_valid.acc.ave_10best/test|13078|262176|81.9|7.8|10.3|2.6|20.7|50.7| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_asr_model_valid.acc.ave_10best/devel|8690|847400|89.4|3.1|7.5|3.1|13.7|51.5| |decode_asr_asr_model_valid.acc.ave_10best/test|13078|1245475|88.4|3.1|8.5|3.0|14.6|50.7| ### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| ## ASR config <details><summary>expand</summary> ``` config: conf/tuning/train_asr_conformer_e12_d6_size512_lr1e-3_warmup35k.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_train_asr_conformer_e12_d6_size512_lr1e-3_warmup35k_raw_en_word ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 50 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - acc - max keep_nbest_models: 10 nbest_averaging_interval: 0 grad_clip: 5.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 1 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_matplotlib: true use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: null batch_size: 64 valid_batch_size: null batch_bins: 1000000 valid_batch_bins: null train_shape_file: - exp/asr_stats_raw_en_word/train/speech_shape - exp/asr_stats_raw_en_word/train/text_shape.word valid_shape_file: - exp/asr_stats_raw_en_word/valid/speech_shape - exp/asr_stats_raw_en_word/valid/text_shape.word batch_type: folded valid_batch_type: null fold_length: - 80000 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/train/wav.scp - speech - kaldi_ark - - dump/raw/train/text - text - text valid_data_path_and_name_and_type: - - dump/raw/devel/wav.scp - speech - kaldi_ark - - dump/raw/devel/text - text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 0.001 weight_decay: 1.0e-06 scheduler: warmuplr scheduler_conf: warmup_steps: 35000 token_list: - <blank> - <unk> - ▁SEP - ▁FILL - s - ▁the - a - ▁to - ▁i - ▁me - e - ▁s - ▁a - i - ▁you - ▁what - er - ing - u - ▁is - '''' - o - p - ▁in - ▁p - y - ▁my - ▁please - d - c - m - ▁b - l - ▁m - ▁c - st - date - n - ▁d - le - b - ▁for - re - t - ▁on - en - h - 'on' - ar - person - ▁re - ▁f - ▁g - ▁of - an - ▁ - g - ▁today - ▁t - or - ▁it - ▁this - ▁h - r - f - at - ch - ce - place_name - ▁email - ▁do - es - ri - ▁e - ▁w - ic - in - ▁that - event_name - ▁play - ▁and - al - ▁n - ▁can - email_query - ve - ▁new - day - it - ate - ▁from - ▁have - k - time - ▁am - media_type - email_sendemail - ent - ▁olly - qa_factoid - se - v - et - ck - ▁any - calendar_set - ly - th - ▁how - ▁meeting - ed - ▁tell - ▁st - x - ur - ro - ▁at - nd - ▁list - w - ▁u - ou - ▁not - ▁about - ▁an - ▁o - general_negate - ut - ▁time - ▁be - ▁ch - ▁are - social_post - business_name - la - ty - play_music - ot - general_quirky - ▁l - ▁sh - ▁tweet - om - ▁week - um - ▁one - ter - ▁he - ▁up - ▁com - general_praise - weather_query - ▁next - ▁th - ▁check - calendar_query - ▁last - ▁ro - ad - is - ▁with - ay - ▁send - pe - ▁pm - ▁tomorrow - ▁j - un - ▁train - general_explain - ▁v - one - ▁r - ra - news_query - ation - ▁emails - us - if - ct - ▁co - ▁add - ▁will - ▁se - nt - ▁was - ine - ▁de - ▁set - ▁ex - ▁would - ir - ow - ber - general_repeat - ight - ook - ▁again - ▁song - currency_name - ll - ▁ha - ▁go - relation - te - ion - and - ▁y - ▁ye - general_affirm - general_confirm - ery - ▁po - ff - ▁we - ▁turn - ▁did - ▁mar - ▁alarm - ▁like - datetime_query - ers - ▁all - ▁remind - ▁so - qa_definition - ▁calendar - end - ▁said - ci - ▁off - ▁john - ▁day - ss - pla - ume - ▁get - ail - pp - z - ry - am - ▁need - as - ▁thank - ▁wh - ▁want - ▁right - ▁jo - ▁facebook - ▁k - ge - ld - ▁fri - ▁two - general_dontcare - ▁news - ol - oo - ant - ▁five - ▁event - ake - definition_word - transport_type - ▁your - vi - orn - op - ▁weather - ome - ▁app - ▁lo - de - ▁music - weather_descriptor - ak - ke - ▁there - ▁si - ▁lights - ▁now - ▁mo - calendar_remove - our - ▁dollar - food_type - me - ▁more - ▁no - ▁birthday - orrect - ▁rep - ▁show - play_radio - ▁mon - ▁does - ood - ag - li - ▁sto - ▁contact - cket - email_querycontact - ▁ev - ▁could - ange - ▁just - out - ame - . - ▁ja - ▁confirm - qa_currency - ▁man - ▁late - ▁think - ▁some - timeofday - ▁bo - qa_stock - ong - ▁start - ▁work - ▁ten - int - ▁command - all - ▁make - ▁la - j - ▁answ - ▁hour - ▁cle - ah - ▁find - ▁service - ▁fa - qu - general_commandstop - ai - ▁when - ▁te - ▁by - social_query - ard - ▁tw - ul - id - ▁seven - ▁where - ▁much - art - ▁appointment - ver - artist_name - el - device_type - ▁know - ▁three - ▁events - ▁tr - ▁li - ork - red - ect - ▁let - ▁respon - ▁par - zz - ▁give - ▁twenty - ▁ti - ▁curre - play_podcasts - ▁radio - cooking_recipe - transport_query - ▁con - gh - ▁le - lists_query - ▁rem - recommendation_events - house_place - alarm_set - play_audiobook - ist - ase - music_genre - ive - ast - player_setting - ort - lly - news_topic - list_name - ▁playlist - ▁ne - business_type - personal_info - ind - ust - di - ress - recommendation_locations - lists_createoradd - iot_hue_lightoff - lists_remove - ord - ▁light - ere - alarm_query - audio_volume_mute - music_query - ▁audio - rain - ▁date - ▁order - audio_volume_up - ▁ar - ▁podcast - transport_ticket - mail - iot_hue_lightchange - iot_coffee - radio_name - ill - ▁ri - '@' - takeaway_query - song_name - takeaway_order - ▁ra - email_addcontact - play_game - book - transport_traffic - ▁house - music_likeness - her - transport_taxi - iot_hue_lightdim - ment - ght - fo - order_type - color_type - '1' - ven - ould - general_joke - ess - ain - qa_maths - ▁place - ▁twe - cast - iot_cleaning - ▁che - ▁cont - ith - audiobook_name - email_address - game_name - ▁cal - general_frequency - ▁tom - ▁food - act - iot_hue_lightup - '2' - alarm_remove - podcast_descriptor - ▁definition - audio_volume_down - ▁media - email_folder - dia - meal_type - ▁mus - recommendation_movies - ▁ad - ree - pt - now - playlist_name - ▁person - change_amount - ▁pla - escri - datetime_convert - podcast_name - ▁ab - time_zone - ▁def - ting - iot_wemo_on - music_settings - iot_wemo_off - orre - cy - ank - music_descriptor - lar - app_name - row - joke_type - xt - of - ition - ▁meet - ink - ▁confir - transport_agency - general_greet - ▁business - ▁art - ▁ag - urn - escript - rom - ▁rel - ▁au - ▁currency - audio_volume_other - iot_hue_lighton - ▁artist - '?' - ▁bus - cooking_type - movie_name - coffee_type - ingredient - ather - music_dislikeness - sp - q - ▁ser - esc - ▁bir - ▁cur - name - ▁tran - ▁hou - ek - uch - ▁conf - ▁face - '9' - ▁birth - I - sw - transport_descriptor - ▁comm - lease - transport_name - aid - movie_type - ▁device - alarm_type - audiobook_author - '5' - drink_type - ▁joh - ▁defin - word - ▁curren - order - iness - W - cooking_query - sport_type - ▁relation - oint - H - '8' - A - '0' - ▁dol - vice - ▁pers - '&' - T - ▁appoint - _ - '7' - '3' - '-' - game_type - ▁pod - N - M - E - list - music_album - dio - ▁transport - qa_query - C - O - U - query_detail - ']' - '[' - descriptor - ':' - spon - <sos/eos> init: null input_size: null ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: true joint_net_conf: null use_preprocessor: true token_type: word bpemodel: null non_linguistic_symbols: null cleaner: null g2p: null speech_volume_normalize: null rir_scp: null rir_apply_prob: 1.0 noise_scp: null noise_apply_prob: 1.0 noise_db_range: '13_15' frontend: default frontend_conf: fs: 16k specaug: specaug specaug_conf: apply_time_warp: true time_warp_window: 5 time_warp_mode: bicubic apply_freq_mask: true freq_mask_width_range: - 0 - 30 num_freq_mask: 2 apply_time_mask: true time_mask_width_range: - 0 - 40 num_time_mask: 2 normalize: utterance_mvn normalize_conf: {} model: espnet model_conf: ctc_weight: 0.3 lsm_weight: 0.1 length_normalized_loss: false extract_feats_in_collect_stats: false preencoder: null preencoder_conf: {} encoder: conformer encoder_conf: output_size: 512 attention_heads: 8 linear_units: 2048 num_blocks: 12 dropout_rate: 0.1 positional_dropout_rate: 0.1 attention_dropout_rate: 0.1 input_layer: conv2d normalize_before: true macaron_style: true rel_pos_type: latest pos_enc_layer_type: rel_pos selfattention_layer_type: rel_selfattn activation_type: swish use_cnn_module: true cnn_module_kernel: 31 postencoder: null postencoder_conf: {} decoder: transformer decoder_conf: attention_heads: 8 linear_units: 2048 num_blocks: 6 dropout_rate: 0.1 positional_dropout_rate: 0.1 self_attention_dropout_rate: 0.1 src_attention_dropout_rate: 0.1 required: - output_dir - token_list version: '202204' distributed: false ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
fastai/fastbook_02_bears_classifier
fastai
2022-05-28T00:18:24Z
0
0
fastai
[ "fastai", "image-classification", "license:gpl-3.0", "region:us" ]
image-classification
2022-04-17T12:17:41Z
--- license: gpl-3.0 tags: - fastai - image-classification --- # Amazing! Congratulations on hosting your fastai model on the Hugging Face Hub! # Some next steps 1. Fill out this model card with more information (template below and [documentation here](https://huggingface.co/docs/hub/model-repos))! 2. Create a demo in Gradio or Streamlit using the 🤗Spaces ([documentation here](https://huggingface.co/docs/hub/spaces)). 3. Join our fastai community on the Hugging Face Discord! Greetings fellow fastlearner 🤝! --- # Model card ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed
tbosse/bert-base-german-cased-finetuned-subj_preTrained_with_noisyData_v1.1
tbosse
2022-05-28T00:01:57Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-05-27T19:38:54Z
--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-german-cased-finetuned-subj_preTrained_with_noisyData_v1.1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-german-cased-finetuned-subj_preTrained_with_noisyData_v1.1 This model is a fine-tuned version of [bert-base-german-cased](https://huggingface.co/bert-base-german-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0179 - Precision: 0.9249 - Recall: 0.8776 - F1: 0.9006 - Accuracy: 0.9942 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 245 | 0.0244 | 0.9252 | 0.8120 | 0.8649 | 0.9924 | | No log | 2.0 | 490 | 0.0179 | 0.9249 | 0.8776 | 0.9006 | 0.9942 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
magitz/q-FrozenLake-v1-4x4-noSlippery
magitz
2022-05-27T23:38:13Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-05-27T23:38:07Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="magitz/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
merve/model-card-history-removal
merve
2022-05-27T22:30:55Z
0
0
keras
[ "keras", "tf-keras", "region:us" ]
null
2022-05-27T22:30:46Z
--- library_name: keras --- ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': 0.001, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ## Model Plot <details> <summary>View Model Plot</summary> ![Model Image](./model.png) </details>
huggingtweets/algodtrading
huggingtweets
2022-05-27T22:21:11Z
3
1
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-05-27T22:20:16Z
--- language: en thumbnail: http://www.huggingtweets.com/algodtrading/1653690066290/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1509493999987474434/nB7rOJnT_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Algod🫐</div> <div style="text-align: center; font-size: 14px;">@algodtrading</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Algod🫐. | Data | Algod🫐 | | --- | --- | | Tweets downloaded | 3249 | | Retweets | 56 | | Short tweets | 391 | | Tweets kept | 2802 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3mz6oljo/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @algodtrading's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1oouvcmj) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1oouvcmj/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/algodtrading') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
jplu/adel-dbpedia-retrieval
jplu
2022-05-27T21:58:29Z
3
0
sentence-transformers
[ "sentence-transformers", "pytorch", "distilbert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-05-27T21:59:39Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 71 with parameters: ``` {'batch_size': 8, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `beir.losses.margin_mse_loss.MarginMSELoss` Parameters of the fit()-Method: ``` { "epochs": 11, "evaluation_steps": 10000, "evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "correct_bias": false, "eps": 1e-06, "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
coreybrady/coreyresults
coreybrady
2022-05-27T19:38:53Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-05-26T23:42:59Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: coreyresults results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # coreyresults This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
theojolliffe/bart-large-cnn-pubmed1o3-pubmed2o3
theojolliffe
2022-05-27T18:59:12Z
5
1
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "dataset:scientific_papers", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-27T13:34:57Z
--- license: mit tags: - generated_from_trainer datasets: - scientific_papers metrics: - rouge model-index: - name: bart-large-cnn-pubmed1o3-pubmed2o3 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: scientific_papers type: scientific_papers args: pubmed metrics: - name: Rouge1 type: rouge value: 37.4586 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-cnn-pubmed1o3-pubmed2o3 This model is a fine-tuned version of [theojolliffe/bart-large-cnn-pubmed1o3](https://huggingface.co/theojolliffe/bart-large-cnn-pubmed1o3) on the scientific_papers dataset. It achieves the following results on the evaluation set: - Loss: 1.8817 - Rouge1: 37.4586 - Rouge2: 15.5572 - Rougel: 23.0686 - Rougelsum: 34.1522 - Gen Len: 138.379 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 1.9586 | 1.0 | 19988 | 1.8817 | 37.4586 | 15.5572 | 23.0686 | 34.1522 | 138.379 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
pyf98/aishell_conformer_e12_amp
pyf98
2022-05-27T18:55:49Z
3
0
espnet
[ "espnet", "audio", "automatic-speech-recognition", "zh", "dataset:aishell", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
automatic-speech-recognition
2022-05-27T18:41:59Z
--- tags: - espnet - audio - automatic-speech-recognition language: zh datasets: - aishell license: cc-by-4.0 --- ## ESPnet2 ASR model ### `pyf98/aishell_conformer_e12_amp` This model was trained by Yifan Peng using aishell recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```bash cd espnet git checkout 4f36236ed7c8a25c2f869e518614e1ad4a8b50d6 pip install -e . cd egs2/aishell/asr1 ./run.sh --skip_data_prep false --skip_train true --download_model pyf98/aishell_conformer_e12_amp ``` <!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Fri May 27 13:37:48 EDT 2022` - python version: `3.9.12 (main, Apr 5 2022, 06:56:58) [GCC 7.5.0]` - espnet version: `espnet 202204` - pytorch version: `pytorch 1.11.0` - Git hash: `4f36236ed7c8a25c2f869e518614e1ad4a8b50d6` - Commit date: `Thu May 26 00:22:45 2022 -0400` ## asr_train_asr_conformer_e12_amp_raw_zh_char_sp ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |beam10_ctc0.4/dev|14326|14326|66.9|33.1|0.0|0.0|33.1|33.1| |beam10_ctc0.4/test|7176|7176|65.3|34.7|0.0|0.0|34.7|34.7| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |beam10_ctc0.4/dev|14326|205341|95.8|4.1|0.1|0.1|4.3|33.1| |beam10_ctc0.4/test|7176|104765|95.4|4.4|0.1|0.1|4.6|34.7| ### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| ## ASR config <details><summary>expand</summary> ``` config: conf/tuning/train_asr_conformer_e12_amp.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_train_asr_conformer_e12_amp_raw_zh_char_sp ngpu: 1 seed: 0 num_workers: 4 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: 4 dist_rank: 0 local_rank: 0 dist_master_addr: localhost dist_master_port: 57687 dist_launcher: null multiprocessing_distributed: true unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 60 patience: null val_scheduler_criterion: - valid - acc early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - acc - max keep_nbest_models: 10 nbest_averaging_interval: 0 grad_clip: 5 grad_clip_type: 2.0 grad_noise: false accum_grad: 1 no_forward_run: false resume: true train_dtype: float32 use_amp: true log_interval: null use_matplotlib: true use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: null batch_size: 20 valid_batch_size: null batch_bins: 25000000 valid_batch_bins: null train_shape_file: - exp/asr_stats_raw_zh_char_sp/train/speech_shape - exp/asr_stats_raw_zh_char_sp/train/text_shape.char valid_shape_file: - exp/asr_stats_raw_zh_char_sp/valid/speech_shape - exp/asr_stats_raw_zh_char_sp/valid/text_shape.char batch_type: numel valid_batch_type: null fold_length: - 51200 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/train_sp/wav.scp - speech - kaldi_ark - - dump/raw/train_sp/text - text - text valid_data_path_and_name_and_type: - - dump/raw/dev/wav.scp - speech - kaldi_ark - - dump/raw/dev/text - text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 0.001 weight_decay: 1.0e-06 scheduler: warmuplr scheduler_conf: warmup_steps: 35000 token_list: - <blank> - <unk> - 的 - 一 - 在 - 十 - 中 - 是 - 人 - 有 - 二 - 上 - 了 - 不 - 国 - 市 - 大 - 业 - 为 - 年 - 三 - 发 - 个 - 分 - 出 - 会 - 公 - 行 - 地 - 成 - 这 - 和 - 到 - 五 - 产 - 时 - 对 - 房 - 百 - 能 - 场 - 来 - 以 - 新 - 之 - 日 - 者 - 将 - 现 - 四 - 要 - 家 - 资 - 多 - 月 - 也 - 方 - 后 - 机 - 下 - 前 - 零 - 比 - 于 - 生 - 点 - 开 - 动 - 高 - 经 - 进 - 报 - 体 - 赛 - 子 - 万 - 车 - 用 - 金 - 司 - 可 - 被 - 过 - 手 - 本 - 作 - 自 - 全 - 八 - 六 - 最 - 价 - 目 - 电 - 部 - 交 - 九 - 七 - 面 - 我 - 企 - 加 - 小 - 度 - 实 - 同 - 城 - 工 - 其 - 力 - 定 - 而 - 元 - 合 - 已 - 内 - 与 - 法 - 还 - 关 - 网 - 得 - 他 - 就 - 入 - 名 - 品 - 女 - 记 - 理 - 事 - 长 - 两 - 商 - 都 - 们 - 京 - 并 - 但 - 平 - 制 - 保 - 据 - 期 - 化 - 主 - 重 - 表 - 次 - 相 - 量 - 通 - 道 - 政 - 所 - 天 - 第 - 利 - 间 - 海 - 数 - 务 - 提 - 北 - 展 - 员 - 管 - 投 - 因 - 建 - 好 - 外 - 区 - 更 - 示 - 增 - 从 - 计 - 信 - 性 - 等 - 运 - 项 - 应 - 当 - 收 - 位 - 着 - 起 - 学 - 台 - 民 - 持 - 规 - 设 - 明 - 股 - 正 - 没 - 心 - 然 - 很 - 今 - 调 - 去 - 安 - 此 - 东 - 队 - 如 - 线 - 科 - 世 - 无 - 达 - 身 - 果 - 证 - 基 - 受 - 男 - 需 - 标 - 布 - 情 - 格 - 近 - 步 - 未 - 费 - 求 - 式 - 消 - 千 - 美 - 些 - 里 - 米 - 向 - 看 - 续 - 息 - 意 - 接 - 门 - 回 - 及 - 销 - 老 - 获 - 总 - 监 - 打 - 联 - 至 - 亿 - 说 - 讯 - 住 - 环 - 件 - 整 - 水 - 技 - 路 - 院 - 局 - 特 - 该 - 统 - 由 - 售 - 购 - 强 - 改 - 问 - 乐 - 楼 - 涨 - 处 - 决 - 让 - 系 - 户 - 题 - 推 - 少 - 广 - 显 - 降 - 跑 - 影 - 只 - 选 - 称 - 创 - 易 - 战 - 首 - 完 - 案 - 策 - 常 - 查 - 参 - 种 - 牌 - 程 - 银 - 备 - 认 - 营 - 立 - 势 - 结 - 造 - 超 - 己 - 准 - 存 - 险 - 球 - 各 - 代 - 低 - 再 - 做 - 级 - 款 - 放 - 物 - 告 - 原 - 友 - 转 - 警 - 周 - 界 - 张 - 样 - 传 - 较 - 风 - 单 - 给 - 她 - 州 - 解 - 则 - 视 - 指 - 预 - 升 - 华 - 供 - 走 - 每 - 取 - 导 - 搜 - 集 - 文 - 变 - 客 - 排 - 片 - 头 - 任 - 积 - 术 - 率 - 型 - 军 - 斯 - 研 - 别 - 非 - 直 - 智 - 速 - 组 - 星 - 领 - 口 - 份 - 岁 - 马 - 王 - 快 - 专 - 社 - 使 - 团 - 模 - 器 - 难 - 活 - 拉 - 或 - 约 - 施 - 源 - 构 - 支 - 医 - 儿 - 带 - 服 - 先 - 想 - 引 - 么 - 办 - 照 - 狐 - 权 - 微 - 南 - 始 - 融 - 深 - 士 - 游 - 绩 - 仅 - 况 - 媒 - 随 - 半 - 越 - 幅 - 确 - 注 - 类 - 争 - 税 - 限 - 流 - 均 - 控 - 充 - 额 - 望 - 连 - 划 - 奥 - 亚 - 包 - 娱 - 西 - 财 - 值 - 伤 - 某 - 致 - 终 - 空 - 济 - 众 - 际 - 土 - 买 - 仍 - 育 - 师 - 汽 - 知 - 质 - 态 - 具 - 李 - 责 - 究 - 露 - 条 - 几 - 居 - 共 - 响 - 反 - 站 - 冠 - 节 - 季 - 优 - 委 - 宅 - 观 - 互 - 见 - 范 - 境 - 感 - 负 - 段 - 失 - 采 - 套 - 域 - 尔 - 举 - 何 - 光 - 气 - 落 - 博 - 教 - 锦 - 林 - 山 - 依 - 继 - 极 - 形 - 图 - 审 - 竞 - 益 - 断 - 贷 - 效 - 府 - 复 - 许 - 容 - 健 - 击 - 足 - 又 - 诉 - 助 - 孩 - 色 - 停 - 票 - 双 - 拿 - 板 - 松 - 热 - 那 - 把 - 却 - 清 - 刘 - 议 - 考 - 减 - 曾 - 疑 - 例 - 除 - 功 - 占 - 你 - 试 - 根 - 港 - 太 - 离 - 才 - 货 - 突 - 涉 - 且 - 券 - 配 - 盘 - 即 - 库 - 付 - 破 - 职 - 演 - 农 - 置 - 纪 - 论 - 真 - 龙 - 晚 - 装 - 爱 - 号 - 练 - 死 - 压 - 亲 - 严 - 评 - 田 - 话 - 托 - 护 - 火 - 协 - 红 - 江 - 克 - 卖 - 言 - 租 - 善 - 频 - 普 - 飞 - 验 - 补 - 边 - 满 - 象 - 软 - 算 - 遭 - 馀 - 闻 - 稳 - 厂 - 远 - 苹 - 钱 - 担 - 判 - 官 - 虽 - 湾 - 按 - 昨 - 校 - 必 - 园 - 略 - 救 - 希 - 底 - 执 - 够 - 征 - 拍 - 历 - 像 - 润 - 层 - 债 - 便 - 障 - 围 - 康 - 店 - 往 - 列 - 早 - 测 - 录 - 否 - 香 - 宝 - 阳 - 索 - 核 - 兴 - 检 - 状 - 英 - 村 - 料 - 云 - 留 - 夫 - 移 - 奖 - 病 - 临 - 轻 - 省 - 秒 - 激 - 请 - 革 - 属 - 遇 - 跌 - 维 - 批 - 德 - 承 - 端 - 介 - 精 - 夺 - 群 - 初 - 胜 - 卡 - 尽 - 花 - 辆 - 它 - 故 - 神 - 届 - 治 - 透 - 景 - 白 - 副 - 什 - 宣 - 铁 - 杨 - 跳 - 假 - 登 - 福 - 青 - 药 - 婚 - 养 - 幕 - 违 - 短 - 访 - 修 - 纷 - 律 - 左 - 角 - 酒 - 括 - 爆 - 嫌 - 径 - 宁 - 董 - 适 - 逐 - 刚 - 防 - 陈 - 午 - 差 - 庭 - 独 - 波 - 食 - 识 - 似 - 候 - 黄 - 亡 - 训 - 书 - 退 - 待 - 航 - 块 - 冲 - 扩 - 吴 - 甚 - 申 - 伟 - 眼 - 巴 - 觉 - 找 - 换 - 义 - 轮 - 滑 - 席 - 央 - 送 - 右 - 卫 - 乘 - 石 - 字 - 罪 - 罗 - 泳 - 孙 - 析 - 志 - 另 - 母 - 绿 - 抢 - 止 - 令 - 童 - 妈 - 史 - 刑 - 洲 - 述 - 穿 - 念 - 纳 - 损 - 富 - 免 - 毒 - 络 - 紧 - 妻 - 乎 - 豪 - 素 - 害 - 倒 - 吸 - 街 - 促 - 择 - 杀 - 追 - 巨 - 犯 - 声 - 愿 - 晨 - 思 - 谈 - 河 - 镇 - 尼 - 跟 - 庆 - 链 - 措 - 借 - 赔 - 密 - 圳 - 贴 - 苏 - 温 - 骗 - 习 - 摄 - 版 - 帮 - 币 - 阶 - 阿 - 迎 - 驾 - 黑 - 趋 - 县 - 私 - 吃 - 疗 - 细 - 虑 - 脑 - 韩 - 亮 - 旅 - 抓 - 罚 - 良 - 背 - 脸 - 绝 - 班 - 危 - 础 - 戏 - 戴 - 招 - 命 - 尚 - 缺 - 伙 - 须 - 父 - 夜 - 切 - 操 - 挥 - 派 - 延 - 撞 - 披 - 衣 - 剧 - 陆 - 竟 - 签 - 欧 - 享 - 春 - 徽 - 裁 - 偿 - 启 - 艺 - 宗 - 味 - 察 - 估 - 净 - 募 - 拥 - 释 - 喜 - 顺 - 励 - 靠 - 渐 - 兰 - 油 - 佳 - 困 - 针 - 迷 - 写 - 材 - 硬 - 桥 - 坚 - 订 - 拳 - 累 - 盖 - 室 - 束 - 截 - 距 - 驶 - 旬 - 歌 - 悉 - 烈 - 序 - 患 - 干 - 污 - 圈 - 杰 - 顶 - 败 - 伴 - 归 - 探 - 曝 - 怀 - 急 - 池 - 织 - 秀 - 姐 - 峰 - 顾 - 误 - 键 - 丰 - 玩 - 汉 - 古 - 彩 - 讨 - 朋 - 抗 - 刺 - 挑 - 血 - 凌 - 旧 - 拟 - 晒 - 附 - 惊 - 欢 - 劳 - 丈 - 播 - 徐 - 吗 - 湖 - 笑 - 馆 - 音 - 阵 - 坐 - 谷 - 异 - 怎 - 夏 - 龄 - 熟 - 若 - 惠 - 休 - 永 - 哪 - 暂 - 输 - 绍 - 印 - 冰 - 缓 - 暖 - 听 - 避 - 嘉 - 寻 - 培 - 筹 - 伦 - 雪 - 账 - 暴 - 简 - 予 - 丽 - 泽 - 刻 - 野 - 威 - 宽 - 笔 - 语 - 武 - 炒 - 虚 - 架 - 奇 - 哥 - 尤 - 座 - 迅 - 粉 - 倍 - 朱 - 屋 - 般 - 错 - 津 - 弟 - 汇 - 概 - 鼓 - 掉 - 郑 - 钟 - 召 - 礼 - 禁 - 折 - 缩 - 锁 - 涛 - 乡 - 肥 - 幸 - 雨 - 梦 - 肉 - 攻 - 冬 - 呼 - 蓝 - 综 - 码 - 杯 - 映 - 刀 - 谢 - 编 - 脚 - 晓 - 遍 - 朝 - 吉 - 洗 - 盗 - 丹 - 屏 - 盛 - 秘 - 拘 - 染 - 渠 - 扣 - 洋 - 梯 - 枪 - 久 - 诈 - 川 - 摩 - 俄 - 迪 - 毛 - 赞 - 符 - 画 - 翻 - 妹 - 筑 - 聚 - 哈 - 兵 - 肯 - 胎 - 潮 - 苦 - 逃 - 讲 - 授 - 慢 - 顿 - 遗 - 丝 - 呈 - 揭 - 挂 - 封 - 慧 - 跨 - 询 - 拆 - 森 - 孕 - 脱 - 读 - 枚 - 捐 - 桩 - 跃 - 刷 - 芯 - 斗 - 昆 - 储 - 守 - 触 - 木 - 皮 - 饭 - 添 - 莞 - 震 - 载 - 贵 - 侵 - 撑 - 爸 - 册 - 舞 - 丁 - 贸 - 奶 - 隐 - 妇 - 榜 - 睡 - 陷 - 草 - 扬 - 袭 - 偷 - 督 - 亏 - 吕 - 珠 - 赶 - 扶 - 盈 - 档 - 诺 - 返 - 既 - 末 - 沙 - 谁 - 宏 - 摘 - 典 - 床 - 闭 - 弃 - 雷 - 毕 - 郭 - 玲 - 郎 - 芝 - 胡 - 瑞 - 盟 - 厅 - 抱 - 燃 - 铜 - 旗 - 荣 - 餐 - 牙 - 爷 - 迹 - 宇 - 途 - 潜 - 抵 - 骨 - 援 - 浪 - 玉 - 祖 - 振 - 虹 - 散 - 焦 - 勇 - 努 - 婆 - 拒 - 弹 - 梁 - 坛 - 含 - 坏 - 纯 - 烟 - 冷 - 镜 - 叫 - 赵 - 静 - 仪 - 藏 - 杂 - 痛 - 慎 - 树 - 章 - 塞 - 钢 - 狂 - 呢 - 雅 - 寿 - 恩 - 固 - 狗 - 菜 - 沟 - 献 - 叶 - 泰 - 赢 - 剩 - 窃 - 偏 - 掌 - 宜 - 课 - 趣 - 喝 - 纠 - 籍 - 替 - 炸 - 隔 - 砸 - 搭 - 诚 - 族 - 浙 - 齐 - 杆 - 晋 - 恶 - 奋 - 秋 - 鲜 - 鲁 - 冒 - 赚 - 弱 - 腿 - 祝 - 混 - 缴 - 疾 - 握 - 汪 - 辉 - 奔 - 醒 - 捕 - 骑 - 鸟 - 摆 - 灵 - 敏 - 牛 - 岛 - 恋 - 耗 - 瓦 - 拼 - 恐 - 棒 - 坦 - 厚 - 侧 - 尝 - 薪 - 堂 - 曲 - 答 - 雄 - 徒 - 碍 - 拓 - 翔 - 佛 - 佐 - 滴 - 杭 - 残 - 毫 - 射 - 拖 - 阻 - 辑 - 踪 - 症 - 姓 - 欲 - 鱼 - 船 - 恢 - 衡 - 淡 - 唯 - 乏 - 迟 - 琪 - 烧 - 唐 - 卷 - 陪 - 伏 - 劵 - 繁 - 逆 - 迁 - 诊 - 乱 - 亦 - 谓 - 矿 - 迫 - 忧 - 扮 - 巢 - 扎 - 卓 - 恒 - 庄 - 递 - 灾 - 莱 - 赴 - 煤 - 搏 - 剂 - 梅 - 吧 - 撤 - 哲 - 炳 - 尾 - 誉 - 洛 - 轨 - 署 - 党 - 惯 - 幼 - 缘 - 墨 - 莫 - 辞 - 奏 - 敢 - 垄 - 旁 - 蒙 - 箱 - 吨 - 泛 - 怕 - 闹 - 欠 - 劫 - 纸 - 岸 - 淘 - 赌 - 窗 - 洁 - 岗 - 娘 - 晶 - 劲 - 凭 - 斤 - 洪 - 液 - 槛 - 兼 - 摔 - 楚 - 昌 - 菲 - 萌 - 伍 - 沿 - 咨 - 饮 - 墙 - 沈 - 坡 - 寸 - 溢 - 仓 - 鉴 - 慈 - 柯 - 旦 - 殊 - 坠 - 诸 - 搞 - 伊 - 霸 - 绑 - 氧 - 墅 - 轿 - 蛋 - 忙 - 滨 - 井 - 逼 - 伯 - 癌 - 燕 - 赖 - 浦 - 漏 - 携 - 堪 - 阅 - 诗 - 贩 - 腐 - 倾 - 铺 - 旺 - 横 - 逊 - 允 - 窄 - 鸡 - 唱 - 贿 - 拨 - 砍 - 猛 - 碳 - 堵 - 邀 - 冕 - 栏 - 姆 - 耳 - 绕 - 览 - 聘 - 琳 - 霞 - 挖 - 庞 - 彻 - 颁 - 挺 - 沉 - 抄 - 宫 - 殴 - 垃 - 圾 - 尸 - 涵 - 娃 - 婷 - 牵 - 腾 - 卧 - 偶 - 扰 - 澳 - 迈 - 虎 - 贡 - 词 - 壁 - 宾 - 捷 - 忍 - 佩 - 喊 - 抽 - 植 - 炼 - 奸 - 吐 - 抛 - 祥 - 莉 - 泄 - 械 - 乒 - 辛 - 疯 - 凯 - 扫 - 灯 - 淀 - 毁 - 鬼 - 婴 - 淫 - 冻 - 篮 - 聊 - 帅 - 乔 - 沪 - 羽 - 舍 - 裂 - 忽 - 圆 - 拔 - 朗 - 宿 - 麻 - 眠 - 玮 - 塔 - 碰 - 怪 - 押 - 攀 - 驰 - 欣 - 踏 - 巩 - 废 - 艰 - 乳 - 句 - 侦 - 兄 - 荐 - 寓 - 厦 - 贝 - 纵 - 肖 - 杜 - 忘 - 丢 - 搬 - 曼 - 瓶 - 鹏 - 默 - 惨 - 泡 - 愈 - 敦 - 洞 - 劝 - 颖 - 酷 - 颜 - 巡 - 脏 - 仿 - 羊 - 挤 - 廉 - 麦 - 塌 - 君 - 敌 - 乌 - 俩 - 樊 - 邮 - 烯 - 详 - 舒 - 契 - 漫 - 胞 - 魔 - 宋 - 伐 - 谨 - 姿 - 姑 - 隆 - 纹 - 傅 - 茶 - 著 - 谋 - 敬 - 郁 - 驱 - 菌 - 悬 - 循 - 摊 - 闪 - 伪 - 鸿 - 娜 - 澎 - 湃 - 炉 - 暗 - 闯 - 绪 - 汰 - 稿 - 咬 - 卢 - 泉 - 涌 - 蕾 - 姻 - 熊 - 稀 - 摇 - 吊 - 桌 - 俊 - 哭 - 赠 - 逸 - 吓 - 赫 - 凡 - 俱 - 冯 - 巧 - 涯 - 啦 - 讼 - 恰 - 抚 - 肇 - 锋 - 凶 - 贯 - 悄 - 灭 - 冀 - 糕 - 伸 - 胖 - 腹 - 郊 - 斌 - 鑫 - 厉 - 肩 - 圣 - 浮 - 妙 - 饰 - 尖 - 尊 - 邱 - 诞 - 屡 - 摸 - 酬 - 闲 - 晰 - 匹 - 锻 - 甲 - 敲 - 遥 - 勒 - 兑 - 熙 - 稽 - 蔡 - 惜 - 猫 - 怒 - 驻 - 颇 - 浓 - 宴 - 仁 - 赏 - 磨 - 悲 - 骂 - 轴 - 姜 - 猪 - 割 - 歉 - 玻 - 浩 - 番 - 渡 - 肌 - 践 - 盾 - 甜 - 溺 - 尺 - 忆 - 盐 - 泥 - 薄 - 矛 - 畅 - 抑 - 颗 - 蒋 - 稍 - 碎 - 帝 - 璃 - 掀 - 拐 - 牢 - 幻 - 仔 - 粮 - 艾 - 扭 - 尿 - 刊 - 仑 - 黎 - 埃 - 臂 - 邻 - 苗 - 衔 - 桂 - 潭 - 履 - 贾 - 饼 - 惩 - 诱 - 旋 - 篇 - 辽 - 旭 - 逾 - 豆 - 潘 - 堆 - 甘 - 邦 - 氏 - 拦 - 硕 - 棋 - 裤 - 乓 - 姚 - 厘 - 邓 - 陶 - 萨 - 弗 - 辅 - 廷 - 吁 - 杠 - 绮 - 瑄 - 夹 - 槽 - 祸 - 袁 - 勾 - 赁 - 帖 - 腰 - 漂 - 裕 - 嘴 - 壮 - 弯 - 啊 - 汤 - 垫 - 魏 - 倡 - 栋 - 碑 - 颈 - 暑 - 魅 - 裸 - 疏 - 雇 - 毅 - 忠 - 疆 - 葛 - 凤 - 屈 - 悦 - 馈 - 挡 - 闫 - 氮 - 兆 - 貌 - 厕 - 谣 - 颠 - 猜 - 疲 - 框 - 揽 - 胁 - 憾 - 秩 - 艳 - 帽 - 氛 - 荷 - 泪 - 剑 - 懂 - 钻 - 遵 - 贪 - 贼 - 狱 - 姣 - 寺 - 胶 - 吵 - 催 - 削 - 丑 - 欺 - 肃 - 妥 - 烦 - 灰 - 擅 - 佣 - 萧 - 虾 - 鞋 - 捧 - 逝 - 猥 - 瓜 - 酸 - 奈 - 厨 - 紫 - 侠 - 塑 - 娇 - 辖 - 舆 - 擦 - 柏 - 澄 - 磊 - 虐 - 轰 - 曹 - 删 - 鼻 - 柳 - 屯 - 笼 - 皇 - 糖 - 珍 - 疼 - 柜 - 捡 - 址 - 肠 - 捞 - 拜 - 峻 - 吹 - 乃 - 瘦 - 肚 - 贤 - 帕 - 岳 - 勤 - 瑜 - 锅 - 沫 - 俗 - 昕 - 帆 - 茂 - 醉 - 填 - 饱 - 爬 - 轩 - 滞 - 蜜 - 汗 - 飙 - 耐 - 亨 - 媳 - 彭 - 蓄 - 蝶 - 炮 - 鼠 - 咖 - 琴 - 宠 - 棍 - 掘 - 茨 - 坑 - 湘 - 孟 - 劣 - 灿 - 虫 - 彦 - 喷 - 描 - 辩 - 尴 - 尬 - 弥 - 孤 - 峡 - 凸 - 逻 - 辰 - 孔 - 抬 - 馨 - 蔚 - 怡 - 雯 - 砖 - 崇 - 肢 - 柱 - 阔 - 彼 - 荒 - 滚 - 葡 - 萄 - 昂 - 盆 - 怨 - 瞬 - 斜 - 斩 - 睛 - 剪 - 插 - 棚 - 串 - 沃 - 柔 - 肤 - 壳 - 胸 - 陕 - 凉 - 崛 - 鸣 - 罕 - 衷 - 阴 - 盲 - 伞 - 戒 - 踢 - 狼 - 埋 - 酿 - 旨 - 戈 - 捉 - 跪 - 贺 - 谭 - 涂 - 萎 - 滋 - 昏 - 扇 - 鼎 - 楠 - 驳 - 溪 - 桑 - 钧 - 荡 - 痕 - 玛 - 躲 - 谐 - 您 - 叹 - 桶 - 晕 - 丙 - 璇 - 咚 - 烂 - 杉 - 挣 - 窝 - 亵 - 芸 - 渝 - 芳 - 妆 - 膜 - 煌 - 尘 - 侯 - 赋 - 渣 - 贫 - 桃 - 页 - 吞 - 胀 - 竹 - 肝 - 雾 - 嫁 - 辈 - 愤 - 琐 - 殖 - 媛 - 寄 - 僵 - 逮 - 聪 - 粗 - 寒 - 弄 - 墓 - 谌 - 扔 - 役 - 呆 - 靖 - 蒂 - 芬 - 翼 - 喂 - 孵 - 谎 - 硅 - 璨 - 喀 - 盼 - 盒 - 慌 - 烫 - 秦 - 梳 - 韦 - 袋 - 钓 - 夕 - 碗 - 寨 - 塘 - 衍 - 垒 - 卿 - 滩 - 扑 - 绘 - 辱 - 炎 - 铅 - 肿 - 衰 - 厢 - 躺 - 纽 - 硫 - 睐 - 翁 - 慰 - 耍 - 缠 - 狠 - 脉 - 斥 - 脂 - 趴 - 钩 - 歧 - 椅 - 踩 - 掷 - 挽 - 锐 - 勘 - 逢 - 郝 - 宪 - 胃 - 粒 - 瞩 - 辟 - 皆 - 仰 - 腕 - 匪 - 陵 - 钥 - 缝 - 闸 - 犬 - 锡 - 弊 - 凝 - 臭 - 趁 - 拾 - 夸 - 掩 - 耀 - 炭 - 铬 - 叠 - 坊 - 挪 - 蟹 - 裹 - 狮 - 辐 - 陌 - 捅 - 疫 - 兹 - 霍 - 锈 - 娟 - 蚁 - 奢 - 吻 - 侃 - 晖 - 扳 - 冤 - 彰 - 蹈 - 畴 - 蛇 - 濠 - 啡 - 堡 - 侣 - 撒 - 铭 - 掏 - 奎 - 蜂 - 咸 - 穷 - 瞄 - 遂 - 碾 - 匿 - 瓷 - 舱 - 刹 - 柄 - 倪 - 睹 - 译 - 淇 - 猝 - 浅 - 肺 - 湿 - 顽 - 罩 - 胆 - 匙 - 渴 - 妮 - 羞 - 脆 - 魄 - 锂 - 纤 - 炫 - 裙 - 肾 - 傲 - 膝 - 叔 - 啥 - 撕 - 牲 - 猴 - 辨 - 酝 - 刮 - 惑 - 渗 - 喻 - 晴 - 淑 - 羡 - 慕 - 擂 - 骚 - 纺 - 咕 - 僧 - 悔 - 垂 - 瘫 - 剥 - 舰 - 浏 - 鲍 - 跻 - 亭 - 撰 - 卸 - 莲 - 纱 - 糊 - 朵 - 岩 - 眉 - 函 - 糟 - 仗 - 惹 - 琦 - 贞 - 氢 - 楷 - 莓 - 瞒 - 奠 - 勃 - 锤 - 妨 - 帷 - 洽 - 乞 - 牺 - 亩 - 簿 - 斑 - 翘 - 祈 - 唇 - 耕 - 扯 - 妍 - 坎 - 谱 - 盯 - 泼 - 悍 - 莎 - 汁 - 囊 - 甩 - 辣 - 浸 - 恼 - 盔 - 烤 - 坝 - 巅 - 沸 - 抹 - 邹 - 霾 - 怖 - 犹 - 擎 - 迄 - 恨 - 丧 - 坞 - 袖 - 赤 - 萍 - 爽 - 穆 - 娶 - 闷 - 捍 - 膀 - 侈 - 筋 - 逛 - 倩 - 纲 - 遮 - 御 - 姨 - 淮 - 宰 - 叉 - 绵 - 惧 - 钦 - 廊 - 鳄 - 砂 - 浆 - 禽 - 咏 - 瘾 - 饿 - 痴 - 绳 - 碟 - 韵 - 皓 - 廖 - 岭 - 蛙 - 兔 - 芽 - 剖 - 嫖 - 昔 - 哀 - 蔓 - 谦 - 滥 - 赂 - 渊 - 捣 - 佑 - 弈 - 仙 - 澡 - 骤 - 侨 - 奉 - 磅 - 慨 - 筛 - 嘲 - 竣 - 箭 - 荧 - 脖 - 彤 - 豫 - 躁 - 秉 - 鹤 - 幺 - 渔 - 罢 - 贬 - 铲 - 卵 - 逗 - 牧 - 蔬 - 苑 - 沦 - 遏 - 柴 - 庙 - 兽 - 耶 - 魂 - 溜 - 缉 - 俏 - 蕴 - 苛 - 凑 - 婿 - 铸 - 兜 - 蹭 - 鸭 - 朴 - 肋 - 噪 - 焚 - 坍 - 啤 - 钉 - 戚 - 谍 - 挫 - 艇 - 余 - 巷 - 屠 - 咋 - 詹 - 衫 - 浴 - 爹 - 孝 - 瘤 - 霖 - 崩 - 甸 - 悼 - 擒 - 浇 - 雕 - 竖 - 帐 - 萤 - 靡 - 漠 - 傻 - 撼 - 崔 - 筒 - 脊 - 嘛 - 臣 - 禾 - 龟 - 唤 - 呀 - 壤 - 灌 - 邵 - 稻 - 巾 - 葩 - 饥 - 缔 - 舌 - 窜 - 秽 - 茅 - 靓 - 阱 - 钞 - 潼 - 硝 - 墩 - 蝙 - 蝠 - 嫂 - 艘 - 嚣 - 铃 - 扒 - 佬 - 竭 - 赎 - 傍 - 熬 - 悠 - 挨 - 泊 - 攒 - 坪 - 焰 - 螺 - 薇 - 蛛 - 牟 - 忌 - 愧 - 酵 - 迭 - 饶 - 惟 - 钮 - 闵 - 碧 - 徘 - 徊 - 溯 - 棉 - 歪 - 捂 - 蚊 - 锰 - 屁 - 畸 - 肪 - 蹲 - 剔 - 榆 - 撇 - 瑟 - 讶 - 飘 - 蒸 - 诠 - 寂 - 罄 - 莹 - 鹅 - 泣 - 崖 - 珊 - 讳 - 翰 - 蜘 - 仲 - 燥 - 菱 - 滢 - 煎 - 蛮 - 瞻 - 蘑 - 菇 - 隙 - 捆 - 蕉 - 遣 - 宛 - 肆 - 丸 - 磁 - 玥 - 嵌 - 韶 - 枝 - 咪 - 愉 - 呕 - 淤 - 誓 - 辄 - 俯 - 桐 - 舅 - 蓉 - 渭 - 氯 - 溅 - 雁 - 龚 - 恺 - 妖 - 饽 - 荆 - 枯 - 仇 - 坟 - 澜 - 麟 - 藤 - 猎 - 洒 - 茹 - 碌 - 畏 - 涤 - 俞 - 勿 - 蔽 - 罐 - 尹 - 堰 - 儒 - 芮 - 孚 - 哗 - 掐 - 矶 - 椎 - 阐 - 驴 - 蝉 - 焕 - 鄂 - 耻 - 炯 - 衬 - 婉 - 愁 - 梨 - 丛 - 谅 - 膨 - 曙 - 鹿 - 骄 - 缅 - 匆 - 赃 - 蒲 - 睁 - 焱 - 灼 - 刃 - 螃 - 瑕 - 讹 - 禅 - 臀 - 姗 - 媚 - 呛 - 凰 - 瀚 - 埔 - 弓 - 阚 - 湛 - 奕 - 扛 - 齿 - 挟 - 髓 - 狭 - 栈 - 骏 - 崭 - 慑 - 殿 - 祭 - 僻 - 蹬 - 寡 - 呦 - 鞠 - 酱 - 瑰 - 馒 - 坤 - 趟 - 臻 - 咒 - 豹 - 畜 - 冉 - 绎 - 岌 - 甄 - 绞 - 宵 - 庸 - 歇 - 挠 - 氨 - 乙 - 茵 - 岔 - 淄 - 碘 - 淋 - 蓬 - 颅 - 羹 - 浑 - 昧 - 翠 - 峥 - 惕 - 睿 - 芦 - 蚀 - 颓 - 霜 - 钰 - 橘 - 堤 - 凳 - 溶 - 锯 - 幂 - 榴 - 娼 - 汹 - 茫 - 厌 - 绰 - 崎 - 溃 - 撬 - 沾 - 拇 - 疵 - 哦 - 弧 - 弘 - 咽 - 葬 - 阁 - 竿 - 篡 - 隶 - 诟 - 煮 - 丘 - 耿 - 彬 - 敞 - 泻 - 夷 - 隅 - 渎 - 淹 - 骆 - 醋 - 霆 - 涩 - 陀 - 叙 - 梗 - 冶 - 敛 - 痪 - 讽 - 疤 - 螂 - 芒 - 幢 - 炜 - 毯 - 橙 - 拢 - 俨 - 仕 - 氰 - 钾 - 呐 - 株 - 脾 - 烨 - 磕 - 薛 - 窖 - 芷 - 蜕 - 衅 - 歹 - 哒 - 诡 - 摧 - 漆 - 蟑 - 劈 - 呵 - 絮 - 抖 - 娅 - 铝 - 霉 - 芭 - 辜 - 昊 - 嘘 - 哑 - 枢 - 脐 - 庐 - 钠 - 鳌 - 矩 - 锆 - 婧 - 沛 - 饲 - 熄 - 翡 - 屹 - 膏 - 阙 - 搂 - 锣 - 幌 - 橄 - 榄 - 杖 - 旷 - 矫 - 冈 - 舟 - 腊 - 聂 - 拣 - 遛 - 勋 - 窘 - 韧 - 咱 - 拎 - 椒 - 揣 - 殷 - 揪 - 伽 - 贱 - 琼 - 菡 - 闺 - 昭 - 雏 - 蹊 - 黛 - 禹 - 鞍 - 乖 - 汝 - 甫 - 彝 - 泸 - 诬 - 拽 - 毽 - 搅 - 葵 - 旱 - 勉 - 跷 - 畔 - 肘 - 坂 - 漩 - 涡 - 倘 - 醛 - 曦 - 铀 - 杏 - 棕 - 幽 - 裴 - 阮 - 敷 - 茄 - 沧 - 剽 - 恳 - 淳 - 萱 - 袱 - 亥 - 痱 - 腔 - 嫉 - 粹 - 焊 - 诀 - 粪 - 朔 - 黯 - 谜 - 眨 - 祁 - 暧 - 魁 - 辗 - 穗 - 倦 - 剿 - 袍 - 恭 - 炙 - 娴 - 玫 - 锏 - 熏 - 窥 - 堕 - 悟 - 晃 - 缪 - 驿 - 泷 - 雀 - 惫 - 玺 - 剃 - 斐 - 袂 - 梭 - 哄 - 邪 - 岂 - 腻 - 嫩 - 榕 - 谴 - 潇 - 纬 - 侮 - 翅 - 镶 - 坷 - 彪 - 祷 - 匝 - 耽 - 萝 - 窑 - 瑾 - 滤 - 拱 - 哨 - 蠢 - 邢 - 涞 - 恤 - 泾 - 谤 - 瀑 - 舶 - 懈 - 忱 - 烹 - 晟 - 踞 - 剁 - 珉 - 庚 - 晤 - 壶 - 砾 - 嗅 - 妒 - 匈 - 胰 - 绯 - 荼 - 爪 - 茜 - 桦 - 蜇 - 芜 - 玄 - 葫 - 蚂 - 绊 - 搁 - 霏 - 粘 - 佟 - 雍 - 垮 - 羁 - 娥 - 碱 - 磷 - 钊 - 毙 - 诿 - 绸 - 捏 - 遴 - 畊 - 厮 - 巫 - 猖 - 獗 - 掴 - 辍 - 蜡 - 赣 - 筵 - 芙 - 蒜 - 缆 - 俪 - 鹰 - 笋 - 毋 - 喆 - 鹭 - 蝴 - 汀 - 诽 - 桔 - 篷 - 莽 - 栖 - 饪 - 伺 - 戳 - 谊 - 霄 - 侄 - 滔 - 瞎 - 皱 - 蛟 - 裔 - 烽 - 猿 - 叮 - 绷 - 腺 - 暨 - 沥 - 喧 - 囤 - 掠 - 陡 - 膺 - 痒 - 饵 - 戎 - 褚 - 丐 - 渤 - 帜 - 娄 - 洼 - 禄 - 婵 - 琢 - 躯 - 禺 - 峙 - 踹 - 怜 - 炖 - 剐 - 缚 - 襄 - 枫 - 绽 - 庾 - 斧 - 穴 - 寇 - 蝇 - 鞭 - 阎 - 矢 - 糙 - 巍 - 蒿 - 殒 - 蛰 - 囧 - 卜 - 宙 - 珮 - 鸦 - 璞 - 翟 - 酗 - 褒 - 豁 - 镑 - 耷 - 棠 - 垦 - 韬 - 荫 - 窨 - 鸽 - 羲 - 懒 - 躬 - 匕 - 犀 - 吼 - 珀 - 昙 - 樱 - 蹿 - 抉 - 苍 - 汛 - 铉 - 镉 - 喔 - 邯 - 郸 - 噱 - 瓯 - 沼 - 捻 - 苯 - 蹼 - 麋 - 阀 - 煞 - 踝 - 缭 - 菊 - 竺 - 峭 - 攥 - 癖 - 肛 - 泔 - 拯 - 窟 - 靳 - 舵 - 嘱 - 昱 - 勺 - 吾 - 丫 - 觅 - 醇 - 磋 - 徙 - 陨 - 惺 - 渍 - 炬 - 栽 - 晏 - 颂 - 奴 - 榔 - 驭 - 嚼 - 赡 - 豚 - 蔷 - 梓 - 梧 - 哽 - 晗 - 汞 - 嫣 - 蕊 - 祺 - 疹 - 壹 - 噬 - 皂 - 矗 - 悚 - 憧 - 憬 - 拷 - 扁 - 廓 - 蹴 - 岚 - 瑛 - 崴 - 栗 - 囚 - 涿 - 礁 - 晔 - 殡 - 璀 - 淞 - 隋 - 踵 - 钵 - 煊 - 赘 - 瞧 - 寞 - 陋 - 骷 - 髅 - 秸 - 秆 - 夯 - 荔 - 襁 - 褓 - 笨 - 沮 - 瞅 - 怂 - 茗 - 甥 - 亟 - 杳 - 煦 - 挚 - 棵 - 祠 - 嗯 - 枕 - 粟 - 泌 - 蜀 - 寥 - 遐 - 涝 - 辫 - 籁 - 窍 - 聋 - 逍 - 跤 - 凹 - 釜 - 嘀 - 嗒 - 淝 - 藜 - 翱 - 硚 - 叼 - 痹 - 腼 - 腆 - 伎 - 骋 - 愕 - 腥 - 拮 - 轧 - 癫 - 橡 - 膊 - 觑 - 寅 - 砒 - 趾 - 颐 - 漳 - 峨 - 呜 - 淆 - 凿 - 壕 - 铨 - 莆 - 筷 - 璧 - 譬 - 岖 - 抠 - 笛 - 厥 - 砺 - 喉 - 酌 - 簧 - 鲸 - 踊 - 牡 - 嬛 - 缜 - 奂 - 熹 - 闽 - 馊 - 胯 - 喇 - 伶 - 墟 - 煜 - 耘 - 榷 - 骁 - 猩 - 辙 - 狸 - 滕 - 诵 - 窒 - 恍 - 髦 - 诫 - 榨 - 熠 - 蔺 - 薯 - 歆 - 粤 - 夭 - 拌 - 唏 - 厄 - 吝 - 眷 - 峪 - 拙 - 咎 - 粥 - 痰 - 琅 - 羚 - 莘 - 憨 - 瞰 - 炅 - 孜 - 亢 - 缮 - 焯 - 咄 - 暇 - 矮 - 汲 - 灶 - 闰 - 奚 - 汶 - 珲 - 麓 - 憋 - 崂 - 镳 - 殃 - 卉 - 诧 - 矣 - 屎 - 聆 - 芋 - 屑 - 罂 - 籽 - 绚 - 卞 - 枉 - 汕 - 懋 - 媲 - 啧 - 掣 - 嬉 - 仨 - 姬 - 懿 - 馅 - 胺 - 撂 - 睫 - 蛐 - 萃 - 眈 - 飚 - 毓 - 涅 - 昼 - 橱 - 驼 - 涠 - 谩 - 婶 - 膛 - 拄 - 绣 - 栅 - 邬 - 怠 - 鄙 - 哉 - 跺 - 帘 - 沓 - 搀 - 腌 - 羿 - 泵 - 鄞 - 郡 - 烃 - 愚 - 蕙 - 垤 - 锌 - 柠 - 檬 - 葱 - 垢 - 匮 - 卦 - 懊 - 掺 - 叱 - 坯 - 糯 - 覆 - 铆 - 琬 - 抡 - 潢 - 棺 - 塾 - 飓 - 诅 - 翩 - 揍 - 檀 - 鳝 - 讪 - 熔 - 杞 - 啃 - 昀 - 紊 - 敖 - 璐 - 蔗 - 槌 - 铐 - 搡 - 磐 - 宕 - 栓 - 叭 - 戟 - 顷 - 濒 - 窦 - 摁 - 俐 - 瞳 - 蚕 - 鹊 - 迂 - 畿 - 瓣 - 媞 - 寝 - 蹦 - 嗑 - 袒 - 殉 - 稚 - 俘 - 搪 - 沽 - 妃 - 嗓 - 胫 - 町 - 莴 - 苣 - 痘 - 蔑 - 皖 - 枞 - 忐 - 忑 - 靴 - 菁 - 姥 - 诙 - 嚷 - 焉 - 沣 - 霹 - 雳 - 僚 - 尧 - 嘎 - 诩 - 咫 - 柬 - 惮 - 狄 - 匀 - 裆 - 黏 - 釉 - 膳 - 渺 - 苟 - 瑶 - 唾 - 瘠 - 讧 - 睦 - 弦 - 庇 - 袄 - 噩 - 扼 - 戛 - 禀 - 恿 - 滁 - 麾 - 筱 - 瘀 - 褪 - 槟 - 缨 - 绒 - 犷 - 茸 - 惋 - 嗤 - 寮 - 褂 - 咳 - 缀 - 谙 - 涧 - 炽 - 缄 - 鹜 - 砌 - 贮 - 庵 - 隧 - 卤 - 跆 - 皋 - 蝗 - 洱 - 圪 - 邑 - 锄 - 荟 - 渚 - 苇 - 孰 - 鹃 - 哼 - 呃 - 琛 - 痣 - 摹 - 痼 - 镯 - 刁 - 秧 - 腩 - 鳞 - 乍 - 颚 - 慷 - 氓 - 惦 - 卑 - 挝 - 熨 - 濮 - 胳 - 瓢 - 砰 - 溧 - 锷 - 鸠 - 犒 - 姝 - 蹄 - 宸 - 侥 - 锭 - 佶 - 浊 - 婪 - 磺 - 咤 - 迢 - 檐 - 邺 - 掂 - 渲 - 嚎 - 祛 - 伢 - 叛 - 撮 - 甬 - 淌 - 瀛 - 朽 - 陂 - 帼 - 铿 - 锵 - 漓 - 驯 - 鲨 - 抒 - 茁 - 柿 - 貔 - 貅 - 钝 - 鳅 - 嚏 - 暮 - 瑚 - 荤 - 蜓 - 垣 - 颤 - 溥 - 臃 - 戮 - 枣 - 佼 - 拗 - 哆 - 嗦 - 惚 - 鸥 - 倚 - 嗨 - 舸 - 赐 - 姊 - 憔 - 悴 - 铰 - 黝 - 屿 - 秃 - 嘻 - 楞 - 棱 - 袈 - 裟 - 汴 - 揉 - 髋 - 悸 - 榻 - 逞 - 晾 - 屌 - 闳 - 痊 - 袜 - 扉 - 琶 - 摒 - 捺 - 匠 - 窈 - 窕 - 飒 - 猬 - 蜚 - 萋 - 蚯 - 蚓 - 鲟 - 澈 - 樟 - 悖 - 玖 - 俾 - 抿 - 彷 - 彿 - 虱 - 狙 - 鲶 - 槿 - 烘 - 挎 - 狰 - 狞 - 邃 - 瞪 - 俚 - 涕 - 谬 - 睬 - 蜷 - 兢 - 镍 - 砷 - 菠 - 怦 - 凄 - 卯 - 獒 - 渀 - 辘 - 滇 - 燎 - 噎 - 蝎 - 綦 - 鄢 - 捎 - 瞿 - 蜿 - 蜒 - 禧 - 榈 - 锹 - 殭 - 爵 - 盹 - 淖 - 啼 - 瓮 - 鳖 - 镖 - 珑 - 罹 - 殆 - 掖 - 柞 - 缸 - 绅 - 棘 - 祉 - 胱 - 殓 - 嗡 - 嗷 - 箍 - 圩 - 耒 - 婕 - 腑 - 萦 - 鹞 - 珜 - 啵 - 瑙 - 葆 - 逡 - 嗽 - 饕 - 餮 - 隼 - 妞 - 饺 - 叨 - 酋 - 恙 - 泗 - 弩 - 骜 - 铎 - 酶 - 蚝 - 烁 - 匾 - 侬 - 藻 - 馥 - 骥 - 槐 - 缕 - 椿 - 袆 - 琊 - 稣 - 藩 - 迸 - 蹂 - 躏 - 隽 - 俸 - 郫 - 簸 - 砥 - 骸 - 掮 - 斛 - 啸 - 璋 - 垛 - 札 - 邋 - 遢 - 蕲 - 哇 - 碴 - 邛 - 崃 - 觐 - 笙 - 裳 - 泞 - 蚌 - 醍 - 醐 - 拴 - 舜 - 沅 - 懵 - 谕 - 帚 - 螳 - 噼 - 啪 - 漱 - 郜 - 碉 - 圭 - 谀 - 轶 - 舀 - 呲 - 啶 - 氟 - 琏 - 垅 - 娩 - 乾 - 鏖 - 牾 - 肮 - 啕 - 吏 - 涓 - 氦 - 锥 - 桎 - 吿 - 烊 - 斟 - 汾 - 岐 - 耄 - 耋 - 嗲 - 胛 - 疚 - 骇 - 癣 - 磡 - 侑 - 漾 - 碚 - 琉 - 惬 - 遁 - 耸 - 岱 - 糗 - 缙 - 肴 - 梵 - 僮 - 鸵 - 悯 - 孪 - 莅 - 戬 - 霁 - 簇 - 逵 - 倜 - 傥 - 馋 - 蓁 - 衙 - 蛀 - 蔫 - 崧 - 吟 - 琰 - 唬 - 渥 - 岷 - 仡 - 涎 - 鸳 - 鸯 - 镊 - 妧 - 嬷 - 嫦 - 嫔 - 沐 - 伉 - 嶝 - 锢 - 筐 - 蜥 - 蜴 - 泱 - 骅 - 吆 - 撩 - 怯 - 叩 - 哟 - 啬 - 岬 - 笃 - 玳 - 瑁 - 邝 - 咣 - 矜 - 嘭 - 馗 - 婀 - 黔 - 锟 - 啰 - 翌 - 铠 - 貉 - 獾 - 酣 - 楣 - 佃 - 琵 - 茆 - 皙 - 凋 - 敝 - 匣 - 嵘 - 宓 - 茎 - 楂 - 竲 - 瘪 - 侗 - 铣 - 薰 - 砲 - 羣 - 淼 - 襟 - 妊 - 娠 - 罡 - 瘁 - 椰 - 烙 - 呗 - 荃 - 皎 - 殚 - 腋 - 骼 - 腓 - 榭 - 隘 - 唉 - 铮 - 狩 - 抨 - 峁 - 粱 - 阂 - 厩 - 莠 - 吩 - 咐 - 瞌 - 蜊 - 恬 - 膑 - 踉 - 跄 - 颍 - 朐 - 疝 - 毂 - 秣 - 舛 - 炊 - 漯 - 泠 - 喘 - 撵 - 狡 - 猾 - 铂 - 钛 - 荞 - 拭 - 丞 - 漭 - 绌 - 埜 - 掰 - 狈 - 锜 - 菩 - 弛 - 寰 - 秤 - 灞 - 黍 - 蓟 - 嵛 - 榉 - 幄 - 颊 - 缤 - 朦 - 胧 - 冥 - 砝 - 镀 - 夙 - 燊 - 荚 - 浈 - 苡 - 眺 - 陬 - 寐 - 佘 - 濑 - 仄 - 楔 - 胚 - 嵩 - 洙 - 诓 - 阜 - 浚 - 觊 - 觎 - 曰 - 怵 - 兖 - 稠 - 嵋 - 艋 - 篪 - 琥 - 玟 - 褴 - 褛 - 喱 - 虞 - 魇 - 凇 - 徉 - 嘟 - 臆 - 犊 - 哎 - 靑 - 俺 - 塬 - 妯 - 娌 - 蜈 - 蚣 - 恣 - 沏 - 磴 - 霎 - 趸 - 麒 - 氪 - 缇 - 沁 - 疃 - 恸 - 瘩 - 暄 - 憩 - 祯 - 惰 - 溉 - 沱 - 诲 - 笈 - 擘 - 亳 - 孺 - 忪 - 瞟 - 擞 - 瘸 - 掬 - 唁 - 蹚 - 匡 - 粕 - 鲷 - 泓 - 叵 - 嗣 - 眯 - 炷 - 珺 - 漕 - 谑 - 咯 - 嗬 - 缰 - 卲 - 壑 - 靶 - 隍 - 唠 - 濡 - 盎 - 骊 - 腱 - 鞘 - 拧 - 痫 - 宦 - 诶 - 椋 - 鼾 - 湍 - 毗 - 酪 - 赦 - 炕 - 焘 - 奘 - 邂 - 逅 - 妄 - 骐 - 卒 - 喵 - 觥 - 眬 - 纣 - 憷 - 覃 - 孀 - 芊 - 孢 - 惶 - 迥 - 纰 - 咀 - 鸾 - 箫 - 晦 - 泯 - 砚 - 吭 - 祢 - 揩 - 刨 - 珏 - 撸 - 兀 - 痉 - 挛 - 胤 - 巿 - 纶 - 镁 - 哺 - 咔 - 嚓 - 稼 - 焖 - 妤 - 妩 - 潞 - 雌 - 栾 - 侍 - 煲 - 嫚 - 竽 - 恪 - 霈 - 赝 - 莺 - 眶 - 桓 - 槎 - 馑 - 涮 - 枭 - 徇 - 洵 - 垌 - 昵 - 褶 - 喽 - 脯 - 孱 - 遨 - 谚 - 烷 - 搽 - 酯 - 枷 - 桉 - 咧 - 窿 - 拈 - 斓 - 跛 - 蹶 - 瘟 - 俭 - 靛 - 脍 - <sos/eos> init: null input_size: null ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: true joint_net_conf: null use_preprocessor: true token_type: char bpemodel: null non_linguistic_symbols: null cleaner: null g2p: null speech_volume_normalize: null rir_scp: null rir_apply_prob: 1.0 noise_scp: null noise_apply_prob: 1.0 noise_db_range: '13_15' frontend: default frontend_conf: fs: 16k specaug: specaug specaug_conf: apply_time_warp: true time_warp_window: 5 time_warp_mode: bicubic apply_freq_mask: true freq_mask_width_range: - 0 - 27 num_freq_mask: 2 apply_time_mask: true time_mask_width_ratio_range: - 0.0 - 0.05 num_time_mask: 10 normalize: global_mvn normalize_conf: stats_file: exp/asr_stats_raw_zh_char_sp/train/feats_stats.npz model: espnet model_conf: ctc_weight: 0.3 lsm_weight: 0.1 length_normalized_loss: false preencoder: null preencoder_conf: {} encoder: conformer encoder_conf: output_size: 256 attention_heads: 4 linear_units: 2048 num_blocks: 12 dropout_rate: 0.1 positional_dropout_rate: 0.1 attention_dropout_rate: 0.1 input_layer: conv2d normalize_before: true rel_pos_type: latest pos_enc_layer_type: rel_pos selfattention_layer_type: rel_selfattn activation_type: swish macaron_style: true use_cnn_module: true cnn_module_kernel: 31 postencoder: null postencoder_conf: {} decoder: transformer decoder_conf: attention_heads: 4 linear_units: 2048 num_blocks: 6 dropout_rate: 0.1 positional_dropout_rate: 0.1 self_attention_dropout_rate: 0.0 src_attention_dropout_rate: 0.0 required: - output_dir - token_list version: '202204' distributed: true ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
Yah216/DistilBERT-finetuned-ACDP
Yah216
2022-05-27T18:43:32Z
5
0
transformers
[ "transformers", "tf", "bert", "fill-mask", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-05-27T18:34:52Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Yah216/DistilBERT-finetuned-ACDP results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Yah216/DistilBERT-finetuned-ACDP This model is a fine-tuned version of [CAMeL-Lab/bert-base-arabic-camelbert-ca](https://huggingface.co/CAMeL-Lab/bert-base-arabic-camelbert-ca) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 6.6178 - Validation Loss: 6.2483 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': -688, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 8.7636 | 7.6558 | 0 | | 7.2645 | 6.7607 | 1 | | 6.6178 | 6.2483 | 2 | ### Framework versions - Transformers 4.19.2 - TensorFlow 2.8.0 - Datasets 2.2.2 - Tokenizers 0.12.1
LookParOf/q-FrozenLake-v1-4x4-Slippery
LookParOf
2022-05-27T17:16:16Z
0
0
null
[ "FrozenLake-v1-4x4", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-05-27T16:25:34Z
--- tags: - FrozenLake-v1-4x4 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-Slippery results: - metrics: - type: mean_reward value: 0.71 +/- 0.45 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4 type: FrozenLake-v1-4x4 --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="LookParOf/q-FrozenLake-v1-4x4-Slippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
PraveenKishore/intro-ppo-lunarlander-v2
PraveenKishore
2022-05-27T17:01:58Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-27T15:47:12Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 283.46 +/- 13.89 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
facebook/wav2vec2-base-100h
facebook
2022-05-27T16:32:50Z
1,541
6
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "audio", "en", "dataset:librispeech_asr", "arxiv:2006.11477", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: en datasets: - librispeech_asr tags: - audio - automatic-speech-recognition license: apache-2.0 --- # Wav2Vec2-Base-100h [Facebook's Wav2Vec2](https://ai.facebook.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio/) The base model pretrained and fine-tuned on 100 hours of Librispeech on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. [Paper](https://arxiv.org/abs/2006.11477) Authors: Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli **Abstract** We show for the first time that learning powerful representations from speech audio alone followed by fine-tuning on transcribed speech can outperform the best semi-supervised methods while being conceptually simpler. wav2vec 2.0 masks the speech input in the latent space and solves a contrastive task defined over a quantization of the latent representations which are jointly learned. Experiments using all labeled data of Librispeech achieve 1.8/3.3 WER on the clean/other test sets. When lowering the amount of labeled data to one hour, wav2vec 2.0 outperforms the previous state of the art on the 100 hour subset while using 100 times less labeled data. Using just ten minutes of labeled data and pre-training on 53k hours of unlabeled data still achieves 4.8/8.2 WER. This demonstrates the feasibility of speech recognition with limited amounts of labeled data. The original model can be found under https://github.com/pytorch/fairseq/tree/master/examples/wav2vec#wav2vec-20. # Usage To transcribe audio files the model can be used as a standalone acoustic model as follows: ```python from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC from datasets import load_dataset import soundfile as sf import torch # load model and processor processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-100h") model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-100h") # define function to read in sound file def map_to_array(batch): speech, _ = sf.read(batch["file"]) batch["speech"] = speech return batch # load dummy dataset and read soundfiles ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation") ds = ds.map(map_to_array) # tokenize input_values = processor(ds[0]["audio"]["array"], return_tensors="pt", padding="longest").input_values # Batch size 1 # retrieve logits logits = model(input_values).logits # take argmax and decode predicted_ids = torch.argmax(logits, dim=-1) transcription = processor.batch_decode(predicted_ids) ``` ## Evaluation This code snippet shows how to evaluate **facebook/wav2vec2-base-100h** on LibriSpeech's "clean" and "other" test data. ```python from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import soundfile as sf import torch from jiwer import wer librispeech_eval = load_dataset("librispeech_asr", "clean", split="test") model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-100h").to("cuda") processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-100h") def map_to_pred(batch): input_values = processor(batch["audio"]["array"], return_tensors="pt", padding="longest").input_values with torch.no_grad(): logits = model(input_values.to("cuda")).logits predicted_ids = torch.argmax(logits, dim=-1) transcription = processor.batch_decode(predicted_ids) batch["transcription"] = transcription return batch result = librispeech_eval.map(map_to_pred, batched=True, batch_size=1, remove_columns=["speech"]) print("WER:", wer(result["text"], result["transcription"])) ``` *Result (WER)*: | "clean" | "other" | |---|---| | 6.1 | 13.5 |
Satyamatury/wav2vec2-large-xls-r-300m-turkish-colab
Satyamatury
2022-05-27T16:28:53Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-05-06T16:33:35Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-turkish-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-turkish-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
meln1k/ppo-MountainCar-v0
meln1k
2022-05-27T15:58:51Z
1
0
stable-baselines3
[ "stable-baselines3", "MountainCar-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-27T15:57:28Z
--- library_name: stable-baselines3 tags: - MountainCar-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: -200.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: MountainCar-v0 type: MountainCar-v0 --- # **PPO** Agent playing **MountainCar-v0** This is a trained model of a **PPO** agent playing **MountainCar-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
skyfox/q-Taxi-v3
skyfox
2022-05-27T14:07:37Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-05-27T14:07:32Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
esh/q-Taxi-v3
esh
2022-05-27T14:07:28Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-05-27T14:07:10Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - metrics: - type: mean_reward value: nan +/- nan name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="esh/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
esh/q-FrozenLake-v1-8x8-slippery
esh
2022-05-27T14:05:27Z
0
0
null
[ "FrozenLake-v1-4x4", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-05-22T15:32:26Z
--- tags: - FrozenLake-v1-4x4 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-8x8-slippery results: - metrics: - type: mean_reward value: nan +/- nan name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4 type: FrozenLake-v1-4x4 --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="esh/q-FrozenLake-v1-8x8-slippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
onewithnickelcoins/roberta-base-stars
onewithnickelcoins
2022-05-27T13:15:43Z
3
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-27T12:33:44Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: roberta-base-stars results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-stars This model is a fine-tuned version of [onewithnickelcoins/roberta-base-MLM](https://huggingface.co/onewithnickelcoins/roberta-base-MLM) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.2914 - Accuracy: 0.6857 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: tpu - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30.0 ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.2+cu113 - Datasets 1.18.4 - Tokenizers 0.11.6
jkhan447/language-detection-Bert-base-uncased-additional
jkhan447
2022-05-27T13:02:32Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-27T09:28:22Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: language-detection-Bert-base-uncased-additional results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # language-detection-Bert-base-uncased-additional This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2330 - Accuracy: 0.9497 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
YaYaB/q-Taxi-v3
YaYaB
2022-05-27T12:49:58Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-05-27T12:49:48Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
YaYaB/q-FrozenLake-v1-4x4-noSlippery
YaYaB
2022-05-27T12:35:29Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-05-27T12:35:18Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="YaYaB/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
onewithnickelcoins/roberta-base-MLM
onewithnickelcoins
2022-05-27T11:57:24Z
4
0
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-05-27T11:40:10Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: roberta-base-MLM results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-MLM This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.0265 - Accuracy: 0.6009 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: tpu - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30.0 ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.2+cu113 - Datasets 1.18.4 - Tokenizers 0.11.6
huggingtweets/alejodorowsky
huggingtweets
2022-05-27T11:13:26Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-05-27T11:11:07Z
--- language: en thumbnail: http://www.huggingtweets.com/alejodorowsky/1653650001771/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/784393032774873088/1x6o_3ws_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Alejandro Jodorowsky</div> <div style="text-align: center; font-size: 14px;">@alejodorowsky</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Alejandro Jodorowsky. | Data | Alejandro Jodorowsky | | --- | --- | | Tweets downloaded | 3245 | | Retweets | 640 | | Short tweets | 175 | | Tweets kept | 2430 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1vwsnx64/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @alejodorowsky's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/j8ai679x) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/j8ai679x/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/alejodorowsky') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/parishilton
huggingtweets
2022-05-27T11:11:28Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-05-27T11:10:59Z
--- language: en thumbnail: http://www.huggingtweets.com/parishilton/1653649884348/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1519127596868374528/AyJv6gmG_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">ParisHilton.eth</div> <div style="text-align: center; font-size: 14px;">@parishilton</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from ParisHilton.eth. | Data | ParisHilton.eth | | --- | --- | | Tweets downloaded | 3211 | | Retweets | 1563 | | Short tweets | 407 | | Tweets kept | 1241 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/17bxqhg6/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @parishilton's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/8b45v2wu) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/8b45v2wu/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/parishilton') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/donhertzfeldt
huggingtweets
2022-05-27T11:02:23Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-05-27T11:00:31Z
--- language: en thumbnail: http://www.huggingtweets.com/donhertzfeldt/1653649338459/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1617966805/star-avatar_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">don hertzfeldt</div> <div style="text-align: center; font-size: 14px;">@donhertzfeldt</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from don hertzfeldt. | Data | don hertzfeldt | | --- | --- | | Tweets downloaded | 2513 | | Retweets | 707 | | Short tweets | 406 | | Tweets kept | 1400 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/258eoxxi/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @donhertzfeldt's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/wxdijpch) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/wxdijpch/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/donhertzfeldt') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/meliksahtas
huggingtweets
2022-05-27T11:01:12Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-05-27T10:58:33Z
--- language: en thumbnail: http://www.huggingtweets.com/meliksahtas/1653649268087/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1229167506386014212/FKKauJpF_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">meliksahtas</div> <div style="text-align: center; font-size: 14px;">@meliksahtas</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from meliksahtas. | Data | meliksahtas | | --- | --- | | Tweets downloaded | 3247 | | Retweets | 154 | | Short tweets | 202 | | Tweets kept | 2891 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1ibkvi4w/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @meliksahtas's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/6flysmzm) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/6flysmzm/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/meliksahtas') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/dlputin
huggingtweets
2022-05-27T10:48:58Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-05-27T10:48:51Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/535525386872832001/NQn2b8OA_400x400.jpeg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">普京</div> <div style="text-align: center; font-size: 14px;">@dlputin</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from 普京. | Data | 普京 | | --- | --- | | Tweets downloaded | 3200 | | Retweets | 0 | | Short tweets | 586 | | Tweets kept | 2614 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2t4wvbm9/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dlputin's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2vcew5d1) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2vcew5d1/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/dlputin') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/mit_istnews
huggingtweets
2022-05-27T09:11:24Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-05-27T09:10:02Z
--- language: en thumbnail: http://www.huggingtweets.com/mit_istnews/1653642679545/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/875463526583857156/mxYzB8tm_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">MIT IS&T</div> <div style="text-align: center; font-size: 14px;">@mit_istnews</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from MIT IS&T. | Data | MIT IS&T | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 20 | | Short tweets | 132 | | Tweets kept | 3098 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1b2tikho/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mit_istnews's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/15k3tyvf) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/15k3tyvf/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mit_istnews') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
auriolar/q-Taxi-v3
auriolar
2022-05-27T08:27:18Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-05-27T08:04:54Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="auriolar/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
teppei727/bart-base-finetuned-amazon-onlyen
teppei727
2022-05-27T08:16:49Z
8
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "summarization", "generated_from_trainer", "dataset:amazon_reviews_multi", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-05-27T07:10:39Z
--- license: apache-2.0 tags: - summarization - generated_from_trainer datasets: - amazon_reviews_multi metrics: - rouge model-index: - name: bart-base-finetuned-amazon-onlyen results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: amazon_reviews_multi type: amazon_reviews_multi args: en metrics: - name: Rouge1 type: rouge value: 17.2662 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-base-finetuned-amazon-onlyen This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 3.7572 - Rouge1: 17.2662 - Rouge2: 8.7425 - Rougel: 16.5765 - Rougelsum: 16.6844 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | 2.9212 | 1.0 | 771 | 2.8034 | 15.381 | 8.5254 | 15.223 | 15.059 | | 2.3109 | 2.0 | 1542 | 2.8386 | 19.8947 | 11.0965 | 19.4876 | 19.5366 | | 1.8973 | 3.0 | 2313 | 2.9258 | 17.7443 | 8.9232 | 17.311 | 17.1796 | | 1.5421 | 4.0 | 3084 | 3.0696 | 17.8204 | 8.8919 | 17.3889 | 17.205 | | 1.2391 | 5.0 | 3855 | 3.2609 | 15.9828 | 8.0523 | 15.393 | 15.3808 | | 0.9736 | 6.0 | 4626 | 3.4080 | 15.7572 | 8.806 | 15.2435 | 15.3036 | | 0.7824 | 7.0 | 5397 | 3.5537 | 18.4389 | 9.5135 | 17.7836 | 17.8758 | | 0.6233 | 8.0 | 6168 | 3.6909 | 14.6698 | 6.9584 | 13.9417 | 14.0057 | | 0.5086 | 9.0 | 6939 | 3.7357 | 16.9465 | 7.7604 | 16.1993 | 16.2963 | | 0.4412 | 10.0 | 7710 | 3.7572 | 17.2662 | 8.7425 | 16.5765 | 16.6844 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
auriolar/q-FrozenLake-v1-4x4-noSlippery
auriolar
2022-05-27T08:00:20Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-05-27T08:00:12Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="auriolar/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
Splend1dchan/t5small-squad-extractive
Splend1dchan
2022-05-27T07:48:00Z
1
0
transformers
[ "transformers", "pytorch", "tensorboard", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-05-27T07:32:03Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: t5_squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5_squad This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the squad dataset, using the extractive method by isolating the encoder only. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results { "epoch": 3.0, "eval_exact_match": 70.06622516556291, "eval_f1": 80.02993815400357, "eval_samples": 10659 } ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 1.18.4 - Tokenizers 0.11.6