modelId
string
author
string
last_modified
timestamp[us, tz=UTC]
downloads
int64
likes
int64
library_name
string
tags
list
pipeline_tag
string
createdAt
timestamp[us, tz=UTC]
card
string
Abderrahim2/bert-finetuned-Location
Abderrahim2
2022-06-01T20:18:34Z
3
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-01T17:38:50Z
--- license: mit tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: bert-finetuned-Location results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-Location This model is a fine-tuned version of [dbmdz/bert-base-french-europeana-cased](https://huggingface.co/dbmdz/bert-base-french-europeana-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5462 - F1: 0.8167 - Roc Auc: 0.8624 - Accuracy: 0.8133 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | 0.4229 | 1.0 | 742 | 0.3615 | 0.7402 | 0.8014 | 0.6900 | | 0.3722 | 2.0 | 1484 | 0.3103 | 0.7906 | 0.8416 | 0.7796 | | 0.262 | 3.0 | 2226 | 0.3364 | 0.8135 | 0.8600 | 0.8100 | | 0.2239 | 4.0 | 2968 | 0.4593 | 0.8085 | 0.8561 | 0.8066 | | 0.1461 | 5.0 | 3710 | 0.5534 | 0.7923 | 0.8440 | 0.7904 | | 0.1333 | 6.0 | 4452 | 0.5462 | 0.8167 | 0.8624 | 0.8133 | | 0.0667 | 7.0 | 5194 | 0.6298 | 0.7972 | 0.8479 | 0.7958 | | 0.0616 | 8.0 | 5936 | 0.6362 | 0.8075 | 0.8556 | 0.8059 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
AlexanderPeter/bert-finetuned-ner
AlexanderPeter
2022-06-01T19:56:43Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-01T18:06:45Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 model-index: - name: bert-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - eval_loss: 0.0593 - eval_precision: 0.9293 - eval_recall: 0.9485 - eval_f1: 0.9388 - eval_accuracy: 0.9858 - eval_runtime: 120.5431 - eval_samples_per_second: 26.97 - eval_steps_per_second: 3.376 - epoch: 2.0 - step: 3512 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cpu - Datasets 2.2.2 - Tokenizers 0.12.1
FritzOS/TEdetection_distiBERT_mLM_V2
FritzOS
2022-06-01T17:10:46Z
4
0
transformers
[ "transformers", "tf", "distilbert", "fill-mask", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-06-01T17:10:29Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: TEdetection_distiBERT_mLM_V2 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # TEdetection_distiBERT_mLM_V2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.19.2 - TensorFlow 2.8.0 - Datasets 2.2.2 - Tokenizers 0.12.1
vectorian/t5-small-finetuned-tds
vectorian
2022-06-01T17:10:46Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "medium-summarization", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-23T17:49:29Z
--- license: apache-2.0 tags: - medium-summarization - generated_from_trainer model-index: - name: t5-small-finetuned-tds results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-tds This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
osanseviero/my-helsinki-duplicate
osanseviero
2022-06-01T15:58:23Z
14
0
transformers
[ "transformers", "pytorch", "rust", "marian", "text2text-generation", "translation", "zh", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-06-01T15:56:44Z
--- language: - zh - en tags: - translation license: apache-2.0 --- ### zho-eng * source group: Chinese * target group: English * OPUS readme: [zho-eng](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/zho-eng/README.md) * model: transformer * source language(s): cjy_Hans cjy_Hant cmn cmn_Hans cmn_Hant gan lzh lzh_Hans nan wuu yue yue_Hans yue_Hant * target language(s): eng * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-07-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/zho-eng/opus-2020-07-17.zip) * test set translations: [opus-2020-07-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zho-eng/opus-2020-07-17.test.txt) * test set scores: [opus-2020-07-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zho-eng/opus-2020-07-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.zho.eng | 36.1 | 0.548 | ### System Info: - hf_name: zho-eng - source_languages: zho - target_languages: eng - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/zho-eng/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['zh', 'en'] - src_constituents: {'cmn_Hans', 'nan', 'nan_Hani', 'gan', 'yue', 'cmn_Kana', 'yue_Hani', 'wuu_Bopo', 'cmn_Latn', 'yue_Hira', 'cmn_Hani', 'cjy_Hans', 'cmn', 'lzh_Hang', 'lzh_Hira', 'cmn_Hant', 'lzh_Bopo', 'zho', 'zho_Hans', 'zho_Hant', 'lzh_Hani', 'yue_Hang', 'wuu', 'yue_Kana', 'wuu_Latn', 'yue_Bopo', 'cjy_Hant', 'yue_Hans', 'lzh', 'cmn_Hira', 'lzh_Yiii', 'lzh_Hans', 'cmn_Bopo', 'cmn_Hang', 'hak_Hani', 'cmn_Yiii', 'yue_Hant', 'lzh_Kana', 'wuu_Hani'} - tgt_constituents: {'eng'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/zho-eng/opus-2020-07-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/zho-eng/opus-2020-07-17.test.txt - src_alpha3: zho - tgt_alpha3: eng - short_pair: zh-en - chrF2_score: 0.5479999999999999 - bleu: 36.1 - brevity_penalty: 0.948 - ref_len: 82826.0 - src_name: Chinese - tgt_name: English - train_date: 2020-07-17 - src_alpha2: zh - tgt_alpha2: en - prefer_old: False - long_pair: zho-eng - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Alian3785/TEST2ppo-BipedalWalker-v3
Alian3785
2022-06-01T15:33:28Z
0
0
stable-baselines3
[ "stable-baselines3", "BipedalWalker-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-01T15:32:38Z
--- library_name: stable-baselines3 tags: - BipedalWalker-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 126.62 +/- 7.52 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: BipedalWalker-v3 type: BipedalWalker-v3 --- # **PPO** Agent playing **BipedalWalker-v3** This is a trained model of a **PPO** agent playing **BipedalWalker-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
aware-ai/wav2vec2-xls-r-1b-5gram-german
aware-ai
2022-06-01T13:33:48Z
21
1
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "hf-asr-leaderboard", "de", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-24T10:33:47Z
--- language: de datasets: - common_voice metrics: - wer - cer tags: - audio - automatic-speech-recognition - speech - hf-asr-leaderboard license: apache-2.0 model-index: - name: wav2vec2-xls-r-1b-5gram-german with LM by Florian Zimmermeister @A\\Ware results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice de type: common_voice args: de metrics: - name: Test WER type: wer value: 4.382541642219636 - name: Test CER type: cer value: 1.6235493024026488 - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 de type: mozilla-foundation/common_voice_8_0 args: de metrics: - name: Test WER type: wer value: 4.382541642219636 - name: Test CER type: cer value: 1.6235493024026488 --- ## Evaluation The model can be evaluated as follows on the German test data of Common Voice. ```python import torch from transformers import AutoModelForCTC, AutoProcessor from unidecode import unidecode import re from datasets import load_dataset, load_metric import datasets counter = 0 wer_counter = 0 cer_counter = 0 device = "cuda" if torch.cuda.is_available() else "cpu" special_chars = [["Ä"," AE "], ["Ö"," OE "], ["Ü"," UE "], ["ä"," ae "], ["ö"," oe "], ["ü"," ue "]] def clean_text(sentence): for special in special_chars: sentence = sentence.replace(special[0], special[1]) sentence = unidecode(sentence) for special in special_chars: sentence = sentence.replace(special[1], special[0]) sentence = re.sub("[^a-zA-Z0-9öäüÖÄÜ ,.!?]", " ", sentence) return sentence def main(model_id): print("load model") model = AutoModelForCTC.from_pretrained(model_id).to(device) print("load processor") processor = AutoProcessor.from_pretrained(processor_id) print("load metrics") wer = load_metric("wer") cer = load_metric("cer") ds = load_dataset("mozilla-foundation/common_voice_8_0","de") ds = ds["test"] ds = ds.cast_column( "audio", datasets.features.Audio(sampling_rate=16_000) ) def calculate_metrics(batch): global counter, wer_counter, cer_counter resampled_audio = batch["audio"]["array"] input_values = processor(resampled_audio, return_tensors="pt", sampling_rate=16_000).input_values with torch.no_grad(): logits = model(input_values.to(device)).logits.cpu().numpy()[0] decoded = processor.decode(logits) pred = decoded.text.lower() ref = clean_text(batch["sentence"]).lower() wer_result = wer.compute(predictions=[pred], references=[ref]) cer_result = cer.compute(predictions=[pred], references=[ref]) counter += 1 wer_counter += wer_result cer_counter += cer_result if counter % 100 == True: print(f"WER: {(wer_counter/counter)*100} | CER: {(cer_counter/counter)*100}") return batch ds.map(calculate_metrics, remove_columns=ds.column_names) print(f"WER: {(wer_counter/counter)*100} | CER: {(cer_counter/counter)*100}") model_id = "flozi00/wav2vec2-xls-r-1b-5gram-german" main(model_id) ```
YeRyeongLee/bert-base-uncased-finetuned-filtered-0601
YeRyeongLee
2022-06-01T13:29:32Z
5
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-01T12:22:30Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: bert-base-uncased-finetuned-filtered-0601 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-filtered-0601 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1152 - Accuracy: 0.9814 - F1: 0.9815 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:| | No log | 1.0 | 3180 | 0.1346 | 0.9664 | 0.9665 | | No log | 2.0 | 6360 | 0.1352 | 0.9748 | 0.9749 | | No log | 3.0 | 9540 | 0.1038 | 0.9808 | 0.9808 | | No log | 4.0 | 12720 | 0.1152 | 0.9814 | 0.9815 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.9.0 - Datasets 1.16.1 - Tokenizers 0.12.1
cjbarrie/masress-medcrit-camel
cjbarrie
2022-06-01T13:23:54Z
3
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autotrain", "unk", "dataset:cjbarrie/autotrain-data-masress-medcrit-binary-5", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-01T12:56:34Z
--- tags: autotrain language: unk widget: - text: "الكل ينتقد الرئيس على إخفاقاته" datasets: - cjbarrie/autotrain-data-masress-medcrit-binary-5 co2_eq_emissions: 0.01017487638098474 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 937130980 - CO2 Emissions (in grams): 0.01017487638098474 ## Validation Metrics - Loss: 0.757265031337738 - Accuracy: 0.7551020408163265 - Macro F1: 0.7202470830473576 - Micro F1: 0.7551020408163265 - Weighted F1: 0.7594301962377263 - Macro Precision: 0.718716577540107 - Micro Precision: 0.7551020408163265 - Weighted Precision: 0.7711448215649895 - Macro Recall: 0.7285714285714286 - Micro Recall: 0.7551020408163265 - Weighted Recall: 0.7551020408163265 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/cjbarrie/autotrain-masress-medcrit-binary-5-937130980 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("cjbarrie/autotrain-masress-medcrit-binary-5-937130980", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("cjbarrie/autotrain-masress-medcrit-binary-5-937130980", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
Sundhar/bart_customized
Sundhar
2022-06-01T12:20:25Z
0
0
fastai
[ "fastai", "region:us" ]
null
2022-06-01T12:18:33Z
--- tags: - fastai --- # Amazing! 🥳 Congratulations on hosting your fastai model on the Hugging Face Hub! # Some next steps 1. Fill out this model card with more information (see the template below and the [documentation here](https://huggingface.co/docs/hub/model-repos))! 2. Create a demo in Gradio or Streamlit using 🤗 Spaces ([documentation here](https://huggingface.co/docs/hub/spaces)). 3. Join the fastai community on the [Fastai Discord](https://discord.com/invite/YKrxeNn)! Greetings fellow fastlearner 🤝! Don't forget to delete this content from your model card. --- # Model card ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed
jayeshgar/q-FrozenLake-v1-4x4-noSlippery
jayeshgar
2022-06-01T11:40:35Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-06-01T11:40:28Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="jayeshgar/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
aaatul/xlm-roberta-large-finetuned-ner
aaatul
2022-06-01T09:06:31Z
5
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:hi_ner_config", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-05-05T06:32:26Z
--- license: mit tags: - generated_from_trainer datasets: - hi_ner_config model-index: - name: xlm-roberta-large-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-large-finetuned-ner This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) on the hi_ner_config dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
adache/xlm-roberta-base-finetuned-panx-all
adache
2022-06-01T08:20:34Z
4
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-01T07:54:01Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-all results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-all This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1782 - F1: 0.8541 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2995 | 1.0 | 739 | 0.1891 | 0.8085 | | 0.1552 | 2.0 | 1478 | 0.1798 | 0.8425 | | 0.1008 | 3.0 | 2217 | 0.1782 | 0.8541 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
adache/xlm-roberta-base-finetuned-panx-en
adache
2022-06-01T07:53:50Z
5
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-01T07:34:03Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-en results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.en metrics: - name: F1 type: f1 value: 0.692179700499168 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-en This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.3921 - F1: 0.6922 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.1465 | 1.0 | 50 | 0.5838 | 0.4777 | | 0.5055 | 2.0 | 100 | 0.4477 | 0.6374 | | 0.3713 | 3.0 | 150 | 0.3921 | 0.6922 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
ceggian/sbart_pt_reddit_softmax_64
ceggian
2022-06-01T07:46:44Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bart", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-06-01T07:43:02Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 117759 with parameters: ``` {'batch_size': 8, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.SoftmaxLoss.SoftmaxLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 11775, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 1024, 'do_lower_case': False}) with Transformer model: BartModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
adache/xlm-roberta-base-finetuned-panx-de-fr
adache
2022-06-01T06:47:31Z
5
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-01T06:21:05Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1644 - F1: 0.8617 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2891 | 1.0 | 715 | 0.1780 | 0.8288 | | 0.1471 | 2.0 | 1430 | 0.1627 | 0.8509 | | 0.0947 | 3.0 | 2145 | 0.1644 | 0.8617 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
t-bank-ai/response-quality-classifier-tiny
t-bank-ai
2022-06-01T06:34:56Z
17
3
transformers
[ "transformers", "pytorch", "bert", "text-classification", "conversational", "ru", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-31T08:32:08Z
--- license: mit widget: - text: "[CLS]привет[SEP]привет![SEP]как дела?[RESPONSE_TOKEN]супер, вот только проснулся, у тебя как?" example_title: "Dialog example 1" - text: "[CLS]привет[SEP]привет![SEP]как дела?[RESPONSE_TOKEN]норм" example_title: "Dialog example 2" - text: "[CLS]привет[SEP]привет![SEP]как дела?[RESPONSE_TOKEN]норм, у тя как?" example_title: "Dialog example 3" language: - ru tags: - conversational --- This classification model is based on [cointegrated/rubert-tiny2](https://huggingface.co/cointegrated/rubert-tiny2). The model should be used to produce relevance and specificity of the last message in the context of a dialogue. The labels explanation: - `relevance`: is the last message in the dialogue relevant in the context of the full dialogue. - `specificity`: is the last message in the dialogue interesting and promotes the continuation of the dialogue. It is pretrained on a large corpus of dialog data in unsupervised manner: the model is trained to predict whether last response was in a real dialog, or it was pulled from some other dialog at random. Then it was finetuned on manually labelled examples (dataset will be posted soon). The model was trained with three messages in the context and one response. Each message was tokenized separately with ``` max_length = 32 ```. The performance of the model on validation split (dataset will be posted soon) (with the best thresholds for validation samples): | | threshold | f0.5 | ROC AUC | |:------------|------------:|-------:|----------:| | relevance | 0.51 | 0.82 | 0.74 | | specificity | 0.54 | 0.81 | 0.8 | How to use: ```python import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained('tinkoff-ai/response-quality-classifier-tiny') model = AutoModelForSequenceClassification.from_pretrained('tinkoff-ai/response-quality-classifier-tiny') inputs = tokenizer('[CLS]привет[SEP]привет![SEP]как дела?[RESPONSE_TOKEN]норм, у тя как?', max_length=128, add_special_tokens=False, return_tensors='pt') with torch.inference_mode(): logits = model(**inputs).logits probas = torch.sigmoid(logits)[0].cpu().detach().numpy() relevance, specificity = probas ``` The [app](https://huggingface.co/spaces/tinkoff-ai/response-quality-classifiers) where you can easily interact with this model. The work was done during internship at Tinkoff by [egoriyaa](https://github.com/egoriyaa), mentored by [solemn-leader](https://huggingface.co/solemn-leader).
t-bank-ai/response-quality-classifier-base
t-bank-ai
2022-06-01T06:34:22Z
17
2
transformers
[ "transformers", "pytorch", "bert", "text-classification", "conversational", "ru", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-31T10:17:12Z
--- license: mit widget: - text: "[CLS]привет[SEP]привет![SEP]как дела?[RESPONSE_TOKEN]супер, вот только проснулся, у тебя как?" example_title: "Dialog example 1" - text: "[CLS]привет[SEP]привет![SEP]как дела?[RESPONSE_TOKEN]норм" example_title: "Dialog example 2" - text: "[CLS]привет[SEP]привет![SEP]как дела?[RESPONSE_TOKEN]норм, у тя как?" example_title: "Dialog example 3" language: - ru tags: - conversational --- This classification model is based on [DeepPavlov/rubert-base-cased-sentence](https://huggingface.co/DeepPavlov/rubert-base-cased-sentence). The model should be used to produce relevance and specificity of the last message in the context of a dialogue. The labels explanation: - `relevance`: is the last message in the dialogue relevant in the context of the full dialogue. - `specificity`: is the last message in the dialogue interesting and promotes the continuation of the dialogue. It is pretrained on a large corpus of dialog data in unsupervised manner: the model is trained to predict whether last response was in a real dialog, or it was pulled from some other dialog at random. Then it was finetuned on manually labelled examples (dataset will be posted soon). The model was trained with three messages in the context and one response. Each message was tokenized separately with ``` max_length = 32 ```. The performance of the model on validation split (dataset will be posted soon) (with the best thresholds for validation samples): | | threshold | f0.5 | ROC AUC | |:------------|------------:|-------:|----------:| | relevance | 0.49 | 0.84 | 0.79 | | specificity | 0.53 | 0.83 | 0.83 | How to use: ```python import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained('tinkoff-ai/response-quality-classifier-base') model = AutoModelForSequenceClassification.from_pretrained('tinkoff-ai/response-quality-classifier-base') inputs = tokenizer('[CLS]привет[SEP]привет![SEP]как дела?[RESPONSE_TOKEN]норм, у тя как?', max_length=128, add_special_tokens=False, return_tensors='pt') with torch.inference_mode(): logits = model(**inputs).logits probas = torch.sigmoid(logits)[0].cpu().detach().numpy() relevance, specificity = probas ``` The [app](https://huggingface.co/spaces/tinkoff-ai/response-quality-classifiers) where you can easily interact with this model. The work was done during internship at Tinkoff by [egoriyaa](https://github.com/egoriyaa), mentored by [solemn-leader](https://huggingface.co/solemn-leader).
jiseong/mt5-small-finetuned-news
jiseong
2022-06-01T06:22:12Z
3
0
transformers
[ "transformers", "tf", "tensorboard", "mt5", "text2text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-01T00:47:52Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: jiseong/mt5-small-finetuned-news results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # jiseong/mt5-small-finetuned-news This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1208 - Validation Loss: 0.1012 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.1829 | 0.1107 | 0 | | 0.1421 | 0.1135 | 1 | | 0.1208 | 0.1012 | 2 | ### Framework versions - Transformers 4.19.2 - TensorFlow 2.8.0 - Datasets 2.2.2 - Tokenizers 0.12.1
arize-ai/distilbert_reviews_with_language_drift
arize-ai
2022-06-01T06:15:35Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:ecommerce_reviews_with_language_drift", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-01T05:46:28Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - ecommerce_reviews_with_language_drift metrics: - accuracy - f1 model-index: - name: distilbert_reviews_with_language_drift results: - task: name: Text Classification type: text-classification dataset: name: ecommerce_reviews_with_language_drift type: ecommerce_reviews_with_language_drift args: default metrics: - name: Accuracy type: accuracy value: 0.818 - name: F1 type: f1 value: 0.8167126877417763 widget: - text: "Poor quality of fabric and ridiculously tight at chest. It's way too short." example_title: "Negative" - text: "One worked perfectly, but the other one has a slight leak and we end up with water underneath the filter." example_title: "Neutral" - text: "I liked the price most! Nothing to dislike here!" example_title: "Positive" --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_reviews_with_language_drift This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the ecommerce_reviews_with_language_drift dataset. It achieves the following results on the evaluation set: - Loss: 0.4970 - Accuracy: 0.818 - F1: 0.8167 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.593 | 1.0 | 500 | 0.4723 | 0.799 | 0.7976 | | 0.3714 | 2.0 | 1000 | 0.4679 | 0.818 | 0.8177 | | 0.2652 | 3.0 | 1500 | 0.4970 | 0.818 | 0.8167 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
chrisvinsen/wav2vec2-17
chrisvinsen
2022-06-01T06:05:03Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-06-01T02:17:11Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-17 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-17 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.1355 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 7.5865 | 1.38 | 25 | 3.4717 | 1.0 | | 2.9762 | 2.77 | 50 | 3.1483 | 1.0 | | 2.9265 | 4.16 | 75 | 3.1946 | 1.0 | | 2.8813 | 5.55 | 100 | 3.0504 | 1.0 | | 2.887 | 6.93 | 125 | 3.1358 | 1.0 | | 2.9124 | 8.33 | 150 | 3.1653 | 1.0 | | 2.8854 | 9.71 | 175 | 3.1243 | 1.0 | | 2.91 | 11.11 | 200 | 3.0879 | 1.0 | | 2.8868 | 12.49 | 225 | 3.1658 | 1.0 | | 2.8827 | 13.88 | 250 | 3.1236 | 1.0 | | 2.911 | 15.27 | 275 | 3.1206 | 1.0 | | 2.8829 | 16.66 | 300 | 3.1171 | 1.0 | | 2.9105 | 18.05 | 325 | 3.1127 | 1.0 | | 2.8845 | 19.44 | 350 | 3.1377 | 1.0 | | 2.8803 | 20.82 | 375 | 3.1157 | 1.0 | | 2.9102 | 22.22 | 400 | 3.1265 | 1.0 | | 2.8803 | 23.6 | 425 | 3.1493 | 1.0 | | 2.8837 | 24.99 | 450 | 3.1085 | 1.0 | | 2.9106 | 26.38 | 475 | 3.1099 | 1.0 | | 2.8787 | 27.77 | 500 | 3.1352 | 1.0 | | 2.9132 | 29.16 | 525 | 3.1355 | 1.0 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
Oseias/ppo-LunarLander-v2_review
Oseias
2022-06-01T02:26:14Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-01T02:25:48Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 254.90 +/- 26.83 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
radev/distilbert-base-uncased-finetuned-emotion
radev
2022-06-01T02:20:13Z
14
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-16T21:47:07Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.8945 - name: F1 type: f1 value: 0.8871610121255439 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.3645 - Accuracy: 0.8945 - F1: 0.8872 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 125 | 0.5816 | 0.8015 | 0.7597 | | 0.7707 | 2.0 | 250 | 0.3645 | 0.8945 | 0.8872 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0 - Datasets 1.16.1 - Tokenizers 0.10.3
erickfm/t5-small-finetuned-bias
erickfm
2022-06-01T02:02:16Z
3
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "en", "dataset:WNC", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-31T23:29:18Z
--- language: - en license: apache-2.0 datasets: - WNC metrics: - accuracy --- This model is a fine-tune checkpoint of [T5-small](https://huggingface.co/t5-small), fine-tuned on the [Wiki Neutrality Corpus (WNC)](https://github.com/rpryzant/neutralizing-bias), a labeled dataset composed of 180,000 biased and neutralized sentence pairs that are generated from Wikipedia edits tagged for “neutral point of view”. This model reaches an accuracy of 0.32 on a dev split of the WNC. For more details about T5, check out this [model card](https://huggingface.co/t5-small).
sanchit-gandhi/flax-wav2vec2-2-bart-large-cv9-feature-encoder
sanchit-gandhi
2022-06-01T00:43:26Z
3
0
transformers
[ "transformers", "jax", "speech-encoder-decoder", "automatic-speech-recognition", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-05-29T16:50:26Z
/home/sanchitgandhi/seq2seq-speech/README.md
skr3178/xlm-roberta-base-finetuned-panx-en
skr3178
2022-05-31T23:31:12Z
4
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-05-31T23:14:17Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-en results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.en metrics: - name: F1 type: f1 value: 0.692179700499168 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-en This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.3921 - F1: 0.6922 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.1465 | 1.0 | 50 | 0.5838 | 0.4777 | | 0.5055 | 2.0 | 100 | 0.4477 | 0.6374 | | 0.3713 | 3.0 | 150 | 0.3921 | 0.6922 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
skr3178/xlm-roberta-base-finetuned-panx-it
skr3178
2022-05-31T23:14:06Z
6
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-05-31T22:57:02Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-it results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.it metrics: - name: F1 type: f1 value: 0.8247845711940912 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-it This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2421 - F1: 0.8248 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.809 | 1.0 | 70 | 0.3380 | 0.7183 | | 0.2939 | 2.0 | 140 | 0.2582 | 0.7977 | | 0.1813 | 3.0 | 210 | 0.2421 | 0.8248 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
skr3178/xlm-roberta-base-finetuned-panx-de-fr
skr3178
2022-05-31T22:37:32Z
5
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-05-31T22:14:05Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1644 - F1: 0.8617 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2891 | 1.0 | 715 | 0.1780 | 0.8288 | | 0.1471 | 2.0 | 1430 | 0.1627 | 0.8509 | | 0.0947 | 3.0 | 2145 | 0.1644 | 0.8617 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
jppaolim/v40_NeoSmall
jppaolim
2022-05-31T22:23:08Z
3
0
transformers
[ "transformers", "pytorch", "gpt_neo", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-05-31T22:11:48Z
# My Story model Arthur goes to the beach. Arthur is in the ocean. He is enjoying the water. He cannot wait for the sun to rise. He goes to the beach. It is very hot outside. Arthur goes to the beach. Arthur is going to the beach. He is going to the beach. He is going to go swimming. He feels a breeze on his shirt. He feels very relaxed. Arthur goes to the beach. Arthur is walking on the beach. He notices a sign for the beach club. He asks for a cab. He gets a cab to go to the beach. Arthur and his friends go to the beach together. Arthur goes to the beach. Arthur was excited to go to the beach. He drove his car to the beach. When he got there, he was amazed at the waves. The waves had a huge sandcastle. Arthur went to the beach and enjoyed the beach. Arthur goes to the beach. Arthur is playing in the sand with his friends. He is having a great time, and they are all laughing. They all seem to be enjoying themselves. Arthur decides he has to leave. Arthur is sad that he will not be able to go to the beach. Arthur goes to the beach. Arthur wants to go to the beach. He decides to go to the beach. He sees a sign for the beach. He goes to the beach. Arthur is happy to go to the beach. Arthur goes to the beach. Arthur is at the beach. He is playing with his friends. They go swimming. Arthur is caught in a water. Arthur is taken to the beach. Arthur goes to the beach. Arthur is in the ocean. He is bored. He decides to go to the beach. He is bored for a few hours. Arthur leaves the beach. Arthur goes to the beach. Arthur is out swimming. He is going to the beach. He goes to the beach. He goes to the beach. He goes to the beach. Arthur goes to the beach. Arthur was at the beach with his friends. They went swimming and laid out on the sand. They found a beach they liked. They decided to go to the beach and play. They were so happy that they decided to go back to the beach. Arthur goes to the beach. Arthur is at the beach with his family. They are going to go to the beach. Arthur is very excited. He is going to go to the beach. Arthur is happy that he went to the beach. Arthur goes to the beach. Arthur was at the beach with his friends. They were having a great time. They all went to the beach. They had a great time. Arthur is very happy. Arthur goes to the beach. Arthur is bored. He decides to go to the beach. He goes to the beach. He goes to the beach. He is happy that he went to the beach. Arthur goes to the beach. Arthur is bored. He decides to go to the beach. He is very bored. He decides to go to the beach. Arthur is happy that he went to the beach. Arthur goes to the beach. Arthur is on his way to the beach. He is going to the beach. He is going to the beach. He is going to the beach. Arthur is going to the beach.
skr3178/xlm-roberta-base-finetuned-panx-de
skr3178
2022-05-31T22:09:30Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-05-31T21:47:53Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8627004891366169 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1363 - F1: 0.8627 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2539 | 1.0 | 525 | 0.1697 | 0.8179 | | 0.1317 | 2.0 | 1050 | 0.1327 | 0.8516 | | 0.0819 | 3.0 | 1575 | 0.1363 | 0.8627 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
jppaolim/v39_Best20Epoch
jppaolim
2022-05-31T21:42:21Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-05-31T21:32:41Z
# My Story model Arthur goes to the beach. Arthur is feeling very hot and bored. He decides to go to the beach. He goes to the beach. He spends the day swimming. Arthur cannot wait for the next day to go swimming. Arthur goes to the beach. Arthur wants to go to the beach. He gets a map. He looks at the map. He goes to the beach. He goes to the beach. Arthur goes to the beach. Arthur has been working hard all summer. He has been working hard every day. One day his boss asks him to come to work. Arthur is happy to see that his hard work is paying off. Arthur is so glad he took the chance to go to the beach. Arthur goes to the beach. Arthur is walking to the beach. He sees a small boy playing in the sand. The boy tells Arthur to leave. Arthur tells the boy he doesn't want to go to the beach. Arthur leaves the beach. Arthur goes to the beach. Arthur is a young boy who lived in a very small town. He wanted to feel like a big city kid. He drove to the coast and swam in the ocean. When he got home, his mom told him to pack up and come back. Arthur packed up and didn't go to the beach anymore. Arthur goes to the beach. Arthur is bored at home. He decides to go to the local beach. He goes down to the water. Arthur waves. He is glad he went for a walk down the beach. Arthur goes to the beach. Arthur wants to go to the beach. He has been looking forward to this for a week. He gets to the beach and everything feels perfect. He gets to the water and it is very nice. Arthur has the best day ever. Arthur goes to the beach. Arthur is going to the beach tomorrow. He is going to play in the ocean. He can't find his keys. He is starting to panic. Arthur finally finds his keys in his car. Arthur goes to the beach. Arthur is going to the beach tomorrow. He has been working hard all week. He is going to the beach with his friends. Arthur and his friends get in the car to go to the beach. Arthur swims all day and goes to sleep. Arthur goes to the beach. Arthur wants to go to the beach. He goes to the beach. He swims in the ocean. He has fun. Arthur has a good day. Arthur goes to the beach. Arthur is a young man. He likes to surf. He decides to go to the beach. He spends the whole day at the beach. He goes to the ocean and has fun. Arthur goes to the beach. Arthur is a young man. He wants to go to the beach. He gets on his car and drives to the beach. He spends the entire day at the beach. Arthur has the best day ever at the beach. Arthur goes to the beach. Arthur is a young man. He likes to surf and swim. He decides to go to the beach. Arthur swam all day long. He had a great day at the beach. Arthur goes to the beach. Arthur is going to the beach tomorrow. He has been working all day, but hasn't been swimming. He decides to go for a swim anyway and cool off. He spends the next few days playing in the ocean. Arthur has the time of his life. Arthur goes to the beach. Arthur is a young boy who lived in a very small town. He wanted to go to the beach but his dad said no. Arthur asked his dad if he could go alone. Arthur's dad told him that they couldn't afford to go together. Arthur was sad that his dad wouldn't go with him to the beach.
Simon10/my-awesome-model-3
Simon10
2022-05-31T21:26:38Z
7
0
transformers
[ "transformers", "tf", "bert", "fill-mask", "generated_from_keras_callback", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-05-31T21:20:01Z
--- license: mit tags: - generated_from_keras_callback model-index: - name: my-awesome-model-3 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # my-awesome-model-3 This model is a fine-tuned version of [dbmdz/bert-base-italian-cased](https://huggingface.co/dbmdz/bert-base-italian-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.2061 - Validation Loss: 0.0632 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': -811, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.2061 | 0.0632 | 0 | ### Framework versions - Transformers 4.18.0 - TensorFlow 2.8.1 - Datasets 2.2.2 - Tokenizers 0.11.0
Dizzykong/test-charles-dickens
Dizzykong
2022-05-31T21:22:30Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-05-31T21:10:52Z
--- license: mit tags: - generated_from_trainer model-index: - name: test-charles-dickens results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test-charles-dickens This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
sanchit-gandhi/flax-wav2vec2-2-bart-large-tedlium-feature-encoder
sanchit-gandhi
2022-05-31T21:06:15Z
7
0
transformers
[ "transformers", "jax", "speech-encoder-decoder", "automatic-speech-recognition", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-05-29T16:54:24Z
/home/sanchitgandhi/seq2seq-speech/README.md
rajistics/autotrain-Adult-934630783
rajistics
2022-05-31T19:36:02Z
2
2
transformers
[ "transformers", "joblib", "extra_trees", "autotrain", "tabular", "classification", "tabular-classification", "dataset:rajistics/autotrain-data-Adult", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
tabular-classification
2022-05-31T17:54:27Z
--- tags: - autotrain - tabular - classification - tabular-classification datasets: - rajistics/autotrain-data-Adult co2_eq_emissions: 38.42484725553464 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 934630783 - CO2 Emissions (in grams): 38.42484725553464 ## Validation Metrics - Loss: 0.2984429822985684 - Accuracy: 0.8628221244500315 - Precision: 0.7873263888888888 - Recall: 0.5908794788273616 - AUC: 0.9182195921357326 - F1: 0.6751023446222553 ## Usage ```python import json import joblib import pandas as pd model = joblib.load('model.joblib') config = json.load(open('config.json')) features = config['features'] # data = pd.read_csv("data.csv") data = data[features] data.columns = ["feat_" + str(col) for col in data.columns] predictions = model.predict(data) # or model.predict_proba(data) ```
arampacha/q-Taxi-v3
arampacha
2022-05-31T19:31:41Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-05-31T19:31:34Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - metrics: - type: mean_reward value: 7.48 +/- 2.63 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="arampacha/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
yukta10/finetuning-sentiment-model-3000-samples
yukta10
2022-05-31T18:29:16Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-31T15:51:49Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: finetuning-sentiment-model-3000-samples results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [federicopascual/finetuning-sentiment-model-3000-samples](https://huggingface.co/federicopascual/finetuning-sentiment-model-3000-samples) on the imdb dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
renjithks/layoutlmv3-er-ner
renjithks
2022-05-31T17:36:05Z
12
0
transformers
[ "transformers", "pytorch", "tensorboard", "layoutlmv3", "token-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-05-23T16:46:44Z
--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: layoutlmv3-er-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # layoutlmv3-er-ner This model is a fine-tuned version of [renjithks/layoutlmv3-cord-ner](https://huggingface.co/renjithks/layoutlmv3-cord-ner) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2025 - Precision: 0.6442 - Recall: 0.6761 - F1: 0.6598 - Accuracy: 0.9507 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 22 | 0.2940 | 0.4214 | 0.2956 | 0.3475 | 0.9147 | | No log | 2.0 | 44 | 0.2487 | 0.4134 | 0.4526 | 0.4321 | 0.9175 | | No log | 3.0 | 66 | 0.1922 | 0.5399 | 0.5460 | 0.5429 | 0.9392 | | No log | 4.0 | 88 | 0.1977 | 0.5653 | 0.5813 | 0.5732 | 0.9434 | | No log | 5.0 | 110 | 0.2018 | 0.6173 | 0.6252 | 0.6212 | 0.9477 | | No log | 6.0 | 132 | 0.1823 | 0.6232 | 0.6153 | 0.6192 | 0.9485 | | No log | 7.0 | 154 | 0.1972 | 0.6203 | 0.6238 | 0.6220 | 0.9477 | | No log | 8.0 | 176 | 0.1952 | 0.6292 | 0.6407 | 0.6349 | 0.9511 | | No log | 9.0 | 198 | 0.2070 | 0.6331 | 0.6492 | 0.6411 | 0.9489 | | No log | 10.0 | 220 | 0.2025 | 0.6442 | 0.6761 | 0.6598 | 0.9507 | ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
ruselkomp/sber-framebank-50size-2
ruselkomp
2022-05-31T15:59:07Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "endpoints_compatible", "region:us" ]
question-answering
2022-05-31T10:03:43Z
--- tags: - generated_from_trainer model-index: - name: sber-framebank-50size-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sber-framebank-50size-2 This model is a fine-tuned version of [sberbank-ai/sbert_large_nlu_ru](https://huggingface.co/sberbank-ai/sbert_large_nlu_ru) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3736 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.0623 | 1.0 | 11307 | 1.0958 | | 0.8145 | 2.0 | 22614 | 1.1778 | | 0.6168 | 3.0 | 33921 | 1.3736 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.2.3.dev0 - Tokenizers 0.12.1
malra/segformer-b0-finetuned-segments-sidewalk-4
malra
2022-05-31T15:42:53Z
4
0
transformers
[ "transformers", "pytorch", "segformer", "vision", "image-segmentation", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-segmentation
2022-05-31T15:22:56Z
--- license: apache-2.0 tags: - vision - image-segmentation - generated_from_trainer model-index: - name: segformer-b0-finetuned-segments-sidewalk-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # segformer-b0-finetuned-segments-sidewalk-4 This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the segments/sidewalk-semantic dataset. It achieves the following results on the evaluation set: - Loss: 2.5207 - Mean Iou: 0.1023 - Mean Accuracy: 0.1567 - Overall Accuracy: 0.6612 - Per Category Iou: [0.0, 0.37997208823402434, 0.7030895600821837, 0.0, 0.0020740824048893942, 0.0006611109803275343, 0.0, 0.0009644717061794479, 0.0, 0.0, 0.44780560238339745, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.4962679673706645, 0.0, 0.008267299447856608, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6719286019431624, 0.1932540547332544, 0.6762198255750292, 0.0, 0.0, 0.0003312368464636427, 0.0] - Per Category Accuracy: [nan, 0.7085417733756095, 0.8643251797889624, 0.0, 0.0020922282164545967, 0.0006691672739475508, nan, 0.0009725011389865425, 0.0, 0.0, 0.9224475476880146, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.7984415122785299, 0.0, 0.008394275137866055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.9294223049507054, 0.2306496542338313, 0.7045666997791757, 0.0, 0.0, 0.0003315891206418271, 0.0] ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou | Per Category Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:| | 2.8255 | 1.0 | 25 | 3.0220 | 0.0892 | 0.1429 | 0.6352 | [0.0, 0.3631053229188519, 0.6874502125236047, 0.0, 0.012635239862746197, 0.001133215250040838, 0.0, 0.00463024415429387, 2.6557099661207286e-05, 0.0, 0.3968535016422742, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.4820466790242289, 0.0, 0.00693999220077067, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6134928158666486, 0.05160593984758798, 0.5016270369795023, 0.0, 0.0, 0.00023524914354608678, 0.0] | [nan, 0.6625398055826, 0.851744092156527, 0.0, 0.01307675614921835, 0.001170877257777663, nan, 0.004771009467501389, 2.6941417811356193e-05, 0.0, 0.9316713675735513, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.7310221003907382, 0.0, 0.0070371168820434, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.948375993368795, 0.056265031783493576, 0.5061367774453964, 0.0, 0.0, 0.00023723449281691698, 0.0] | | 2.5443 | 2.0 | 50 | 2.5207 | 0.1023 | 0.1567 | 0.6612 | [0.0, 0.37997208823402434, 0.7030895600821837, 0.0, 0.0020740824048893942, 0.0006611109803275343, 0.0, 0.0009644717061794479, 0.0, 0.0, 0.44780560238339745, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.4962679673706645, 0.0, 0.008267299447856608, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6719286019431624, 0.1932540547332544, 0.6762198255750292, 0.0, 0.0, 0.0003312368464636427, 0.0] | [nan, 0.7085417733756095, 0.8643251797889624, 0.0, 0.0020922282164545967, 0.0006691672739475508, nan, 0.0009725011389865425, 0.0, 0.0, 0.9224475476880146, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.7984415122785299, 0.0, 0.008394275137866055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.9294223049507054, 0.2306496542338313, 0.7045666997791757, 0.0, 0.0, 0.0003315891206418271, 0.0] | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu102 - Datasets 2.2.2 - Tokenizers 0.12.1
arrandi/distilbert-base-uncased-finetuned-emotion
arrandi
2022-05-31T15:20:26Z
8
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-31T15:03:38Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.934 - name: F1 type: f1 value: 0.9341704717427723 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1652 - Accuracy: 0.934 - F1: 0.9342 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.2606 | 1.0 | 250 | 0.1780 | 0.9285 | 0.9284 | | 0.1486 | 2.0 | 500 | 0.1652 | 0.934 | 0.9342 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
wuxiaofei/finetuning-sentiment-model-3000-samples
wuxiaofei
2022-05-31T15:12:52Z
6
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-31T11:19:04Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.86 - name: F1 type: f1 value: 0.8636363636363636 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.6787 - Accuracy: 0.86 - F1: 0.8636 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu102 - Datasets 2.2.2 - Tokenizers 0.12.1
clementgyj/bert-finetuned-squad-50k
clementgyj
2022-05-31T15:03:55Z
5
0
transformers
[ "transformers", "tf", "bert", "question-answering", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-05-31T11:23:52Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: clementgyj/bert-finetuned-squad-50k results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # clementgyj/bert-finetuned-squad-50k This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.5470 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 9486, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Epoch | |:----------:|:-----:| | 1.3302 | 0 | | 0.7686 | 1 | | 0.5470 | 2 | ### Framework versions - Transformers 4.19.2 - TensorFlow 2.8.0 - Datasets 2.2.2 - Tokenizers 0.12.1
jkhan447/sarcasm-detection-xlnet-base-cased
jkhan447
2022-05-31T14:17:58Z
5
1
transformers
[ "transformers", "pytorch", "tensorboard", "xlnet", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-31T08:50:25Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: sarcasm-detection-xlnet-base-cased results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sarcasm-detection-xlnet-base-cased This model is a fine-tuned version of [xlnet-base-cased](https://huggingface.co/xlnet-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.1470 - Accuracy: 0.7117 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
EMBO/BioMegatron345mCased
EMBO
2022-05-31T13:24:48Z
21
1
transformers
[ "transformers", "pytorch", "megatron-bert", "language model", "arxiv:2010.06060", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
null
2022-05-31T11:38:39Z
--- license: cc-by-4.0 language: - english thumbnail: tags: - language model --- !--- # ############################################################################################## # # This model has been uploaded to HuggingFace by https://huggingface.co/drAbreu # The model is based on the NVIDIA checkpoint located at # https://catalog.ngc.nvidia.com/orgs/nvidia/models/biomegatron345mcased # # ############################################################################################## --> [BioMegatron](https://arxiv.org/pdf/2010.06060.pdf) is a transformer developed by the Applied Deep Learning Research team at NVIDIA. This particular Megatron model trained on top of the Megatron-LM model, adding a PubMed corpusto the Megatron-LM corpora(Wikipedia, RealNews, OpenWebText, and CC-Stories). BioMegatron follows a similar (albeit not identical) architecture as BERT and it has 345 million parameters: * 24 layers * 16 attention heads with a hidden size of 1024. More information available at [nVIDIA NGC CATALOG](https://catalog.ngc.nvidia.com/orgs/nvidia/models/biomegatron345mcased) # Running BioMegatron in 🤗 transformers In this implementation we have followed the commands of the [`nvidia/megatron-bert-uncased-345m`](https://huggingface.co/nvidia/megatron-bert-cased-345m) repository to make BioMegatron available in 🤗. However, the file [`convert_megatron_bert_checkpoint.py`](https://github.com/huggingface/transformers/blob/main/src/transformers/models/megatron_bert/convert_megatron_bert_checkpoint.py) needed a modification. The reason is that the Megatron model shown in [`nvidia/megatron-bert-uncased-345m`](https://huggingface.co/nvidia/megatron-bert-cased-345m) has included head layers, while the weights of the BioMegatron model that we upload to this repository do not contain a head. The code below is a modification of the original [`convert_megatron_bert_checkpoint.py`](https://github.com/huggingface/transformers/blob/main/src/transformers/models/megatron_bert/convert_megatron_bert_checkpoint.py). ```python import os import torch from convert_biomegatron_checkpoint import convert_megatron_checkpoint print_checkpoint_structure = True path_to_checkpoint = "/path/to/BioMegatron345mUncased/" # Extract the basename. basename = os.path.dirname(path_to_checkpoint).split('/')[-1] # Load the model. input_state_dict = torch.load(os.path.join(path_to_checkpoint, 'model_optim_rng.pt'), map_location="cpu") # Convert. print("Converting") output_state_dict, output_config = convert_megatron_checkpoint(input_state_dict, head_model=False) # Print the structure of converted state dict. if print_checkpoint_structure: recursive_print(None, output_state_dict) # Store the config to file. output_config_file = os.path.join(path_to_checkpoint, "config.json") print(f'Saving config to "{output_config_file}"') with open(output_config_file, "w") as f: json.dump(output_config, f) # Store the state_dict to file. output_checkpoint_file = os.path.join(path_to_checkpoint, "pytorch_model.bin") print(f'Saving checkpoint to "{output_checkpoint_file}"') torch.save(output_state_dict, output_checkpoint_file) ``` We provide in the repository an alternative version of the [python script](https://huggingface.co/EMBO/BioMegatron345mCased/blob/main/convert_biomegatron_checkpoint.py) in order to any user to cross-check the validity of the model replicated in this repository. BioMegatron can be run with the standard 🤗 script for loading models. Here we show an example identical to that of [`nvidia/megatron-bert-uncased-345m`](https://huggingface.co/nvidia/megatron-bert-cased-345m). ```python import os import torch from transformers import BertTokenizer, MegatronBertForMaskedLM, AutoModelForMaskedLM checkpoint = "EMBO/BioMegatron345mCased" # The tokenizer. Megatron was trained with standard tokenizer(s). tokenizer = BertTokenizer.from_pretrained(checkpoint) # Load the model from $MYDIR/nvidia/megatron-bert-uncased-345m. model = AutoModelForMaskedLM.from_pretrained(checkpoint) device = torch.device("cpu") # Create inputs (from the BERT example page). input = tokenizer("The capital of France is [MASK]", return_tensors="pt").to(device) label = tokenizer("The capital of France is Paris", return_tensors="pt")["input_ids"].to(device) # Run the model. with torch.no_grad(): output = model(**input, labels=label) print(output) ``` # Limitations This implementation has not been fine-tuned in any task. It has only the weights of the official nVIDIA checkpoint. It needs to be trained to perform any downstream task. # Original code The original code for Megatron can be found here: [https://github.com/NVIDIA/Megatron-LM](https://github.com/NVIDIA/Megatron-LM).
theojolliffe/bart-cnn-science-v3-e6
theojolliffe
2022-05-31T12:32:01Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-31T11:35:59Z
--- license: mit tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-cnn-science-v3-e6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-cnn-science-v3-e6 This model is a fine-tuned version of [theojolliffe/bart-cnn-science](https://huggingface.co/theojolliffe/bart-cnn-science) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8057 - Rouge1: 53.7462 - Rouge2: 34.9622 - Rougel: 37.5676 - Rougelsum: 51.0619 - Gen Len: 142.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:| | No log | 1.0 | 398 | 0.9961 | 52.632 | 32.8104 | 35.0789 | 50.3747 | 142.0 | | 1.174 | 2.0 | 796 | 0.8565 | 52.8308 | 32.7064 | 34.6605 | 50.3348 | 142.0 | | 0.7073 | 3.0 | 1194 | 0.8322 | 52.2418 | 32.8677 | 36.1806 | 49.6297 | 141.5556 | | 0.4867 | 4.0 | 1592 | 0.8137 | 53.5537 | 34.5404 | 36.7194 | 50.8394 | 142.0 | | 0.4867 | 5.0 | 1990 | 0.7996 | 53.4959 | 35.1017 | 37.5143 | 50.9972 | 141.8704 | | 0.3529 | 6.0 | 2388 | 0.8057 | 53.7462 | 34.9622 | 37.5676 | 51.0619 | 142.0 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
batya66/bert-finetuned-ner
batya66
2022-05-31T12:02:04Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-05-31T11:45:17Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9287951211471898 - name: Recall type: recall value: 0.9483338943116796 - name: F1 type: f1 value: 0.9384628195520027 - name: Accuracy type: accuracy value: 0.985915700241361 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0622 - Precision: 0.9288 - Recall: 0.9483 - F1: 0.9385 - Accuracy: 0.9859 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0876 | 1.0 | 1756 | 0.0657 | 0.9093 | 0.9349 | 0.9219 | 0.9826 | | 0.0412 | 2.0 | 3512 | 0.0555 | 0.9357 | 0.9500 | 0.9428 | 0.9867 | | 0.0205 | 3.0 | 5268 | 0.0622 | 0.9288 | 0.9483 | 0.9385 | 0.9859 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
huggingtweets/magiceden
huggingtweets
2022-05-31T11:45:39Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-05-31T11:42:06Z
--- language: en thumbnail: http://www.huggingtweets.com/magiceden/1653997534626/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1529814669493682176/BqZU57Cf_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Magic Eden 🪄</div> <div style="text-align: center; font-size: 14px;">@magiceden</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Magic Eden 🪄. | Data | Magic Eden 🪄 | | --- | --- | | Tweets downloaded | 3249 | | Retweets | 141 | | Short tweets | 908 | | Tweets kept | 2200 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/9t2x97k9/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @magiceden's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/32j65yat) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/32j65yat/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/magiceden') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
kamalkraj/bert-base-uncased-squad-v2.0-finetuned
kamalkraj
2022-05-31T11:44:58Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "dataset:squad_v2", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-05-31T10:48:38Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: bert-base-uncased-squad-v2.0-finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-squad-v2.0-finetuned This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the squad_v2 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00012 - train_batch_size: 48 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.10.0+cu113 - Datasets 1.17.0 - Tokenizers 0.12.1
chrisvinsen/wav2vec2-15
chrisvinsen
2022-05-31T11:13:41Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-05-31T08:01:18Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-15 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-15 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8623 - Wer: 0.8585 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 400 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 9.6808 | 1.37 | 200 | 3.7154 | 1.0 | | 3.0784 | 2.74 | 400 | 3.1542 | 1.0 | | 2.8919 | 4.11 | 600 | 2.9918 | 1.0 | | 2.8317 | 5.48 | 800 | 2.8971 | 1.0 | | 2.7958 | 6.85 | 1000 | 2.8409 | 1.0 | | 2.7699 | 8.22 | 1200 | 2.8278 | 1.0 | | 2.6365 | 9.59 | 1400 | 2.4657 | 1.0 | | 2.1096 | 10.96 | 1600 | 1.8358 | 0.9988 | | 1.6485 | 12.33 | 1800 | 1.4525 | 0.9847 | | 1.3967 | 13.7 | 2000 | 1.2467 | 0.9532 | | 1.2492 | 15.07 | 2200 | 1.1261 | 0.9376 | | 1.1543 | 16.44 | 2400 | 1.0654 | 0.9194 | | 1.0863 | 17.81 | 2600 | 1.0136 | 0.9161 | | 1.0275 | 19.18 | 2800 | 0.9601 | 0.8827 | | 0.9854 | 20.55 | 3000 | 0.9435 | 0.8878 | | 0.9528 | 21.92 | 3200 | 0.9170 | 0.8807 | | 0.926 | 23.29 | 3400 | 0.9121 | 0.8783 | | 0.9025 | 24.66 | 3600 | 0.8884 | 0.8646 | | 0.8909 | 26.03 | 3800 | 0.8836 | 0.8690 | | 0.8717 | 27.4 | 4000 | 0.8810 | 0.8646 | | 0.8661 | 28.77 | 4200 | 0.8623 | 0.8585 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
theojolliffe/bart-cnn-science-v3-e5
theojolliffe
2022-05-31T10:55:17Z
3
1
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-31T10:00:56Z
--- license: mit tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-cnn-science-v3-e5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-cnn-science-v3-e5 This model is a fine-tuned version of [theojolliffe/bart-cnn-science](https://huggingface.co/theojolliffe/bart-cnn-science) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8090 - Rouge1: 54.0053 - Rouge2: 35.5018 - Rougel: 37.3204 - Rougelsum: 51.5456 - Gen Len: 142.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:| | No log | 1.0 | 398 | 0.9935 | 51.9669 | 31.8139 | 34.4748 | 49.5311 | 141.7407 | | 1.1747 | 2.0 | 796 | 0.8565 | 51.7344 | 31.7341 | 34.3917 | 49.2488 | 141.7222 | | 0.7125 | 3.0 | 1194 | 0.8252 | 52.829 | 33.2332 | 35.8865 | 50.1883 | 141.5556 | | 0.4991 | 4.0 | 1592 | 0.8222 | 53.582 | 33.4906 | 35.7232 | 50.589 | 142.0 | | 0.4991 | 5.0 | 1990 | 0.8090 | 54.0053 | 35.5018 | 37.3204 | 51.5456 | 142.0 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
YeRyeongLee/electra-base-discriminator-finetuned-removed-0530
YeRyeongLee
2022-05-31T10:46:25Z
3
0
transformers
[ "transformers", "pytorch", "electra", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-31T08:40:07Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: electra-base-discriminator-finetuned-removed-0530 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # electra-base-discriminator-finetuned-removed-0530 This model is a fine-tuned version of [google/electra-base-discriminator](https://huggingface.co/google/electra-base-discriminator) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9713 - Accuracy: 0.8824 - F1: 0.8824 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:| | No log | 1.0 | 3180 | 0.6265 | 0.8107 | 0.8128 | | No log | 2.0 | 6360 | 0.5158 | 0.8544 | 0.8541 | | No log | 3.0 | 9540 | 0.6686 | 0.8563 | 0.8567 | | No log | 4.0 | 12720 | 0.6491 | 0.8711 | 0.8709 | | No log | 5.0 | 15900 | 0.8048 | 0.8660 | 0.8672 | | No log | 6.0 | 19080 | 0.8110 | 0.8708 | 0.8710 | | No log | 7.0 | 22260 | 1.0082 | 0.8651 | 0.8640 | | 0.2976 | 8.0 | 25440 | 0.8343 | 0.8811 | 0.8814 | | 0.2976 | 9.0 | 28620 | 0.9366 | 0.8780 | 0.8780 | | 0.2976 | 10.0 | 31800 | 0.9713 | 0.8824 | 0.8824 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.9.0 - Datasets 1.16.1 - Tokenizers 0.12.1
StanKarz/q-FrozenLake-v1-4x4-noSlippery
StanKarz
2022-05-31T10:21:45Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-05-31T10:21:39Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Sicko-Code/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
theojolliffe/bart-cnn-science-v3-e4
theojolliffe
2022-05-31T09:41:01Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-31T08:36:30Z
--- license: mit tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-cnn-science-v3-e4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-cnn-science-v3-e4 This model is a fine-tuned version of [theojolliffe/bart-cnn-science](https://huggingface.co/theojolliffe/bart-cnn-science) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8265 - Rouge1: 53.0296 - Rouge2: 33.4957 - Rougel: 35.8876 - Rougelsum: 50.0786 - Gen Len: 141.5926 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:| | No log | 1.0 | 398 | 0.9965 | 52.4108 | 32.1506 | 35.0281 | 50.0368 | 142.0 | | 1.176 | 2.0 | 796 | 0.8646 | 52.7182 | 32.9681 | 35.1454 | 49.9527 | 141.8333 | | 0.7201 | 3.0 | 1194 | 0.8354 | 52.5417 | 32.6428 | 35.8703 | 49.8037 | 142.0 | | 0.5244 | 4.0 | 1592 | 0.8265 | 53.0296 | 33.4957 | 35.8876 | 50.0786 | 141.5926 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
orkg/orkgnlp-cs-ner-abstracts
orkg
2022-05-31T09:40:05Z
0
1
null
[ "license:mit", "region:us" ]
null
2022-04-12T10:51:55Z
--- license: mit --- This Repository includes the files required to run the `Computer Science Named Entity Recognition (CS-NER)` ORKG-NLP service. Please check [this article](https://orkg-nlp-pypi.readthedocs.io/en/latest/services/services.html) for more details about the service.
matjesg/cFOS_in_HC
matjesg
2022-05-31T09:39:52Z
0
0
null
[ "onnx", "image-segmentation", "semantic-segmentation", "deepflash2", "arxiv:2111.06693", "license:apache-2.0", "region:us" ]
image-segmentation
2022-05-16T07:28:51Z
--- tags: - image-segmentation - semantic-segmentation - deepflash2 license: apache-2.0 datasets: - "cFOS in HC" library_tag: deepflash2 --- # Welcome to the demo of ![deepflash2](https://raw.githubusercontent.com/matjesg/deepflash2/master/nbs/media/logo/deepflash2_logo_medium.png) - **Task**: Image Segmentation / Semantic Segmentation - **Paper**: The preprint of our paper is available on [arXiv](https://arxiv.org/pdf/2111.06693.pdf) - **Data**: The cFOS in HC dataset ([Article](https://doi.org/10.7554/eLife.59780), [Data](https://doi.org/10.5061/dryad.4b8gtht9d)) describes the indirect immunofluorescent labeling of the transcription factor cFOS in different subregions of the hippocampus after behavioral testing of the mice. - **Library**: See [github](https://github.com/matjesg/deepflash2/)
orkg/orkgnlp-cs-ner-titles
orkg
2022-05-31T09:39:40Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-04-11T14:31:01Z
--- license: mit --- This Repository includes the files required to run the `Computer Science Named Entity Recognition (CS-NER)` ORKG-NLP service. Please check [this article](https://orkg-nlp-pypi.readthedocs.io/en/latest/services/services.html) for more details about the service.
moshew/paraphrase-mpnet-base-v2_SetFit_sst2_nun_training_64
moshew
2022-05-31T09:24:16Z
3
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-05-31T09:24:02Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # moshew/paraphrase-mpnet-base-v2_SetFit_sst2_nun_training_64 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('moshew/paraphrase-mpnet-base-v2_SetFit_sst2_nun_training_64') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('moshew/paraphrase-mpnet-base-v2_SetFit_sst2_nun_training_64') model = AutoModel.from_pretrained('moshew/paraphrase-mpnet-base-v2_SetFit_sst2_nun_training_64') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=moshew/paraphrase-mpnet-base-v2_SetFit_sst2_nun_training_64) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 160 with parameters: ``` {'batch_size': 8, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 10, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
huggingtweets/hellokitty
huggingtweets
2022-05-31T08:42:57Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-05-31T08:34:06Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1476611165157355521/-lvlmsRT_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Hello Kitty</div> <div style="text-align: center; font-size: 14px;">@hellokitty</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Hello Kitty. | Data | Hello Kitty | | --- | --- | | Tweets downloaded | 3218 | | Retweets | 286 | | Short tweets | 117 | | Tweets kept | 2815 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/32b69c39/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @hellokitty's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1npkfvyz) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1npkfvyz/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/hellokitty') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
theojolliffe/bart-cnn-science-v3-e3
theojolliffe
2022-05-31T08:34:03Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-31T07:25:43Z
--- license: mit tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-cnn-science-v3-e3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-cnn-science-v3-e3 This model is a fine-tuned version of [theojolliffe/bart-cnn-science](https://huggingface.co/theojolliffe/bart-cnn-science) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8586 - Rouge1: 53.3497 - Rouge2: 34.0001 - Rougel: 35.6149 - Rougelsum: 50.5723 - Gen Len: 141.3519 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:| | No log | 1.0 | 398 | 0.9977 | 51.8104 | 31.5395 | 33.6887 | 49.2385 | 142.0 | | 1.1785 | 2.0 | 796 | 0.8875 | 53.7817 | 34.5394 | 35.9556 | 51.3317 | 141.537 | | 0.7376 | 3.0 | 1194 | 0.8586 | 53.3497 | 34.0001 | 35.6149 | 50.5723 | 141.3519 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
YeRyeongLee/xlm-roberta-base-finetuned-removed-0530
YeRyeongLee
2022-05-31T08:31:07Z
3
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-31T05:12:27Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: xlm-roberta-base-finetuned-removed-0530 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-removed-0530 This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9944 - Accuracy: 0.8717 - F1: 0.8719 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:| | No log | 1.0 | 3180 | 0.6390 | 0.7899 | 0.7852 | | No log | 2.0 | 6360 | 0.5597 | 0.8223 | 0.8230 | | No log | 3.0 | 9540 | 0.5177 | 0.8462 | 0.8471 | | No log | 4.0 | 12720 | 0.5813 | 0.8642 | 0.8647 | | No log | 5.0 | 15900 | 0.7324 | 0.8557 | 0.8568 | | No log | 6.0 | 19080 | 0.7589 | 0.8626 | 0.8634 | | No log | 7.0 | 22260 | 0.7958 | 0.8752 | 0.8751 | | 0.3923 | 8.0 | 25440 | 0.9177 | 0.8651 | 0.8653 | | 0.3923 | 9.0 | 28620 | 1.0188 | 0.8673 | 0.8671 | | 0.3923 | 10.0 | 31800 | 0.9944 | 0.8717 | 0.8719 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.9.0 - Datasets 1.16.1 - Tokenizers 0.12.1
pravesh/wav2vec2-large-xls-r-300m-hindi-colabrathee-intel
pravesh
2022-05-31T07:04:30Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-05-31T06:40:06Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-hindi-colabrathee-intel results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-hindi-colabrathee-intel This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
hunkim/sentence-transformers-klue-bert-base
hunkim
2022-05-31T06:46:31Z
28
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-05-31T06:46:17Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # hunkim/sentence-transformers-klue-bert-base This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('hunkim/sentence-transformers-klue-bert-base') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('hunkim/sentence-transformers-klue-bert-base') model = AutoModel.from_pretrained('hunkim/sentence-transformers-klue-bert-base') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=hunkim/sentence-transformers-klue-bert-base) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 365 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 4, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 146, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
hunkim/sentence-transformersklue-bert-base
hunkim
2022-05-31T06:39:28Z
2
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-05-31T06:39:14Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # hunkim/sentence-transformersklue-bert-base This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('hunkim/sentence-transformersklue-bert-base') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('hunkim/sentence-transformersklue-bert-base') model = AutoModel.from_pretrained('hunkim/sentence-transformersklue-bert-base') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=hunkim/sentence-transformersklue-bert-base) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 365 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 4, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 146, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
bdh240901/wav2vec2-large-xls-r-300m-vi-colab
bdh240901
2022-05-31T06:11:31Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-05-31T05:20:28Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-vi-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-vi-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
daniel780/finetuning-sentiment-model-3000-samples
daniel780
2022-05-31T05:39:08Z
8
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:amazon_polarity", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-30T20:23:54Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - amazon_polarity metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: amazon_polarity type: amazon_polarity args: amazon_polarity metrics: - name: Accuracy type: accuracy value: 0.8066666666666666 - name: F1 type: f1 value: 0.8079470198675497 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the amazon_polarity dataset. It achieves the following results on the evaluation set: - Loss: 0.4356 - Accuracy: 0.8067 - F1: 0.8079 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
Splend1dchan/xtreme_s_xlsr_300m_minds14.en-US_2
Splend1dchan
2022-05-31T00:59:25Z
8
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "audio-classification", "minds14", "google/xtreme_s", "generated_from_trainer", "dataset:xtreme_s", "license:apache-2.0", "endpoints_compatible", "region:us" ]
audio-classification
2022-05-31T00:39:11Z
--- language: - en-US license: apache-2.0 tags: - minds14 - google/xtreme_s - generated_from_trainer datasets: - xtreme_s metrics: - f1 - accuracy model-index: - name: xtreme_s_xlsr_300m_minds14.en-US_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xtreme_s_xlsr_300m_minds14.en-US_2 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the GOOGLE/XTREME_S - MINDS14.EN-US dataset. It achieves the following results on the evaluation set: - Loss: 0.5685 - F1: 0.8747 - Accuracy: 0.8759 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:--------:| | 2.6195 | 3.95 | 20 | 2.6348 | 0.0172 | 0.0816 | | 2.5925 | 7.95 | 40 | 2.6119 | 0.0352 | 0.0851 | | 2.1271 | 11.95 | 60 | 2.3066 | 0.1556 | 0.1986 | | 1.2618 | 15.95 | 80 | 1.3810 | 0.6877 | 0.7128 | | 0.5455 | 19.95 | 100 | 1.0403 | 0.6992 | 0.7270 | | 0.2571 | 23.95 | 120 | 0.8423 | 0.8160 | 0.8121 | | 0.3478 | 27.95 | 140 | 0.6500 | 0.8516 | 0.8440 | | 0.0732 | 31.95 | 160 | 0.7066 | 0.8123 | 0.8156 | | 0.1092 | 35.95 | 180 | 0.5878 | 0.8767 | 0.8759 | | 0.0271 | 39.95 | 200 | 0.5994 | 0.8578 | 0.8617 | | 0.4664 | 43.95 | 220 | 0.7830 | 0.8403 | 0.8440 | | 0.0192 | 47.95 | 240 | 0.5685 | 0.8747 | 0.8759 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
cwchengtw/wav2vec2-large-xls-r-300m-turkish-colab2
cwchengtw
2022-05-31T00:51:18Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-05-30T06:00:21Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-turkish-colab2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-turkish-colab2 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.3738 - Wer: 0.3532 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.9022 | 3.7 | 400 | 0.6778 | 0.7414 | | 0.4106 | 7.4 | 800 | 0.4123 | 0.5049 | | 0.1862 | 11.11 | 1200 | 0.4260 | 0.4232 | | 0.1342 | 14.81 | 1600 | 0.3951 | 0.4097 | | 0.0997 | 18.51 | 2000 | 0.4100 | 0.3999 | | 0.0782 | 22.22 | 2400 | 0.3918 | 0.3875 | | 0.059 | 25.92 | 2800 | 0.3803 | 0.3698 | | 0.0474 | 29.63 | 3200 | 0.3738 | 0.3532 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
ElMuchoDingDong/AudreyBotBlenderBot
ElMuchoDingDong
2022-05-30T21:08:38Z
4
1
transformers
[ "transformers", "pytorch", "tf", "jax", "blenderbot", "text2text-generation", "convAI", "conversational", "facebook", "en", "dataset:blended_skill_talk", "arxiv:2004.13637", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-30T20:46:43Z
--- language: - en thumbnail: tags: - convAI - conversational - facebook license: apache-2.0 datasets: - blended_skill_talk metrics: - perplexity --- ## Model description + Paper: [Recipes for building an open-domain chatbot]( https://arxiv.org/abs/2004.13637) + [Original PARLAI Code](https://parl.ai/projects/recipes/) ### Abstract Building open-domain chatbots is a challenging area for machine learning research. While prior work has shown that scaling neural models in the number of parameters and the size of the data they are trained on gives improved results, we show that other ingredients are important for a high-performing chatbot. Good conversation requires a number of skills that an expert conversationalist blends in a seamless way: providing engaging talking points and listening to their partners, both asking and answering questions, and displaying knowledge, empathy and personality appropriately, depending on the situation. We show that large scale models can learn these skills when given appropriate training data and choice of generation strategy. We build variants of these recipes with 90M, 2.7B and 9.4B parameter neural models, and make our models and code publicly available. Human evaluations show our best models are superior to existing approaches in multi-turn dialogue in terms of engagingness and humanness measurements. We then discuss the limitations of this work by analyzing failure cases of our models.
ykirpichev/q-Taxi-v3
ykirpichev
2022-05-30T21:04:59Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-05-30T20:54:46Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="ykirpichev/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
ykirpichev/q-FrozenLake-v1-4x4-noSlippery
ykirpichev
2022-05-30T20:45:24Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-05-30T20:45:16Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="ykirpichev/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
nouman10/robertabase-claims-3
nouman10
2022-05-30T19:43:06Z
3
0
transformers
[ "transformers", "tf", "roberta", "fill-mask", "generated_from_keras_callback", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-05-30T18:22:34Z
--- license: mit tags: - generated_from_keras_callback model-index: - name: nouman10/robertabase-claims-3 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # nouman10/robertabase-claims-3 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0310 - Validation Loss: 0.1227 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': -861, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.1380 | 0.1630 | 0 | | 0.0310 | 0.1227 | 1 | ### Framework versions - Transformers 4.19.2 - TensorFlow 2.8.0 - Datasets 2.2.2 - Tokenizers 0.12.1
clementgyj/roberta-finetuned-squad-50k
clementgyj
2022-05-30T19:02:29Z
3
0
transformers
[ "transformers", "tf", "roberta", "question-answering", "generated_from_keras_callback", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-05-30T15:16:42Z
--- license: mit tags: - generated_from_keras_callback model-index: - name: clementgyj/roberta-finetuned-squad-50k results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # clementgyj/roberta-finetuned-squad-50k This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.5281 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 9462, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Epoch | |:----------:|:-----:| | 1.0876 | 0 | | 0.6879 | 1 | | 0.5281 | 2 | ### Framework versions - Transformers 4.19.2 - TensorFlow 2.8.0 - Datasets 2.2.2 - Tokenizers 0.12.1
theojolliffe/bart-cnn-science-v3-e1
theojolliffe
2022-05-30T18:32:12Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-30T18:01:33Z
--- license: mit tags: - generated_from_trainer model-index: - name: bart-cnn-science-v3-e1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-cnn-science-v3-e1 This model is a fine-tuned version of [theojolliffe/bart-cnn-science](https://huggingface.co/theojolliffe/bart-cnn-science) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:| | No log | 1.0 | 398 | 1.0643 | 51.6454 | 31.8213 | 33.7711 | 49.3471 | 141.5926 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
ulyanaisaeva/udmurt-bert-base-uncased
ulyanaisaeva
2022-05-30T18:18:07Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-05-24T13:44:30Z
--- tags: - generated_from_trainer model-index: - name: vocab2-bert-base-multilingual-uncased-udm-tsa results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vocab2-bert-base-multilingual-uncased-udm-tsa This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 4.8497 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 20 - eval_batch_size: 20 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 7.3112 | 1.0 | 6419 | 6.1814 | | 5.8524 | 2.0 | 12838 | 5.4075 | | 5.3392 | 3.0 | 19257 | 5.0810 | | 5.0958 | 4.0 | 25676 | 4.9015 | | 4.9897 | 5.0 | 32095 | 4.8497 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
theojolliffe/bart-cnn-science
theojolliffe
2022-05-30T17:31:48Z
4
1
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "dataset:scientific_papers", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-30T08:39:52Z
--- license: mit tags: - generated_from_trainer datasets: - scientific_papers metrics: - rouge model-index: - name: bart-large-cnn-pubmed1o3-pubmed2o3-pubmed3o3-arxiv1o3-arxiv2o3-arxiv3o3 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: scientific_papers type: scientific_papers args: arxiv metrics: - name: Rouge1 type: rouge value: 42.5835 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-cnn-pubmed1o3-pubmed2o3-pubmed3o3-arxiv1o3-arxiv2o3-arxiv3o3 This model is a fine-tuned version of [theojolliffe/bart-large-cnn-pubmed1o3-pubmed2o3-pubmed3o3-arxiv1o3-arxiv2o3](https://huggingface.co/theojolliffe/bart-large-cnn-pubmed1o3-pubmed2o3-pubmed3o3-arxiv1o3-arxiv2o3) on the scientific_papers dataset. It achieves the following results on the evaluation set: - Loss: 2.0646 - Rouge1: 42.5835 - Rouge2: 16.1887 - Rougel: 24.7972 - Rougelsum: 38.1846 - Gen Len: 129.9291 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:| | 2.0865 | 1.0 | 33840 | 2.0646 | 42.5835 | 16.1887 | 24.7972 | 38.1846 | 129.9291 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
miesnerjacob/distilbert-base-uncased-finetuned-squad-d5716d28
miesnerjacob
2022-05-30T17:27:30Z
9
0
transformers
[ "transformers", "pytorch", "distilbert", "fill-mask", "question-answering", "en", "dataset:squad", "arxiv:1910.01108", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
question-answering
2022-05-30T17:17:42Z
--- language: - en thumbnail: https://github.com/karanchahal/distiller/blob/master/distiller.jpg tags: - question-answering license: apache-2.0 datasets: - squad metrics: - squad --- # DistilBERT with a second step of distillation ## Model description This model replicates the "DistilBERT (D)" model from Table 2 of the [DistilBERT paper](https://arxiv.org/pdf/1910.01108.pdf). In this approach, a DistilBERT student is fine-tuned on SQuAD v1.1, but with a BERT model (also fine-tuned on SQuAD v1.1) acting as a teacher for a second step of task-specific distillation. In this version, the following pre-trained models were used: * Student: `distilbert-base-uncased` * Teacher: `lewtun/bert-base-uncased-finetuned-squad-v1` ## Training data This model was trained on the SQuAD v1.1 dataset which can be obtained from the `datasets` library as follows: ```python from datasets import load_dataset squad = load_dataset('squad') ``` ## Training procedure ## Eval results | | Exact Match | F1 | |------------------|-------------|------| | DistilBERT paper | 79.1 | 86.9 | | Ours | 78.4 | 86.5 | The scores were calculated using the `squad` metric from `datasets`. ### BibTeX entry and citation info ```bibtex @misc{sanh2020distilbert, title={DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter}, author={Victor Sanh and Lysandre Debut and Julien Chaumond and Thomas Wolf}, year={2020}, eprint={1910.01108}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
Mikey8943/marian-finetuned-kde4-en-to-fr
Mikey8943
2022-05-30T17:16:08Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "translation", "generated_from_trainer", "dataset:kde4", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-05-30T16:14:03Z
--- license: apache-2.0 tags: - translation - generated_from_trainer datasets: - kde4 metrics: - bleu model-index: - name: marian-finetuned-kde4-en-to-fr results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: kde4 type: kde4 args: en-fr metrics: - name: Bleu type: bleu value: 50.16950271131339 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # marian-finetuned-kde4-en-to-fr This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-fr](https://huggingface.co/Helsinki-NLP/opus-mt-en-fr) on the kde4 dataset. It achieves the following results on the evaluation set: - Loss: 0.9643 - Bleu: 50.1695 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.15.0 - Pytorch 1.11.0+cu113 - Datasets 1.17.0 - Tokenizers 0.10.3
tclong/wav2vec2-dataset-vios
tclong
2022-05-30T17:12:49Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:vivos_dataset", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-05-29T14:17:21Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - vivos_dataset model-index: - name: wav2vec2-dataset-vios results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-dataset-vios This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the vivos_dataset dataset. It achieves the following results on the evaluation set: - Loss: 0.5423 - Wer: 0.4075 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 5.0963 | 1.1 | 400 | 1.1336 | 0.7374 | | 0.6576 | 2.2 | 800 | 0.4716 | 0.3727 | | 0.4099 | 3.3 | 1200 | 0.3907 | 0.3100 | | 0.3332 | 4.4 | 1600 | 0.3735 | 0.2766 | | 0.2976 | 5.49 | 2000 | 0.3932 | 0.2801 | | 0.2645 | 6.59 | 2400 | 0.3628 | 0.2542 | | 0.2395 | 7.69 | 2800 | 0.3702 | 0.2734 | | 0.2208 | 8.79 | 3200 | 0.3667 | 0.2467 | | 0.1974 | 9.89 | 3600 | 0.3688 | 0.2398 | | 0.1772 | 10.99 | 4000 | 0.3819 | 0.2457 | | 0.1695 | 12.09 | 4400 | 0.3840 | 0.2451 | | 0.319 | 13.19 | 4800 | 0.6531 | 0.4084 | | 0.7305 | 14.29 | 5200 | 0.9883 | 0.6348 | | 0.5787 | 15.38 | 5600 | 0.5260 | 0.3063 | | 0.8558 | 16.48 | 6000 | 1.2870 | 0.7692 | | 1.155 | 17.58 | 6400 | 1.0568 | 0.6353 | | 0.8393 | 18.68 | 6800 | 0.7360 | 0.4486 | | 0.6094 | 19.78 | 7200 | 0.6072 | 0.4108 | | 0.5346 | 20.88 | 7600 | 0.5749 | 0.4095 | | 0.5073 | 21.98 | 8000 | 0.5588 | 0.4056 | | 0.4859 | 23.08 | 8400 | 0.5475 | 0.4015 | | 0.475 | 24.18 | 8800 | 0.5430 | 0.4011 | | 0.4683 | 25.27 | 9200 | 0.5400 | 0.3990 | | 0.4673 | 26.37 | 9600 | 0.5407 | 0.4011 | | 0.4665 | 27.47 | 10000 | 0.5408 | 0.3992 | | 0.4703 | 28.57 | 10400 | 0.5420 | 0.4070 | | 0.4709 | 29.67 | 10800 | 0.5423 | 0.4075 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
huggingtweets/erinkhoo
huggingtweets
2022-05-30T16:48:54Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-05-30T16:48:47Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1362800111118659591/O6gxa7NN_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">erinkhoo.x</div> <div style="text-align: center; font-size: 14px;">@erinkhoo</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from erinkhoo.x. | Data | erinkhoo.x | | --- | --- | | Tweets downloaded | 3216 | | Retweets | 1795 | | Short tweets | 181 | | Tweets kept | 1240 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/navmzjcl/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @erinkhoo's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3uoi8z43) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3uoi8z43/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/erinkhoo') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
VanessaSchenkel/mbart-large-50-finetuned-opus-en-pt-translation-finetuned-en-to-pt-dataset-opus-books
VanessaSchenkel
2022-05-30T16:38:08Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "mbart", "text2text-generation", "generated_from_trainer", "dataset:opus_books", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-30T14:28:23Z
--- tags: - generated_from_trainer datasets: - opus_books model-index: - name: mbart-large-50-finetuned-opus-en-pt-translation-finetuned-en-to-pt-dataset-opus-books results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mbart-large-50-finetuned-opus-en-pt-translation-finetuned-en-to-pt-dataset-opus-books This model is a fine-tuned version of [Narrativa/mbart-large-50-finetuned-opus-en-pt-translation](https://huggingface.co/Narrativa/mbart-large-50-finetuned-opus-en-pt-translation) on the opus_books dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | No log | 1.0 | 79 | 1.5854 | 31.2219 | 26.9149 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
AbhilashDatta/T5_qgen-squad_v1
AbhilashDatta
2022-05-30T16:19:49Z
4
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "license:afl-3.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-30T05:23:30Z
--- license: afl-3.0 --- # Question generation using T5 transformer trained on SQuAD <h2> <i>Input format: context: "..." answer: "..." </i></h2> Import the pretrained model as well as tokenizer: ``` from transformers import T5ForConditionalGeneration, T5Tokenizer model = T5ForConditionalGeneration.from_pretrained('AbhilashDatta/T5_qgen-squad_v1') tokenizer = T5Tokenizer.from_pretrained('AbhilashDatta/T5_qgen-squad_v1') ``` Then use the tokenizer to encode/decode and model to generate: ``` input = "context: My name is Abhilash Datta. answer: Abhilash" batch = tokenizer(input, padding='longest', max_length=512, return_tensors='pt') inputs_batch = batch['input_ids'][0] inputs_batch = torch.unsqueeze(inputs_batch, 0) ques_id = model.generate(inputs_batch, max_length=100, early_stopping=True) ques_batch = [tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=False) for g in ques_id] print(ques_batch) ``` Output: ``` ['what is my name'] ```
cewinharhar/iceCream
cewinharhar
2022-05-30T16:17:21Z
10
0
transformers
[ "transformers", "tf", "t5", "text2text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-30T15:12:45Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: cewinharhar/iceCream results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # cewinharhar/iceCream This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.1909 - Validation Loss: 3.0925 - Epoch: 92 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 4.9926 | 4.0419 | 0 | | 3.9831 | 3.8247 | 1 | | 3.8396 | 3.7337 | 2 | | 3.7352 | 3.6509 | 3 | | 3.6382 | 3.5948 | 4 | | 3.5595 | 3.5458 | 5 | | 3.4845 | 3.4667 | 6 | | 3.4140 | 3.4460 | 7 | | 3.3546 | 3.4035 | 8 | | 3.2939 | 3.3571 | 9 | | 3.2420 | 3.3465 | 10 | | 3.1867 | 3.2970 | 11 | | 3.1418 | 3.2716 | 12 | | 3.0865 | 3.2609 | 13 | | 3.0419 | 3.2318 | 14 | | 2.9962 | 3.2279 | 15 | | 2.9551 | 3.1991 | 16 | | 2.9178 | 3.1656 | 17 | | 2.8701 | 3.1654 | 18 | | 2.8348 | 3.1372 | 19 | | 2.7988 | 3.1281 | 20 | | 2.7597 | 3.0978 | 21 | | 2.7216 | 3.1019 | 22 | | 2.6844 | 3.0388 | 23 | | 2.6489 | 3.0791 | 24 | | 2.6192 | 3.0885 | 25 | | 2.5677 | 3.0388 | 26 | | 2.5478 | 3.0530 | 27 | | 2.5136 | 3.0403 | 28 | | 2.4756 | 3.0521 | 29 | | 2.4454 | 3.0173 | 30 | | 2.4203 | 3.0079 | 31 | | 2.3882 | 3.0325 | 32 | | 2.3596 | 3.0066 | 33 | | 2.3279 | 2.9919 | 34 | | 2.2947 | 2.9871 | 35 | | 2.2712 | 2.9834 | 36 | | 2.2311 | 2.9917 | 37 | | 2.2022 | 2.9796 | 38 | | 2.1703 | 2.9641 | 39 | | 2.1394 | 2.9571 | 40 | | 2.1237 | 2.9662 | 41 | | 2.0949 | 2.9358 | 42 | | 2.0673 | 2.9653 | 43 | | 2.0417 | 2.9416 | 44 | | 2.0194 | 2.9531 | 45 | | 2.0009 | 2.9417 | 46 | | 1.9716 | 2.9325 | 47 | | 1.9488 | 2.9476 | 48 | | 1.9265 | 2.9559 | 49 | | 1.8975 | 2.9477 | 50 | | 1.8815 | 2.9429 | 51 | | 1.8552 | 2.9119 | 52 | | 1.8358 | 2.9377 | 53 | | 1.8226 | 2.9605 | 54 | | 1.7976 | 2.9446 | 55 | | 1.7677 | 2.9162 | 56 | | 1.7538 | 2.9292 | 57 | | 1.7376 | 2.9968 | 58 | | 1.7156 | 2.9525 | 59 | | 1.7001 | 2.9275 | 60 | | 1.6806 | 2.9714 | 61 | | 1.6582 | 2.9903 | 62 | | 1.6436 | 2.9363 | 63 | | 1.6254 | 2.9714 | 64 | | 1.6093 | 2.9804 | 65 | | 1.5900 | 2.9740 | 66 | | 1.5686 | 2.9835 | 67 | | 1.5492 | 3.0018 | 68 | | 1.5371 | 3.0088 | 69 | | 1.5245 | 2.9780 | 70 | | 1.5021 | 3.0176 | 71 | | 1.4839 | 2.9917 | 72 | | 1.4726 | 3.0602 | 73 | | 1.4568 | 3.0055 | 74 | | 1.4435 | 3.0186 | 75 | | 1.4225 | 2.9948 | 76 | | 1.4088 | 3.0270 | 77 | | 1.3947 | 3.0676 | 78 | | 1.3780 | 3.0615 | 79 | | 1.3627 | 3.0780 | 80 | | 1.3445 | 3.0491 | 81 | | 1.3293 | 3.0534 | 82 | | 1.3130 | 3.0460 | 83 | | 1.2980 | 3.0846 | 84 | | 1.2895 | 3.0709 | 85 | | 1.2737 | 3.0903 | 86 | | 1.2557 | 3.0854 | 87 | | 1.2499 | 3.1101 | 88 | | 1.2353 | 3.1181 | 89 | | 1.2104 | 3.1111 | 90 | | 1.2101 | 3.1153 | 91 | | 1.1909 | 3.0925 | 92 | ### Framework versions - Transformers 4.19.2 - TensorFlow 2.9.1 - Datasets 2.1.0 - Tokenizers 0.12.1
knurm/my-finetuned-xml-roberta4
knurm
2022-05-30T16:14:33Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "question-answering", "generated_from_trainer", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-05-30T07:48:32Z
--- license: mit tags: - generated_from_trainer model-index: - name: my-finetuned-xml-roberta4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my-finetuned-xml-roberta4 This model is a fine-tuned version of [knurm/xlm-roberta-base-finetuned-est](https://huggingface.co/knurm/xlm-roberta-base-finetuned-est) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.7709 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 3.4629 | 1.0 | 5652 | 3.3367 | | 3.1814 | 2.0 | 11304 | 3.2952 | | 2.9718 | 3.0 | 16956 | 3.2592 | | 2.7442 | 4.0 | 22608 | 3.3133 | | 2.5991 | 5.0 | 28260 | 3.4292 | | 2.4221 | 6.0 | 33912 | 3.5928 | | 2.3259 | 7.0 | 39564 | 3.7709 | ### Framework versions - Transformers 4.19.1 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
jkhan447/sarcasm-detection-Bert-base-uncased-CR
jkhan447
2022-05-30T15:02:31Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-30T09:54:35Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: sarcasm-detection-Bert-base-uncased-CR results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sarcasm-detection-Bert-base-uncased-CR This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.2057 - Accuracy: 0.7187 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
jkhan447/sarcasm-detection-RoBerta-base-CR
jkhan447
2022-05-30T14:57:19Z
31
1
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-30T09:52:35Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: sarcasm-detection-RoBerta-base-CR results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sarcasm-detection-RoBerta-base-CR This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.0240 - Accuracy: 0.726 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
merve/deeplab-v3
merve
2022-05-30T14:49:29Z
0
0
keras
[ "keras", "tensorboard", "tf-keras", "image-segmentation", "region:us" ]
image-segmentation
2022-05-30T14:49:02Z
--- library_name: keras tags: - image-segmentation --- ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': 0.001, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ## Training Metrics | Epochs | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | |--- |--- |--- |--- |--- | | 1| 1.206| 0.636| 2.55| 0.555| | 2| 0.957| 0.696| 2.671| 0.598| | 3| 0.847| 0.729| 1.431| 0.612| | 4| 0.774| 0.751| 1.008| 0.689| | 5| 0.712| 0.771| 1.016| 0.705| ## Model Plot <details> <summary>View Model Plot</summary> ![Model Image](./model.png) </details>
ianspektor/ppo-LunarLander-v2
ianspektor
2022-05-30T14:42:19Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-30T14:41:39Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 193.83 +/- 12.64 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
ruselkomp/deeppavlov-framebank-50size
ruselkomp
2022-05-30T14:11:08Z
8
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "endpoints_compatible", "region:us" ]
question-answering
2022-05-30T10:00:12Z
--- tags: - generated_from_trainer model-index: - name: deeppavlov-framebank-50size results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deeppavlov-framebank-50size This model is a fine-tuned version of [DeepPavlov/rubert-base-cased](https://huggingface.co/DeepPavlov/rubert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1007 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.0733 | 1.0 | 2827 | 1.0076 | | 0.7875 | 2.0 | 5654 | 1.0309 | | 0.6003 | 3.0 | 8481 | 1.1007 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.2.3.dev0 - Tokenizers 0.12.1
Selma/pytorch-resnet34
Selma
2022-05-30T13:49:04Z
0
0
null
[ "region:us" ]
null
2022-05-27T13:58:04Z
# The model Pytorch resnet34 # Intended use Image classification # Training parameters pretrained = True --- language: - eng thumbnail: - "https://pytorch.org/vision/stable/models.html#id10" tags: - pytorch - image classification license: - "bsd-2-clause" metrics: - acc@1 (on ImageNet-1K): 73.314 - acc@5 (on ImageNet-1K): 91.42 ---
y05uk/wav2vec2-base-timit-demo-google-colab
y05uk
2022-05-30T13:32:00Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-05-30T10:59:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-google-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-google-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5353 - Wer: 0.3360 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.5345 | 1.0 | 500 | 1.8229 | 0.9810 | | 0.8731 | 2.01 | 1000 | 0.5186 | 0.5165 | | 0.4455 | 3.01 | 1500 | 0.4386 | 0.4572 | | 0.3054 | 4.02 | 2000 | 0.4396 | 0.4286 | | 0.2354 | 5.02 | 2500 | 0.4454 | 0.4051 | | 0.1897 | 6.02 | 3000 | 0.4465 | 0.3925 | | 0.1605 | 7.03 | 3500 | 0.4776 | 0.3974 | | 0.1413 | 8.03 | 4000 | 0.5254 | 0.4062 | | 0.1211 | 9.04 | 4500 | 0.5123 | 0.3913 | | 0.1095 | 10.04 | 5000 | 0.4171 | 0.3711 | | 0.1039 | 11.04 | 5500 | 0.4258 | 0.3732 | | 0.0932 | 12.05 | 6000 | 0.4879 | 0.3701 | | 0.0867 | 13.05 | 6500 | 0.4725 | 0.3637 | | 0.0764 | 14.06 | 7000 | 0.5041 | 0.3636 | | 0.0661 | 15.06 | 7500 | 0.4692 | 0.3646 | | 0.0647 | 16.06 | 8000 | 0.4804 | 0.3612 | | 0.0576 | 17.07 | 8500 | 0.5545 | 0.3628 | | 0.0577 | 18.07 | 9000 | 0.5004 | 0.3557 | | 0.0481 | 19.08 | 9500 | 0.5341 | 0.3558 | | 0.0466 | 20.08 | 10000 | 0.5056 | 0.3514 | | 0.0433 | 21.08 | 10500 | 0.4864 | 0.3481 | | 0.0362 | 22.09 | 11000 | 0.4994 | 0.3473 | | 0.0325 | 23.09 | 11500 | 0.5327 | 0.3446 | | 0.0351 | 24.1 | 12000 | 0.5360 | 0.3445 | | 0.0284 | 25.1 | 12500 | 0.5085 | 0.3399 | | 0.027 | 26.1 | 13000 | 0.5344 | 0.3426 | | 0.0247 | 27.11 | 13500 | 0.5310 | 0.3357 | | 0.0251 | 28.11 | 14000 | 0.5201 | 0.3355 | | 0.0228 | 29.12 | 14500 | 0.5353 | 0.3360 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
Splend1dchan/xtreme_s_xlsr_300m_mt5-small_minds14.en-US
Splend1dchan
2022-05-30T12:33:15Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "minds14", "google/xtreme_s", "generated_from_trainer", "dataset:xtreme_s", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-05-30T11:47:22Z
--- language: - en-US license: apache-2.0 tags: - minds14 - google/xtreme_s - generated_from_trainer datasets: - xtreme_s metrics: - f1 - accuracy model-index: - name: xtreme_s_xlsr_300m_mt5-small_minds14.en-US results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xtreme_s_xlsr_300m_mt5-small_minds14.en-US This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the GOOGLE/XTREME_S - MINDS14.EN-US dataset. It achieves the following results on the evaluation set: - Loss: 4.7321 - F1: 0.0154 - Accuracy: 0.0638 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:--------:| | 2.6067 | 3.95 | 20 | 2.6501 | 0.0112 | 0.0851 | | 2.5614 | 7.95 | 40 | 2.8018 | 0.0133 | 0.0603 | | 2.2836 | 11.95 | 60 | 3.0786 | 0.0084 | 0.0603 | | 1.9597 | 15.95 | 80 | 3.2288 | 0.0126 | 0.0638 | | 1.5566 | 19.95 | 100 | 3.6934 | 0.0178 | 0.0567 | | 1.3168 | 23.95 | 120 | 3.9135 | 0.0150 | 0.0638 | | 1.0598 | 27.95 | 140 | 4.2618 | 0.0084 | 0.0603 | | 0.5721 | 31.95 | 160 | 3.7973 | 0.0354 | 0.0780 | | 0.4402 | 35.95 | 180 | 4.6233 | 0.0179 | 0.0638 | | 0.6113 | 39.95 | 200 | 4.6149 | 0.0208 | 0.0674 | | 0.3938 | 43.95 | 220 | 4.7886 | 0.0159 | 0.0638 | | 0.2473 | 47.95 | 240 | 4.7321 | 0.0154 | 0.0638 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
nestoralvaro/mT5_multilingual_XLSum-finetuned-xsum
nestoralvaro
2022-05-30T11:58:22Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "mt5", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-08T22:11:28Z
--- tags: - generated_from_trainer metrics: - rouge model-index: - name: mT5_multilingual_XLSum-finetuned-xsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mT5_multilingual_XLSum-finetuned-xsum This model is a fine-tuned version of [csebuetnlp/mT5_multilingual_XLSum](https://huggingface.co/csebuetnlp/mT5_multilingual_XLSum) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: nan - Rouge1: 0.0 - Rouge2: 0.0 - Rougel: 0.0 - Rougelsum: 0.0 - Gen Len: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | 0.0 | 1.0 | 36479 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
ernestumorga/ppo-seals_Walker2d-v0
ernestumorga
2022-05-30T10:53:04Z
1
0
stable-baselines3
[ "stable-baselines3", "seals/Walker2d-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-30T10:52:33Z
--- library_name: stable-baselines3 tags: - seals/Walker2d-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 1429.13 +/- 411.75 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: seals/Walker2d-v0 type: seals/Walker2d-v0 --- # **PPO** Agent playing **seals/Walker2d-v0** This is a trained model of a **PPO** agent playing **seals/Walker2d-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo ppo --env seals/Walker2d-v0 -orga ernestumorga -f logs/ python enjoy.py --algo ppo --env seals/Walker2d-v0 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo ppo --env seals/Walker2d-v0 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo ppo --env seals/Walker2d-v0 -f logs/ -orga ernestumorga ``` ## Hyperparameters ```python OrderedDict([('batch_size', 8), ('clip_range', 0.4), ('ent_coef', 0.00013057334805552262), ('gae_lambda', 0.92), ('gamma', 0.98), ('learning_rate', 3.791707778339674e-05), ('max_grad_norm', 0.6), ('n_envs', 1), ('n_epochs', 5), ('n_steps', 2048), ('n_timesteps', 1000000.0), ('normalize', True), ('policy', 'MlpPolicy'), ('policy_kwargs', 'dict(activation_fn=nn.ReLU, net_arch=[dict(pi=[256, 256], ' 'vf=[256, 256])])'), ('vf_coef', 0.6167177795726859), ('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})]) ```
M47Labs/spanish_news_classification_headlines_untrained
M47Labs
2022-05-30T10:44:44Z
8
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-30T08:26:13Z
--- widget: - text: "El dólar se dispara tras la reunión de la Fed" --- # Spanish News Classification Headlines SNCH: this model was developed by [M47Labs](https://www.m47labs.com/es/) the goal is text classification, the base model use was [BETO](https://huggingface.co/dccuchile/bert-base-spanish-wwm-cased), however this model has not been fine-tuned on any dataset. The objective is to show the performance of this model when is used with the objective of inference without training at all. ## Dataset validation Sample Dataset size : 1000 Columns: idTask,task content 1,idTag,tag. |task content|tag| |------|------| |Alcalá de Guadaíra celebra la IV Semana de la Diversidad Sexual con acciones de sensibilización|sociedad| |El Archipiélago Chinijo Graciplus se impone en el Trofeo Centro Comercial Rubicón|deportes| |Un total de 39 personas padecen ELA actualmente en la provincia|sociedad| |Eurocopa 2021 : Italia vence a Gales y pasa a octavos con su candidatura reforzada|deportes| |Resolución de 10 de junio de 2021, del Ayuntamiento de Tarazona de La Mancha (Albacete), referente a la convocatoria para proveer una plaza.|sociedad| |El primer ministro sueco pierde una moción de censura|politica| |El dólar se dispara tras la reunión de la Fed|economia| ## Labels: * ciencia_tecnologia * clickbait * cultura * deportes * economia * educacion * medio_ambiente * opinion * politica * sociedad ## Example of Use ### Pipeline ```{python} import torch from transformers import AutoTokenizer, BertForSequenceClassification,TextClassificationPipeline review_text = 'los vehiculos que esten esperando pasajaeros deberan estar apagados para reducir emisiones' path = "M47Labs/spanish_news_classification_headlines_untrained" tokenizer = AutoTokenizer.from_pretrained(path) model = BertForSequenceClassification.from_pretrained(path) nlp = TextClassificationPipeline(task = "text-classification", model = model, tokenizer = tokenizer) print(nlp(review_text)) ``` ```[{'label': 'medio_ambiente', 'score': 0.2834321384291023}]``` ### Pytorch ```{python} import torch from transformers import AutoTokenizer, BertForSequenceClassification,TextClassificationPipeline from numpy import np model_name = 'M47Labs/spanish_news_classification_headlines_untrained' MAX_LEN = 32 tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) texto = "las emisiones estan bajando, debido a las medidas ambientales tomadas por el gobierno" encoded_review = tokenizer.encode_plus( texto, max_length=MAX_LEN, add_special_tokens=True, #return_token_type_ids=False, pad_to_max_length=True, return_attention_mask=True, return_tensors='pt', ) input_ids = encoded_review['input_ids'] attention_mask = encoded_review['attention_mask'] output = model(input_ids, attention_mask) _, prediction = torch.max(output['logits'], dim=1) print(f'Review text: {texto}') print(f'Sentiment : {model.config.id2label[prediction.detach().cpu().numpy()[0]]}') ``` ```Review text: las emisiones estan bajando, debido a las medidas ambientales tomadas por el gobierno``` ```Sentiment : opinion``` A more in depth example on how to use the model can be found in this colab notebook: https://colab.research.google.com/drive/1XsKea6oMyEckye2FePW_XN7Rf8v41Cw_?usp=sharing ## Validation Results |Full Dataset|| |------|------| |Accuracy Score|0.362| |Precision (Macro)|0.21| |Recall (Macro)|0.22| ![alt text](https://media-exp1.licdn.com/dms/image/C4D0BAQHpfgjEyhtE1g/company-logo_200_200/0/1625210573748?e=1638403200&v=beta&t=toQNpiOlyim5Ja4f7Ejv8yKoCWifMsLWjkC7XnyXICI "Logo M47")
Misha24-10/TEST2ppo-LunarLander-v6
Misha24-10
2022-05-30T10:39:37Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-30T10:39:08Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 279.89 +/- 16.37 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
iftekher/bangla_voice
iftekher
2022-05-30T10:03:21Z
7
1
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-21T04:56:57Z
--- tags: - generated_from_trainer model-index: - name: bangla_voice results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bangla_voice This model is a fine-tuned version of [iftekher/bangla_voice](https://huggingface.co/iftekher/bangla_voice) on the None dataset. It achieves the following results on the evaluation set: - Loss: 208.2614 - Wer: 0.3201 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 158.927 | 0.21 | 100 | 81.4025 | 0.3489 | | 206.3938 | 0.42 | 200 | 117.4497 | 0.3680 | | 194.8868 | 0.64 | 300 | 473.2094 | 0.3622 | | 177.3037 | 0.85 | 400 | 81.0834 | 0.3585 | | 150.9285 | 1.06 | 500 | 397.6080 | 0.3592 | | 164.899 | 1.27 | 600 | 71.5732 | 0.3476 | | 157.9872 | 1.48 | 700 | 76.6225 | 0.3560 | | 139.5956 | 1.69 | 800 | 76.4330 | 0.3512 | | 132.7378 | 1.91 | 900 | 154.8127 | 0.3378 | | 137.2875 | 2.12 | 1000 | 275.6554 | 0.3453 | | 128.1135 | 2.33 | 1100 | 210.1160 | 0.3409 | | 124.5749 | 2.54 | 1200 | 109.8560 | 0.3400 | | 115.9728 | 2.75 | 1300 | 165.5507 | 0.3373 | | 120.9464 | 2.97 | 1400 | 248.8096 | 0.3357 | | 104.8963 | 3.18 | 1500 | 308.7221 | 0.3361 | | 115.9144 | 3.39 | 1600 | 214.0615 | 0.3300 | | 109.0966 | 3.6 | 1700 | 197.1803 | 0.3286 | | 111.4354 | 3.81 | 1800 | 189.1278 | 0.3245 | | 111.9318 | 4.03 | 1900 | 191.4921 | 0.3282 | | 109.2148 | 4.24 | 2000 | 185.1797 | 0.3298 | | 114.0561 | 4.45 | 2100 | 190.5829 | 0.3229 | | 105.7045 | 4.66 | 2200 | 209.0799 | 0.3220 | | 127.4207 | 4.87 | 2300 | 208.2614 | 0.3201 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
stevemobs/deberta-base-combined-squad1-aqa-1epoch-and-newsqa-1epoch
stevemobs
2022-05-30T09:12:36Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "deberta", "question-answering", "generated_from_trainer", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-05-30T02:46:39Z
--- license: mit tags: - generated_from_trainer model-index: - name: deberta-base-combined-squad1-aqa-1epoch-and-newsqa-1epoch results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-base-combined-squad1-aqa-1epoch-and-newsqa-1epoch This model is a fine-tuned version of [stevemobs/deberta-base-combined-squad1-aqa-1epoch](https://huggingface.co/stevemobs/deberta-base-combined-squad1-aqa-1epoch) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6807 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.6654 | 1.0 | 17307 | 0.6807 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
Santarabantoosoo/Clinical-Longformer-MLM-opnote
Santarabantoosoo
2022-05-30T08:23:25Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "longformer", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-05-29T22:08:37Z
--- tags: - generated_from_trainer model-index: - name: Clinical-Longformer-MLM-opnote results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Clinical-Longformer-MLM-opnote This model is a fine-tuned version of [yikuan8/Clinical-Longformer](https://huggingface.co/yikuan8/Clinical-Longformer) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8286 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 266 | 0.9606 | | 1.1655 | 2.0 | 532 | 0.8677 | | 1.1655 | 3.0 | 798 | 0.8195 | ### Framework versions - Transformers 4.19.1 - Pytorch 1.10.1 - Datasets 2.2.1 - Tokenizers 0.12.1
Splend1dchan/wav2vec2-large-lv60_t5lephone-small_nofreeze_bs16_forMINDS.en.all2
Splend1dchan
2022-05-30T07:38:51Z
4
0
transformers
[ "transformers", "pytorch", "speechmix", "endpoints_compatible", "region:us" ]
null
2022-05-30T01:14:14Z
wav2vec2 -> t5lephone bs = 16 dropout = 0.3 performance : 29% { "architectures": [ "SpeechMixEEDT5" ], "decoder": { "_name_or_path": "voidful/phoneme_byt5", "add_cross_attention": true, "architectures": [ "T5ForConditionalGeneration" ], "bad_words_ids": null, "bos_token_id": null, "chunk_size_feed_forward": 0, "cross_attention_hidden_size": null, "d_ff": 3584, "d_kv": 64, "d_model": 1472, "decoder_start_token_id": 0, "diversity_penalty": 0.0, "do_sample": false, "dropout_rate": 0.1, "early_stopping": false, "encoder_no_repeat_ngram_size": 0, "eos_token_id": 1, "feed_forward_proj": "gated-gelu", "finetuning_task": null, "forced_bos_token_id": null, "forced_eos_token_id": null, "gradient_checkpointing": false, "id2label": { "0": "LABEL_0", "1": "LABEL_1" }, "initializer_factor": 1.0, "is_decoder": true, "is_encoder_decoder": true, "label2id": { "LABEL_0": 0, "LABEL_1": 1 }, "layer_norm_epsilon": 1e-06, "length_penalty": 1.0, "max_length": 20, "min_length": 0, "model_type": "t5", "no_repeat_ngram_size": 0, "num_beam_groups": 1, "num_beams": 1, "num_decoder_layers": 4, "num_heads": 6, "num_layers": 12, "num_return_sequences": 1, "output_attentions": false, "output_hidden_states": false, "output_scores": false, "pad_token_id": 0, "prefix": null, "problem_type": null, "pruned_heads": {}, "relative_attention_max_distance": 128, "relative_attention_num_buckets": 32, "remove_invalid_values": false, "repetition_penalty": 1.0, "return_dict": true, "return_dict_in_generate": false, "sep_token_id": null, "task_specific_params": null, "temperature": 1.0, "tie_encoder_decoder": false, "tie_word_embeddings": false, "tokenizer_class": "ByT5Tokenizer", "top_k": 50, "top_p": 1.0, "torch_dtype": "float32", "torchscript": false, "transformers_version": "4.17.0", "typical_p": 1.0, "use_bfloat16": false, "use_cache": true, "vocab_size": 384 }, "encoder": { "_name_or_path": "facebook/wav2vec2-large-lv60", "activation_dropout": 0.1, "adapter_kernel_size": 3, "adapter_stride": 2, "add_adapter": false, "add_cross_attention": false, "apply_spec_augment": true, "architectures": [ "Wav2Vec2ForPreTraining" ], "attention_dropout": 0.1, "bad_words_ids": null, "bos_token_id": 1, "chunk_size_feed_forward": 0, "classifier_proj_size": 256, "codevector_dim": 768, "contrastive_logits_temperature": 0.1, "conv_bias": true, "conv_dim": [ 512, 512, 512, 512, 512, 512, 512 ], "conv_kernel": [ 10, 3, 3, 3, 3, 2, 2 ], "conv_stride": [ 5, 2, 2, 2, 2, 2, 2 ], "cross_attention_hidden_size": null, "ctc_loss_reduction": "sum", "ctc_zero_infinity": false, "decoder_start_token_id": null, "diversity_loss_weight": 0.1, "diversity_penalty": 0.0, "do_sample": false, "do_stable_layer_norm": true, "early_stopping": false, "encoder_no_repeat_ngram_size": 0, "eos_token_id": 2, "feat_extract_activation": "gelu", "feat_extract_dropout": 0.0, "feat_extract_norm": "layer", "feat_proj_dropout": 0.1, "feat_quantizer_dropout": 0.0, "final_dropout": 0.1, "finetuning_task": null, "forced_bos_token_id": null, "forced_eos_token_id": null, "gradient_checkpointing": false, "hidden_act": "gelu", "hidden_dropout": 0.1, "hidden_dropout_prob": 0.1, "hidden_size": 1024, "id2label": { "0": "LABEL_0", "1": "LABEL_1" }, "initializer_range": 0.02, "intermediate_size": 4096, "is_decoder": false, "is_encoder_decoder": false, "label2id": { "LABEL_0": 0, "LABEL_1": 1 }, "layer_norm_eps": 1e-05, "layerdrop": 0.0, "length_penalty": 1.0, "mask_feature_length": 10, "mask_feature_min_masks": 0, "mask_feature_prob": 0.0, "mask_time_length": 10, "mask_time_min_masks": 2, "mask_time_prob": 0.05, "max_length": 20, "min_length": 0, "model_type": "wav2vec2", "no_repeat_ngram_size": 0, "num_adapter_layers": 3, "num_attention_heads": 16, "num_beam_groups": 1, "num_beams": 1, "num_codevector_groups": 2, "num_codevectors_per_group": 320, "num_conv_pos_embedding_groups": 16, "num_conv_pos_embeddings": 128, "num_feat_extract_layers": 7, "num_hidden_layers": 24, "num_negatives": 100, "num_return_sequences": 1, "output_attentions": false, "output_hidden_size": 1024, "output_hidden_states": false, "output_scores": false, "pad_token_id": 0, "prefix": null, "problem_type": null, "proj_codevector_dim": 768, "pruned_heads": {}, "remove_invalid_values": false, "repetition_penalty": 1.0, "return_dict": true, "return_dict_in_generate": false, "sep_token_id": null, "task_specific_params": null, "tdnn_dilation": [ 1, 2, 3, 1, 1 ], "tdnn_dim": [ 512, 512, 512, 512, 1500 ], "tdnn_kernel": [ 5, 3, 3, 1, 1 ], "temperature": 1.0, "tie_encoder_decoder": false, "tie_word_embeddings": true, "tokenizer_class": null, "top_k": 50, "top_p": 1.0, "torch_dtype": null, "torchscript": false, "transformers_version": "4.17.0", "typical_p": 1.0, "use_bfloat16": false, "use_weighted_layer_sum": false, "vocab_size": 32, "xvector_output_dim": 512 }, "is_encoder_decoder": true, "model_type": "speechmix", "torch_dtype": "float32", "transformers_version": null }