modelId
string
author
string
last_modified
timestamp[us, tz=UTC]
downloads
int64
likes
int64
library_name
string
tags
list
pipeline_tag
string
createdAt
timestamp[us, tz=UTC]
card
string
Jclementg/dqn-SpaceInvadersNoFrameskip-v4
Jclementg
2023-03-23T22:58:52Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-23T22:58:29Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 577.50 +/- 142.96 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Jclementg -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Jclementg -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga Jclementg ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
renbtt/distilbert-base-uncased-finetuned-alerts
renbtt
2023-03-23T22:32:43Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-21T19:22:39Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-alerts results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-alerts This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0282 - Accuracy: 0.9875 - F1: 0.9875 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 10 | 0.0107 | 1.0 | 1.0 | | No log | 2.0 | 20 | 0.0282 | 0.9875 | 0.9875 | ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
bertranddecoster/unit4
bertranddecoster
2023-03-23T22:31:27Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-03-23T22:24:54Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: unit4 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 458.30 +/- 94.32 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
ElementBrawlerAI/tqc-PandaReachDense-v2
ElementBrawlerAI
2023-03-23T22:30:37Z
3
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-23T20:42:37Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: TQC results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -0.68 +/- 0.18 name: mean_reward verified: false --- # **TQC** Agent playing **PandaReachDense-v2** This is a trained model of a **TQC** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
YoanG/Pixelcopter-PLE-v0
YoanG
2023-03-23T22:28:35Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-03-23T21:40:00Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 22.40 +/- 15.98 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Absie/Reinforce-CartPole-v1
Absie
2023-03-23T21:55:45Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-03-23T21:55:36Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
sanak/a2c-PandaReachDense-v2
sanak
2023-03-23T21:50:01Z
1
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-23T17:45:23Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -1.62 +/- 0.51 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
NourEldin-Osama/t5-small-finetuned-text-simplification
NourEldin-Osama
2023-03-23T21:32:11Z
12
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "dataset:wiki_auto", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-23T17:55:33Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wiki_auto model-index: - name: t5-small-finetuned-text-simplification results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-text-simplification This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wiki_auto dataset. It achieves the following results on the evaluation set: - Loss: 4.9119 - Sari: 57.2334 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Sari | |:-------------:|:-----:|:-----:|:---------------:|:-------:| | 1.6567 | 1.0 | 23363 | 4.5102 | 58.1853 | | 3.7655 | 2.0 | 46726 | 4.9119 | 57.2334 | | 3.7498 | 3.0 | 70089 | 4.9119 | 57.2334 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.0 - Datasets 2.1.0 - Tokenizers 0.13.2
radames/FALdetector
radames
2023-03-23T21:15:52Z
0
0
null
[ "arxiv:1906.05856", "license:apache-2.0", "region:us" ]
null
2023-03-17T19:22:57Z
--- license: apache-2.0 --- https://arxiv.org/abs/1906.05856 Important Note from: [https://peterwang512.github.io/FALdetector/](https://peterwang512.github.io/FALdetector/) > # How to interpret the results > > Welcome! Computer vision algorithms often work well on some images, but fail on others. Ours is like this too. We believe our work is a significant step forward in detecting and undoing facial warping by image editing tools. However, there are still many hard cases, and this is by no means a solved problem. > > This is partly because our algorithm is trained on faces warped by the Face-aware Liquify tool in Photoshop, and will thus work well for these types of images, but not necessarily for others. We call this the "dataset bias" problem. Please see the paper for more details on this issue. > > While we trained our models with various data augmentation to be more robust to downstream operations such as resizing, jpeg compression and saturation/brightness changes, there are many other retouches (e.g. airbrushing) that can alter the low-level statistics of the images to make the detection a really hard one. from https://github.com/PeterWang512/FALdetector/blob/master/weights/download_weights.sh ``` wget https://www.dropbox.com/s/rb8zpvrbxbbutxc/global.pth?dl=0 -O ./weights/global.pth wget https://www.dropbox.com/s/pby9dhpr6cqziyl/local.pth?dl=0 -O ./weights/local.pth ``` ``` @inproceedings{wang2019detecting, title={Detecting Photoshopped Faces by Scripting Photoshop}, author={Wang, Sheng-Yu and Wang, Oliver and Owens, Andrew and Zhang, Richard and Efros, Alexei A}, booktitle={ICCV}, year={2019} } ```
KoRo8888/nikolai_gogol_bsd_locon
KoRo8888
2023-03-23T21:12:18Z
0
0
null
[ "region:us" ]
null
2023-03-23T20:53:02Z
recommend to use "hard" version activation Token "Nikolai" or "nikolai gogol" Special thanks to CTD aka "closertodeath#1703" for testing the LoCon ![01049-4053373082-detailed_background_1boy_male_focus_hat_gloves_solo_blue_eyes_top_hat_smile_looking_at_viewer_eyepatch_white_hair_ma.png](https://s3.amazonaws.com/moonup/production/uploads/639b1d7a5d6e30f96220eb7c/VaxYbTB4zHEe2SCAc_MLv.png) ![01047-3886854658-detailed_background_1boy_male_focus_hat_gloves_solo_blue_eyes_top_hat_smile_looking_at_viewer_eyepatch_white_hair_ma.png](https://s3.amazonaws.com/moonup/production/uploads/639b1d7a5d6e30f96220eb7c/Y9aiBrc40mHwG1oKLsgQR.png)
Rooshan/Rooshan-mbart-large50_finetuned_it_en-it_es
Rooshan
2023-03-23T21:12:17Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "mbart", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-23T15:43:43Z
--- tags: - generated_from_trainer metrics: - bleu model-index: - name: Rooshan-mbart-large50_finetuned_it_en-it_es results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Rooshan-mbart-large50_finetuned_it_en-it_es This model is a fine-tuned version of [Rooshan/Rooshan-mbart-large50-finetuned-it-to-en](https://huggingface.co/Rooshan/Rooshan-mbart-large50-finetuned-it-to-en) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4150 - Bleu: 66.8317 - Gen Len: 23.6063 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:| | 0.4305 | 1.0 | 13632 | 0.4150 | 66.8317 | 23.6063 | ### Framework versions - Transformers 4.27.2 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
Ellipsoul/ppo-SnowballTarget
Ellipsoul
2023-03-23T21:08:28Z
3
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-03-23T21:08:23Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Find your model_id: Ellipsoul/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
artbreguez/q-Taxi-v3
artbreguez
2023-03-23T20:51:48Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-23T20:51:42Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.54 +/- 2.74 name: mean_reward verified: false --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="artbreguez/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
thanhnguyenvn/distilbert-base-uncased-finetuned-cola
thanhnguyenvn
2023-03-23T20:51:21Z
7
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-23T19:44:31Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: cola split: validation args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5523738743137101 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8232 - Matthews Correlation: 0.5524 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5235 | 1.0 | 535 | 0.5373 | 0.4270 | | 0.3452 | 2.0 | 1070 | 0.5037 | 0.4948 | | 0.2281 | 3.0 | 1605 | 0.5574 | 0.5286 | | 0.1693 | 4.0 | 2140 | 0.8080 | 0.5299 | | 0.1285 | 5.0 | 2675 | 0.8232 | 0.5524 | ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.1 - Datasets 2.10.1 - Tokenizers 0.13.2
greg-szopinski/ppo-LunarLander-v2
greg-szopinski
2023-03-23T20:46:41Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-23T20:46:20Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 280.38 +/- 19.74 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
mnoukhov/gpt2-imdb-sentiment-classifier
mnoukhov
2023-03-23T20:44:51Z
364
6
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-classification", "generated_from_trainer", "dataset:imdb", "license:mit", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-classification
2023-03-23T19:21:49Z
--- license: mit tags: - generated_from_trainer datasets: - imdb metrics: - accuracy model-index: - name: gpt2-imdb-sentiment-classifier results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.9394 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-imdb-sentiment-classifier This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.1703 - Accuracy: 0.9394 ## Model description More information needed ## Intended uses & limitations This is comparable to [distilbert-imdb](https://huggingface.co/lvwerra/distilbert-imdb) and trained with exactly the same [script](https://huggingface.co/lvwerra/distilbert-imdb/blob/main/distilbert-imdb-training.ipynb) It achieves slightly lower loss (0.1703 vs 0.1903) and slightly higher accuracy (0.9394 vs 0.928) ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1967 | 1.0 | 1563 | 0.1703 | 0.9394 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.13.1+cu117 - Datasets 2.9.0 - Tokenizers 0.12.1
AbhirupGhosh/opus-mt-finetuned-en-hi
AbhirupGhosh
2023-03-23T20:22:38Z
30
0
transformers
[ "transformers", "pytorch", "tf", "safetensors", "marian", "text2text-generation", "translation", "Hindi", "generated_from_keras_callback", "en", "hi", "multilingual", "dataset:HindiEnglishCorpora", "arxiv:1706.03762", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-07-16T11:27:09Z
--- language: - en - hi - multilingual license: apache-2.0 tags: - translation - Hindi - generated_from_keras_callback datasets: - HindiEnglishCorpora --- # opus-mt-finetuned-hi-en This model is a fine-tuned version of [Helsinki-NLP/opus-mt-hi-en](https://huggingface.co/Helsinki-NLP/opus-mt-hi-en) on [HindiEnglish Corpora](https://www.clarin.eu/resource-families/parallel-corpora) ## Model description The model is a transformer model similar to the [Transformer](https://arxiv.org/abs/1706.03762?context=cs) as defined in Attention Is All You Need by Vaswani et al ## Training and evaluation data More information needed ## Training procedure The model was trained on 2 NVIDIA_TESLA_A100 GPU's on Google's vertex AI platform. ### Training hyperparameters The following hyperparameters were used during training: - optimizer: AdamWeightDecay - training_precision: float32 ### Training results ### Framework versions - Transformers 4.20.1 - TensorFlow 2.8.2 - Datasets 2.3.2 - Tokenizers 0.12.1
SAL83/ppo-SnowballTarget
SAL83
2023-03-23T20:11:25Z
1
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-03-22T23:14:57Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Find your model_id: SAL83/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
dimi1357/Reinforce-Pixelcopter-PLE-v0
dimi1357
2023-03-23T20:01:12Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-03-19T21:40:43Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 52.70 +/- 42.68 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
JosuMSC/fake-news-detector
JosuMSC
2023-03-23T19:36:33Z
14
1
transformers
[ "transformers", "pytorch", "safetensors", "distilbert", "text-classification", "fake-news", "sentence-classification", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-02-26T12:19:08Z
--- license: apache-2.0 language: - en metrics: - f1 tags: - fake-news - sentence-classification ---
Borismile/anime-diffusion-hypernetwork
Borismile
2023-03-23T19:33:26Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2023-03-23T10:08:02Z
--- license: apache-2.0 --- This is my first hypernetwork. ![text2image](https://huggingface.co/Borismile/anime-diffusion-hypernetwork/resolve/main/Images/img-1.png) ![process](https://huggingface.co/Borismile/anime-diffusion-hypernetwork/resolve/main/Images/img-2.png) This hypernetwork was trained on a dataset of 1655 images from anime films by Hayao Miyazaki. generates images in 512 x 512 resolution. Best used with webui. This model can be used for image2image and text2image ![process](https://huggingface.co/Borismile/anime-diffusion-hypernetwork/resolve/main/Images/img-5.png) ![image2image](https://huggingface.co/Borismile/anime-diffusion-hypernetwork/resolve/main/Images/img-3.png) The advantages of this model are lightweight and fast working speed.
ElementBrawlerAI/a2c-PandaReachDense-v2
ElementBrawlerAI
2023-03-23T19:28:36Z
0
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-23T19:26:08Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -4.09 +/- 0.96 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
lora-library/dragon-ball-wufan
lora-library
2023-03-23T19:24:59Z
0
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:stabilityai/stable-diffusion-2-1-base", "base_model:adapter:stabilityai/stable-diffusion-2-1-base", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-03-23T16:33:23Z
--- license: creativeml-openrail-m base_model: stabilityai/stable-diffusion-2-1-base instance_prompt: wufan tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - dragon-ball-wufan These are LoRA adaption weights for [stabilityai/stable-diffusion-2-1-base](https://huggingface.co/stabilityai/stable-diffusion-2-1-base). The weights were trained on the instance prompt "wufan" using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. Test prompt: wufan ![image_0](test_images/image_0.png) ![image_1](test_images/image_1.png) ![image_2](test_images/image_2.png) ![image_3](test_images/image_3.png)
Absie/dqn-SpaceInvadersNoFrameskip-v4
Absie
2023-03-23T19:20:16Z
2
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-23T08:01:54Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 561.50 +/- 45.06 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Absie -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Absie -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga Absie ``` ## Hyperparameters ```python OrderedDict([('batch_size', 128), ('buffer_size', 150000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.025), ('frame_stack', 5), ('gradient_steps', 1), ('learning_rate', 5e-05), ('learning_starts', 100000), ('n_timesteps', 2000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 8), ('normalize', False)]) ```
jkeruotis/LitBERTa-uncased
jkeruotis
2023-03-23T19:18:47Z
15
0
transformers
[ "transformers", "pytorch", "jax", "safetensors", "roberta", "fill-mask", "exbert", "lt", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: lt tags: - exbert license: mit --- # LitBERTa uncased model Not the best model because of limited resources (Trained on ~4.7 GB of data on RTX2070 8GB for ~10 days) but it covers special lithuanian symbols `ąčęėįšųūž`. 128K vocabulary chosen because language has a lot of word forms. ## How to use ```python from transformers import pipeline unmasker = pipeline('fill-mask', model='jkeruotis/LitBERTa-uncased') unmasker('lietuvių kalba yra viena iš <mask> kalbų pasaulyje.') [{'sequence': 'lietuvių kalba yra viena iš populiariausių kalbų pasaulyje.', 'score': 0.13887910544872284, 'token': 9404, 'token_str': ' populiariausių'}, {'sequence': 'lietuvių kalba yra viena iš pirmaujančių kalbų pasaulyje.', 'score': 0.13532795011997223, 'token': 27431, 'token_str': ' pirmaujančių'}, {'sequence': 'lietuvių kalba yra viena iš seniausių kalbų pasaulyje.', 'score': 0.1184583529829979, 'token': 14775, 'token_str': ' seniausių'}, {'sequence': 'lietuvių kalba yra viena iš geriausių kalbų pasaulyje.', 'score': 0.09306756407022476, 'token': 5617, 'token_str': ' geriausių'}, {'sequence': 'lietuvių kalba yra viena iš nedaugelio kalbų pasaulyje.', 'score': 0.08187634497880936, 'token': 28150, 'token_str': ' nedaugelio'}]```
Buseak/canine_2303
Buseak
2023-03-23T19:16:00Z
714
0
transformers
[ "transformers", "pytorch", "tensorboard", "canine", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-03-23T18:36:40Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: canine_2303 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # canine_2303 This model is a fine-tuned version of [google/canine-s](https://huggingface.co/google/canine-s) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0001 - Precision: 0.9987 - Recall: 0.9982 - F1: 0.9985 - Accuracy: 0.9999 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 244 | 0.0025 | 0.9819 | 0.9924 | 0.9871 | 0.9993 | | No log | 2.0 | 488 | 0.0018 | 0.9855 | 0.9925 | 0.9890 | 0.9995 | | 0.0382 | 3.0 | 732 | 0.0014 | 0.9923 | 0.9891 | 0.9907 | 0.9996 | | 0.0382 | 4.0 | 976 | 0.0009 | 0.9930 | 0.9931 | 0.9931 | 0.9997 | | 0.0017 | 5.0 | 1220 | 0.0009 | 0.9922 | 0.9949 | 0.9936 | 0.9997 | | 0.0017 | 6.0 | 1464 | 0.0007 | 0.9940 | 0.9952 | 0.9946 | 0.9998 | | 0.0012 | 7.0 | 1708 | 0.0005 | 0.9947 | 0.9952 | 0.9949 | 0.9998 | | 0.0012 | 8.0 | 1952 | 0.0005 | 0.9947 | 0.9955 | 0.9951 | 0.9998 | | 0.0009 | 9.0 | 2196 | 0.0003 | 0.9959 | 0.9960 | 0.9959 | 0.9998 | | 0.0009 | 10.0 | 2440 | 0.0003 | 0.9958 | 0.9963 | 0.9961 | 0.9998 | | 0.0007 | 11.0 | 2684 | 0.0003 | 0.9971 | 0.9958 | 0.9965 | 0.9999 | | 0.0007 | 12.0 | 2928 | 0.0003 | 0.9971 | 0.9962 | 0.9967 | 0.9999 | | 0.0005 | 13.0 | 3172 | 0.0002 | 0.9974 | 0.9967 | 0.9971 | 0.9999 | | 0.0005 | 14.0 | 3416 | 0.0002 | 0.9980 | 0.9972 | 0.9976 | 0.9999 | | 0.0004 | 15.0 | 3660 | 0.0002 | 0.9982 | 0.9980 | 0.9981 | 0.9999 | | 0.0004 | 16.0 | 3904 | 0.0002 | 0.9984 | 0.9974 | 0.9979 | 0.9999 | | 0.0004 | 17.0 | 4148 | 0.0001 | 0.9984 | 0.9975 | 0.9979 | 0.9999 | | 0.0004 | 18.0 | 4392 | 0.0001 | 0.9988 | 0.9982 | 0.9985 | 0.9999 | | 0.0003 | 19.0 | 4636 | 0.0001 | 0.9987 | 0.9982 | 0.9985 | 0.9999 | | 0.0003 | 20.0 | 4880 | 0.0001 | 0.9987 | 0.9982 | 0.9985 | 0.9999 | ### Framework versions - Transformers 4.27.2 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
Stokrotka/poca-SoccerTwos
Stokrotka
2023-03-23T19:04:25Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-03-23T19:04:11Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: Stokrotka/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
mrm8488/RuPERTa-base-finetuned-ner
mrm8488
2023-03-23T18:57:22Z
59
1
transformers
[ "transformers", "pytorch", "jax", "safetensors", "roberta", "token-classification", "es", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- language: es thumbnail: --- # RuPERTa-base (Spanish RoBERTa) + NER 🎃🏷 This model is a fine-tuned on [NER-C](https://www.kaggle.com/nltkdata/conll-corpora) version of [RuPERTa-base](https://huggingface.co/mrm8488/RuPERTa-base) for **NER** downstream task. ## Details of the downstream task (NER) - Dataset - [Dataset: CONLL Corpora ES](https://www.kaggle.com/nltkdata/conll-corpora) 📚 | Dataset | # Examples | | ---------------------- | ----- | | Train | 329 K | | Dev | 40 K | - [Fine-tune on NER script provided by Huggingface](https://github.com/huggingface/transformers/blob/master/examples/token-classification/run_ner_old.py) - Labels covered: ``` B-LOC B-MISC B-ORG B-PER I-LOC I-MISC I-ORG I-PER O ``` ## Metrics on evaluation set 🧾 | Metric | # score | | :------------------------------------------------------------------------------------: | :-------: | | F1 | **77.55** | Precision | **75.53** | | Recall | **79.68** | ## Model in action 🔨 Example of usage: ```python import torch from transformers import AutoModelForTokenClassification, AutoTokenizer id2label = { "0": "B-LOC", "1": "B-MISC", "2": "B-ORG", "3": "B-PER", "4": "I-LOC", "5": "I-MISC", "6": "I-ORG", "7": "I-PER", "8": "O" } text ="Julien, CEO de HF, nació en Francia." input_ids = torch.tensor(tokenizer.encode(text)).unsqueeze(0) outputs = model(input_ids) last_hidden_states = outputs[0] for m in last_hidden_states: for index, n in enumerate(m): if(index > 0 and index <= len(text.split(" "))): print(text.split(" ")[index-1] + ": " + id2label[str(torch.argmax(n).item())]) ''' Output: -------- Julien,: I-PER CEO: O de: O HF,: B-ORG nació: I-PER en: I-PER Francia.: I-LOC ''' ``` Yeah! Not too bad 🎉 > Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488) > Made with <span style="color: #e25555;">&hearts;</span> in Spain
adorkin/xlm-roberta-en-ru-emoji
adorkin
2023-03-23T18:42:15Z
17
0
transformers
[ "transformers", "pytorch", "safetensors", "xlm-roberta", "text-classification", "en", "ru", "dataset:tweet_eval", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- language: - en - ru datasets: - tweet_eval model_index: - name: xlm-roberta-en-ru-emoji results: - task: name: Sentiment Analysis type: sentiment-analysis dataset: name: Tweet Eval type: tweet_eval args: emoji widget: - text: "Отлично!" - text: "Awesome!" - text: "lol" --- # xlm-roberta-en-ru-emoji - Problem type: Multi-class Classification
SmilingWolf/wd-v1-4-convnext-tagger-v2
SmilingWolf
2023-03-23T18:33:36Z
3,488
25
tf-keras
[ "tf-keras", "onnx", "license:apache-2.0", "region:us" ]
null
2023-01-21T11:05:40Z
--- license: apache-2.0 --- # WD 1.4 ConvNext Tagger V2 Supports ratings, characters and general tags. Trained using https://github.com/SmilingWolf/SW-CV-ModelZoo. TPUs used for training kindly provided by the [TRC program](https://sites.research.google/trc/about/). ## Dataset Last image id: 5944504 Trained on Danbooru images with IDs modulo 0000-0899. Validated on images with IDs modulo 0950-0999. Images with less than 10 general tags were filtered out. Tags with less than 600 images were filtered out. ## Validation results `P=R: threshold = 0.3685, F1 = 0.6810` ## Final words Subject to change and updates. Downstream users are encouraged to use tagged releases rather than relying on the head of the repo.
SmilingWolf/wd-v1-4-vit-tagger-v2
SmilingWolf
2023-03-23T18:33:21Z
73
57
tf-keras
[ "tf-keras", "onnx", "license:apache-2.0", "region:us" ]
null
2023-01-21T11:05:59Z
--- license: apache-2.0 --- # WD 1.4 ViT Tagger V2 Supports ratings, characters and general tags. Trained using https://github.com/SmilingWolf/SW-CV-ModelZoo. TPUs used for training kindly provided by the [TRC program](https://sites.research.google/trc/about/). ## Dataset Last image id: 5944504 Trained on Danbooru images with IDs modulo 0000-0899. Validated on images with IDs modulo 0950-0999. Images with less than 10 general tags were filtered out. Tags with less than 600 images were filtered out. ## Validation results `P=R: threshold = 0.3537, F1 = 0.6770` ## Final words Subject to change and updates. Downstream users are encouraged to use tagged releases rather than relying on the head of the repo.
rng0x17/qTable-Taxi-v3
rng0x17
2023-03-23T18:21:30Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-23T17:53:35Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: qTable-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="grinsepilz/qTable-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
helling100/Regression_albert_5
helling100
2023-03-23T18:21:25Z
61
0
transformers
[ "transformers", "tf", "distilbert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-23T16:17:51Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Regression_albert_5 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Regression_albert_5 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1548 - Train Mae: 0.2765 - Train Mse: 0.1336 - Train R2-score: 0.7547 - Train Accuracy: 0.7462 - Validation Loss: 0.1908 - Validation Mae: 0.3787 - Validation Mse: 0.1894 - Validation R2-score: 0.8458 - Validation Accuracy: 0.4595 - Epoch: 9 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': 2e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Mae | Train Mse | Train R2-score | Train Accuracy | Validation Loss | Validation Mae | Validation Mse | Validation R2-score | Validation Accuracy | Epoch | |:----------:|:---------:|:---------:|:--------------:|:--------------:|:---------------:|:--------------:|:--------------:|:-------------------:|:-------------------:|:-----:| | 0.5723 | 0.3984 | 0.2343 | 0.4755 | 0.5923 | 0.1856 | 0.3686 | 0.1843 | 0.8559 | 0.4324 | 0 | | 0.1822 | 0.2906 | 0.1403 | 0.7246 | 0.6538 | 0.1577 | 0.3485 | 0.1561 | 0.8714 | 0.9459 | 1 | | 0.1765 | 0.2865 | 0.1376 | 0.6770 | 0.6538 | 0.1356 | 0.3325 | 0.1337 | 0.8808 | 0.9459 | 2 | | 0.1959 | 0.2945 | 0.1383 | 0.6806 | 0.7308 | 0.2115 | 0.4054 | 0.2104 | 0.8366 | 0.3243 | 3 | | 0.1698 | 0.2906 | 0.1408 | 0.7195 | 0.6231 | 0.1489 | 0.3371 | 0.1472 | 0.8726 | 0.9459 | 4 | | 0.2081 | 0.2687 | 0.1178 | 0.7632 | 0.8385 | 0.2547 | 0.4572 | 0.2539 | 0.8046 | 0.3243 | 5 | | 0.1806 | 0.3087 | 0.1554 | 0.7168 | 0.6462 | 0.1477 | 0.3401 | 0.1460 | 0.8757 | 0.9459 | 6 | | 0.1910 | 0.3102 | 0.1559 | 0.7295 | 0.6308 | 0.1726 | 0.3544 | 0.1711 | 0.8602 | 0.8919 | 7 | | 0.1697 | 0.2609 | 0.1132 | 0.7876 | 0.8538 | 0.1856 | 0.3694 | 0.1843 | 0.8537 | 0.5946 | 8 | | 0.1548 | 0.2765 | 0.1336 | 0.7547 | 0.7462 | 0.1908 | 0.3787 | 0.1894 | 0.8458 | 0.4595 | 9 | ### Framework versions - Transformers 4.27.2 - TensorFlow 2.11.0 - Datasets 2.10.1 - Tokenizers 0.13.2
LarryAIDraw/murkysLegsUpLora_1
LarryAIDraw
2023-03-23T18:18:27Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-03-23T18:17:09Z
--- license: creativeml-openrail-m --- https://civitai.com/models/14247/murkys-legs-up-lora
LarryAIDraw/facesittingGirlSitting_v1
LarryAIDraw
2023-03-23T18:15:55Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-03-23T18:06:43Z
--- license: creativeml-openrail-m --- https://civitai.com/models/11271/facesitting-girl-sitting-on-face
LarryAIDraw/doggystyleFromSide_dsv02
LarryAIDraw
2023-03-23T18:15:07Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-03-23T18:07:44Z
--- license: creativeml-openrail-m --- https://civitai.com/models/12961/doggystyle-from-side-view
LarryAIDraw/murkysAfterSexLying_1
LarryAIDraw
2023-03-23T18:14:23Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-03-23T18:08:25Z
--- license: creativeml-openrail-m --- https://civitai.com/models/18194/murkys-after-sex-lying-lora
abhilash1910/financial_roberta
abhilash1910
2023-03-23T18:11:53Z
20
5
transformers
[ "transformers", "pytorch", "tf", "jax", "safetensors", "roberta", "fill-mask", "finance", "arxiv:1907.11692", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- tags: - finance --- # Roberta Masked Language Model Trained On Financial Phrasebank Corpus This is a Masked Language Model trained with [Roberta](https://huggingface.co/transformers/model_doc/roberta.html) on a Financial Phrasebank Corpus. The model is built using Huggingface transformers. The model can be found at :[Financial_Roberta](https://huggingface.co/abhilash1910/financial_roberta) ## Specifications The corpus for training is taken from the Financial Phrasebank (Malo et al)[https://www.researchgate.net/publication/251231107_Good_Debt_or_Bad_Debt_Detecting_Semantic_Orientations_in_Economic_Texts]. ## Model Specification The model chosen for training is [Roberta](https://arxiv.org/abs/1907.11692) with the following specifications: 1. vocab_size=56000 2. max_position_embeddings=514 3. num_attention_heads=12 4. num_hidden_layers=6 5. type_vocab_size=1 This is trained by using RobertaConfig from transformers package. The model is trained for 10 epochs with a gpu batch size of 64 units. ## Usage Specifications For using this model, we have to first import AutoTokenizer and AutoModelWithLMHead Modules from transformers After that we have to specify, the pre-trained model,which in this case is 'abhilash1910/financial_roberta' for the tokenizers and the model. ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("abhilash1910/financial_roberta") model = AutoModelWithLMHead.from_pretrained("abhilash1910/financial_roberta") ``` After this the model will be downloaded, it will take some time to download all the model files. For testing the model, we have to import pipeline module from transformers and create a masked output model for inference as follows: ```python from transformers import pipeline model_mask = pipeline('fill-mask', model='abhilash1910/inancial_roberta') model_mask("The company had a <mask> of 20% in 2020.") ``` Some of the examples are also provided with generic financial statements: Example 1: ```python model_mask("The company had a <mask> of 20% in 2020.") ``` Output: ```bash [{'sequence': '<s>The company had a profit of 20% in 2020.</s>', 'score': 0.023112965747714043, 'token': 421, 'token_str': 'Ġprofit'}, {'sequence': '<s>The company had a loss of 20% in 2020.</s>', 'score': 0.021379893645644188, 'token': 616, 'token_str': 'Ġloss'}, {'sequence': '<s>The company had a year of 20% in 2020.</s>', 'score': 0.0185744296759367, 'token': 443, 'token_str': 'Ġyear'}, {'sequence': '<s>The company had a sales of 20% in 2020.</s>', 'score': 0.018143286928534508, 'token': 428, 'token_str': 'Ġsales'}, {'sequence': '<s>The company had a value of 20% in 2020.</s>', 'score': 0.015319528989493847, 'token': 776, 'token_str': 'Ġvalue'}] ``` Example 2: ```python model_mask("The <mask> is listed under NYSE") ``` Output: ```bash [{'sequence': '<s>The company is listed under NYSE</s>', 'score': 0.1566661298274994, 'token': 359, 'token_str': 'Ġcompany'}, {'sequence': '<s>The total is listed under NYSE</s>', 'score': 0.05542507395148277, 'token': 522, 'token_str': 'Ġtotal'}, {'sequence': '<s>The value is listed under NYSE</s>', 'score': 0.04729423299431801, 'token': 776, 'token_str': 'Ġvalue'}, {'sequence': '<s>The order is listed under NYSE</s>', 'score': 0.02533523552119732, 'token': 798, 'token_str': 'Ġorder'}, {'sequence': '<s>The contract is listed under NYSE</s>', 'score': 0.02087237872183323, 'token': 635, 'token_str': 'Ġcontract'}] ``` ## Resources For all resources , please look into the [HuggingFace](https://huggingface.co/) Site and the [Repositories](https://github.com/huggingface).
abhilash1910/french-roberta
abhilash1910
2023-03-23T18:11:39Z
20
0
transformers
[ "transformers", "pytorch", "jax", "safetensors", "roberta", "fill-mask", "arxiv:1907.11692", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
# Roberta Trained Model For Masked Language Model On French Corpus :robot: This is a Masked Language Model trained with [Roberta](https://huggingface.co/transformers/model_doc/roberta.html) on a small French News Corpus(Leipzig corpora). The model is built using Huggingface transformers. The model can be found at :[French-Roberta](https://huggingface.co/abhilash1910/french-roberta) ## Specifications The corpus for training is taken from Leipzig Corpora (French News) , and is trained on a small set of the corpus (300K). ## Model Specification The model chosen for training is [Roberta](https://arxiv.org/abs/1907.11692) with the following specifications: 1. vocab_size=32000 2. max_position_embeddings=514 3. num_attention_heads=12 4. num_hidden_layers=6 5. type_vocab_size=1 This is trained by using RobertaConfig from transformers package.The total training parameters :68124416 The model is trained for 100 epochs with a gpu batch size of 64 units. More details for building custom models can be found at the [HuggingFace Blog](https://huggingface.co/blog/how-to-train) ## Usage Specifications For using this model, we have to first import AutoTokenizer and AutoModelWithLMHead Modules from transformers After that we have to specify, the pre-trained model,which in this case is 'abhilash1910/french-roberta' for the tokenizers and the model. ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("abhilash1910/french-roberta") model = AutoModelWithLMHead.from_pretrained("abhilash1910/french-roberta") ``` After this the model will be downloaded, it will take some time to download all the model files. For testing the model, we have to import pipeline module from transformers and create a masked output model for inference as follows: ```python from transformers import pipeline model_mask = pipeline('fill-mask', model='abhilash1910/french-roberta') model_mask("Le tweet <mask>.") ``` Some of the examples are also provided with generic French sentences: Example 1: ```python model_mask("À ce jour, <mask> projet a entraîné") ``` Output: ```bash [{'sequence': '<s>À ce jour, belles projet a entraîné</s>', 'score': 0.18685665726661682, 'token': 6504, 'token_str': 'Ġbelles'}, {'sequence': '<s>À ce jour,- projet a entraîné</s>', 'score': 0.0005200508167035878, 'token': 17, 'token_str': '-'}, {'sequence': '<s>À ce jour, de projet a entraîné</s>', 'score': 0.00045729897101409733, 'token': 268, 'token_str': 'Ġde'}, {'sequence': '<s>À ce jour, du projet a entraîné</s>', 'score': 0.0004307595663703978, 'token': 326, 'token_str': 'Ġdu'}, {'sequence': '<s>À ce jour," projet a entraîné</s>', 'score': 0.0004219160182401538, 'token': 6, 'token_str': '"'}] ``` Example 2: ```python model_mask("C'est un <mask>") ``` Output: ```bash [{'sequence': "<s>C'est un belles</s>", 'score': 0.16440927982330322, 'token': 6504, 'token_str': 'Ġbelles'}, {'sequence': "<s>C'est un de</s>", 'score': 0.0005495127406902611, 'token': 268, 'token_str': 'Ġde'}, {'sequence': "<s>C'est un du</s>", 'score': 0.00044988933950662613, 'token': 326, 'token_str': 'Ġdu'}, {'sequence': "<s>C'est un-</s>", 'score': 0.00044542422983795404, 'token': 17, 'token_str': '-'}, {'sequence': "<s>C'est un </s>", 'score': 0.00037563967634923756, 'token': 202, 'token_str': 'ĉ'}] ``` ## Resources For all resources , please look into the [HuggingFace](https://huggingface.co/) Site and the [Repositories](https://github.com/huggingface). --- language: - fr tags: - fill-mask license: apache-2.0 ---
Piquimachay/pikimachay02
Piquimachay
2023-03-23T18:11:10Z
33
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-03-23T18:06:52Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### Pikimachay02 Dreambooth model trained by Piquimachay with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
ShreyasM/vizdoom_defend_the_line
ShreyasM
2023-03-23T18:05:45Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-23T18:03:56Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_defend_the_line type: doom_defend_the_line metrics: - type: mean_reward value: 12.60 +/- 5.10 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_defend_the_line** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r ShreyasM/vizdoom_defend_the_line ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.local.lib.python3.9.dist-packages.ipykernel_launcher --algo=APPO --env=doom_defend_the_line --train_dir=./train_dir --experiment=vizdoom_defend_the_line ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.local.lib.python3.9.dist-packages.ipykernel_launcher --algo=APPO --env=doom_defend_the_line --train_dir=./train_dir --experiment=vizdoom_defend_the_line --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
vocabtrimmer/xlm-roberta-base-tweet-sentiment-fr-trimmed-fr-10000
vocabtrimmer
2023-03-23T17:52:08Z
5
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-15T19:28:53Z
# Vocabulary Trimmed [cardiffnlp/xlm-roberta-base-tweet-sentiment-fr](https://huggingface.co/cardiffnlp/xlm-roberta-base-tweet-sentiment-fr): `vocabtrimmer/xlm-roberta-base-tweet-sentiment-fr-trimmed-fr-10000` This model is a trimmed version of [cardiffnlp/xlm-roberta-base-tweet-sentiment-fr](https://huggingface.co/cardiffnlp/xlm-roberta-base-tweet-sentiment-fr) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | cardiffnlp/xlm-roberta-base-tweet-sentiment-fr | vocabtrimmer/xlm-roberta-base-tweet-sentiment-fr-trimmed-fr-10000 | |:---------------------------|:-------------------------------------------------|:--------------------------------------------------------------------| | parameter_size_full | 278,045,955 | 93,725,955 | | parameter_size_embedding | 192,001,536 | 7,681,536 | | vocab_size | 250,002 | 10,002 | | compression_rate_full | 100.0 | 33.71 | | compression_rate_embedding | 100.0 | 4.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | fr | vocabtrimmer/mc4_validation | text | fr | validation | 10000 | 2 |
ShreyasM/vizdoom_defend_the_center
ShreyasM
2023-03-23T17:39:13Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-23T17:38:41Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_defend_the_center type: doom_defend_the_center metrics: - type: mean_reward value: 13.70 +/- 3.26 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_defend_the_center** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r ShreyasM/vizdoom_defend_the_center ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.local.lib.python3.9.dist-packages.ipykernel_launcher --algo=APPO --env=doom_defend_the_center --train_dir=./train_dir --experiment=vizdoom_defend_the_center ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.local.lib.python3.9.dist-packages.ipykernel_launcher --algo=APPO --env=doom_defend_the_center --train_dir=./train_dir --experiment=vizdoom_defend_the_center --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
nousr/robo-diffusion-2-base
nousr
2023-03-23T17:31:19Z
83
188
diffusers
[ "diffusers", "robots", "stable-diffusion", "aiart", "text-to-image", "en", "license:openrail++", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2022-11-28T20:36:50Z
--- language: - en thumbnail: "https://huggingface.co/nousr/robo-diffusion/resolve/main/robo_example.png" tags: - robots - stable-diffusion - aiart - text-to-image license: "openrail++" --- # Robo-Diffusion 2 (base) A dreambooth-method finetune of stable diffusion that will output cool looking robots when prompted. <img src="https://huggingface.co/nousr/robo-diffusion-2-base/resolve/main/example_grid.png"/> # Usage Keep the words `nousr robot` towards the beginning of your prompt to invoke the finetuned style. Use negative prompts to achieve the best result. ```python import torch from diffusers import StableDiffusionPipeline, EulerDiscreteScheduler scheduler = EulerDiscreteScheduler.from_pretrained("nousr/robo-diffusion-2-base", subfolder="scheduler") pipe = StableDiffusionPipeline.from_pretrained("nousr/robo-diffusion-2-base", scheduler=scheduler, torch_dtype=torch.float16) pipe = pipe.to("cuda") prompt = "A realistic photograph of a 3d nousr robot in a modern city. A glossy white and orange nousr robot." negative_prompt = "black and white robot, picture frame, a children's drawing in crayon. #Wholesale, Abstract Metal Sculpture. i'm leaving a bad review." image = pipe(prompt, negative_prompt=negative_prompt, num_inference_steps=32, guidance_scale=5.0).images[0] image.save("robo.png") ``` # Original Model Based on stable diffusion 1.4 can be found [here](https://huggingface.co/nousr/robo-diffusion) # Socials Use the #robodiffusion so i can see the cool stuff you make! If you enjoy the model i'd appreciate a follow on [twitter](https://twitter.com/nousr_) If you are feeling especially generous, you can sponsor me on [github](https://github.com/nousr) --- *NOTE: ensure you have read the license and agree to the terms
wooseoko/clip-roberta-finetuned_GQA
wooseoko
2023-03-23T17:30:35Z
5
0
transformers
[ "transformers", "pytorch", "vision-text-dual-encoder", "feature-extraction", "generated_from_trainer", "endpoints_compatible", "region:us" ]
feature-extraction
2023-03-23T09:36:41Z
--- tags: - generated_from_trainer datasets: - ./GQA_script.py model-index: - name: clip-roberta-finetuned_GQA results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # clip-roberta-finetuned_GQA This model is a fine-tuned version of [./clip-roberta](https://huggingface.co/./clip-roberta) on the ./GQA_script.py relation dataset. It achieves the following results on the evaluation set: - Loss: 2.3532 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.26.1 - Pytorch 1.11.0 - Datasets 2.10.1 - Tokenizers 0.13.2
SmilingWolf/wd-v1-4-convnextv2-tagger-v2
SmilingWolf
2023-03-23T17:09:39Z
142
40
tf-keras
[ "tf-keras", "onnx", "license:apache-2.0", "region:us" ]
null
2023-03-19T11:19:38Z
--- license: apache-2.0 --- # WD 1.4 ConvNextV2 Tagger V2 Supports ratings, characters and general tags. Trained using https://github.com/SmilingWolf/SW-CV-ModelZoo. TPUs used for training kindly provided by the [TRC program](https://sites.research.google/trc/about/). ## Dataset Last image id: 5944504 Trained on Danbooru images with IDs modulo 0000-0899. Validated on images with IDs modulo 0950-0999. Images with less than 10 general tags were filtered out. Tags with less than 600 images were filtered out. ## Validation results `P=R: threshold = 0.3710, F1 = 0.6862` ## Final words Subject to change and updates. Downstream users are encouraged to use tagged releases rather than relying on the head of the repo.
butchland/a2c-PandaReachDense-v2
butchland
2023-03-23T16:52:57Z
0
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-20T13:58:42Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -18.40 +/- 3.11 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
JamexX90/Cyclops_girl_LoRA
JamexX90
2023-03-23T16:46:59Z
0
3
null
[ "license:cc-by-nc-4.0", "region:us" ]
null
2023-01-31T07:57:10Z
--- license: cc-by-nc-4.0 --- https://civitai.com/models/5973 Don't sell anything using my Lora - Don't claim it to be your's - at least Credit me if you used it, (my ego is fragile) - Do not create anything Illegal with my lora (-_-) - and good luck using my lora :D have a good day to any one reading this - ![02058-604959717-(3girls), (cyclops), (one eye), red eyes, skinny, petite, fluffy hair, absurdly long hair, white hair, flat chest, cowboy shot,.png](https://s3.amazonaws.com/moonup/production/uploads/1675152128574-63d8c9519dfcfa941d4cd89c.png) ![02427-3432563847-masterpiece, best quality, ultra-detailed, illustration, Solo, (1girl), (cyclops), (one eye), red eyes, fluffy hair, black long.png](https://s3.amazonaws.com/moonup/production/uploads/1675152239592-63d8c9519dfcfa941d4cd89c.png)
mnavas/roberta-finetuned-WebClassification
mnavas
2023-03-23T16:42:27Z
5
1
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-22T11:28:59Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: roberta-finetuned-WebClassification results: [] pipeline_tag: text-classification --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-finetuned-WebClassification This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the [Web Classification Dataset](https://www.kaggle.com/datasets/hetulmehta/website-classification). It achieves the following results on the evaluation set: - Loss: 0.3473 - Accuracy: 0.9504 - F1: 0.9504 - Precision: 0.9504 - Recall: 0.9504 ## Model description The model classifies websites into the following categories: - "0": "Adult", - "1": "Business/Corporate", - "2": "Computers and Technology", - "3": "E-Commerce", - "4": "Education", - "5": "Food", - "6": "Forums", - "7": "Games", - "8": "Health and Fitness", - "9": "Law and Government", - "10": "News", - "11": "Photography", - "12": "Social Networking and Messaging", - "13": "Sports", - "14": "Streaming Services", - "15": "Travel" ## Intended uses & limitations Web classification in English (for now). ## Training and evaluation data Trained and tested on a 80/20 split of the [Web Classification Dataset](https://www.kaggle.com/datasets/hetulmehta/website-classification). ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | No log | 1.0 | 141 | 0.9315 | 0.8617 | 0.8617 | 0.8617 | 0.8617 | | No log | 2.0 | 282 | 0.4956 | 0.9007 | 0.9007 | 0.9007 | 0.9007 | | No log | 3.0 | 423 | 0.4142 | 0.9184 | 0.9184 | 0.9184 | 0.9184 | | 0.9036 | 4.0 | 564 | 0.3998 | 0.9255 | 0.9255 | 0.9255 | 0.9255 | | 0.9036 | 5.0 | 705 | 0.3235 | 0.9397 | 0.9397 | 0.9397 | 0.9397 | | 0.9036 | 6.0 | 846 | 0.3631 | 0.9397 | 0.9397 | 0.9397 | 0.9397 | | 0.9036 | 7.0 | 987 | 0.3705 | 0.9362 | 0.9362 | 0.9362 | 0.9362 | | 0.0898 | 8.0 | 1128 | 0.3469 | 0.9468 | 0.9468 | 0.9468 | 0.9468 | | 0.0898 | 9.0 | 1269 | 0.3657 | 0.9326 | 0.9326 | 0.9326 | 0.9326 | | 0.0898 | 10.0 | 1410 | 0.3473 | 0.9504 | 0.9504 | 0.9504 | 0.9504 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.9.1 - Datasets 1.18.4 - Tokenizers 0.11.6
sanak/a2c-AntBulletEnv-v0
sanak
2023-03-23T16:32:59Z
0
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-23T16:31:53Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1736.23 +/- 84.00 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
hoanglongvn/unit61
hoanglongvn
2023-03-23T16:26:17Z
0
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-23T16:25:05Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1207.05 +/- 141.76 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
nikaashpuri/gpt-expt-sp-v3-K-600-MA-actions-kmeans-v2
nikaashpuri
2023-03-23T16:21:56Z
12
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-03-18T19:39:13Z
--- license: mit tags: - generated_from_trainer model-index: - name: gpt-expt-sp-v3-K-600-MA-actions-kmeans-v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt-expt-sp-v3-K-600-MA-actions-kmeans-v2 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0165 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:------:|:---------------:| | 0.1578 | 19.08 | 5000 | 0.0784 | | 0.0432 | 38.17 | 10000 | 0.0289 | | 0.1022 | 57.25 | 15000 | 0.0259 | | 0.0257 | 76.34 | 20000 | 0.0203 | | 0.0216 | 95.42 | 25000 | 0.0184 | | 0.0196 | 114.5 | 30000 | 0.0177 | | 0.0183 | 133.59 | 35000 | 0.0180 | | 0.0178 | 152.67 | 40000 | 0.0171 | | 0.0176 | 171.76 | 45000 | 0.0170 | | 0.0174 | 190.84 | 50000 | 0.0169 | | 0.0172 | 209.92 | 55000 | 0.0168 | | 0.0171 | 229.01 | 60000 | 0.0168 | | 0.017 | 248.09 | 65000 | 0.0167 | | 0.0169 | 267.18 | 70000 | 0.0167 | | 0.0169 | 286.26 | 75000 | 0.0166 | | 0.0168 | 305.34 | 80000 | 0.0166 | | 0.0168 | 324.43 | 85000 | 0.0166 | | 0.0167 | 343.51 | 90000 | 0.0166 | | 0.0167 | 362.6 | 95000 | 0.0165 | | 0.0166 | 381.68 | 100000 | 0.0165 | | 0.0166 | 400.76 | 105000 | 0.0165 | | 0.0166 | 419.85 | 110000 | 0.0165 | | 0.0165 | 438.93 | 115000 | 0.0165 | | 0.0165 | 458.02 | 120000 | 0.0165 | | 0.0165 | 477.1 | 125000 | 0.0165 | | 0.0165 | 496.18 | 130000 | 0.0165 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1.post200 - Datasets 2.9.0 - Tokenizers 0.13.2
Yasbok/Alpaca_instruction_fine_tune_Arabic
Yasbok
2023-03-23T16:10:08Z
0
11
transformers
[ "transformers", "Alpaca", "Instruction-fine-tuning", "NLP", "Instruct Alpaca", "PEFT", "LoRA", "Instruction tuning", "Pytorch", "ar", "dataset:Yasbok/Alpaca_arabic_instruct", "endpoints_compatible", "region:us" ]
null
2023-03-19T00:41:32Z
--- datasets: - Yasbok/Alpaca_arabic_instruct language: - ar library_name: transformers tags: - Alpaca - Instruction-fine-tuning - NLP - Instruct Alpaca - PEFT - LoRA - Instruction tuning - Pytorch --- ## How to use🦙: ```py import torch import bitsandbytes as bnb from peft import PeftModel, PeftConfig, prepare_model_for_int8_training, LoraConfig, get_peft_model from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig peft_model_id = "Yasbok/Alpaca_instruction_fine_tune_Arabic" # config = PeftConfig.from_pretrained(peft_model_id) tokenizer = LlamaTokenizer.from_pretrained("decapoda-research/llama-7b-hf") model = LlamaForCausalLM.from_pretrained("decapoda-research/llama-7b-hf", load_in_8bit=True, device_map="auto",) # Load the Lora model model = PeftModel.from_pretrained(model, peft_model_id) # Based on the inference code by `tloen/alpaca-lora` def generate_prompt(instruction, input=None): if input: return f"""يوجد أدناه تعليمات تصف مهمة ، إلى جانب إدخال يوفر المزيد من السياق. اكتب ردًا يكمل الطلب بشكل مناسب. ### تعليمات: {instruction} ### مدخل: {input} ### انتاج:""" else: return f"""يوجد أدناه إرشادات تصف مهمة. يُرجى كتابة رد يكمل الطلب بشكل مناسب. ### تعليمات: {instruction} ### انتاج:""" # Inputs to instantiate the model: generation_config = GenerationConfig( temperature=0.2, top_p=0.75, num_beams=4, ) # Evaluate the model: def evaluate(instruction, input=None): prompt = generate_prompt(instruction, input) inputs = tokenizer(prompt, return_tensors="pt") input_ids = inputs["input_ids"].cuda() generation_output = model.generate( input_ids=input_ids, generation_config=generation_config, return_dict_in_generate=True, output_scores=True, max_new_tokens=256 ) for s in generation_output.sequences: output = tokenizer.decode(s) print("انتاج:", output.split("### انتاج:")[1].strip()) evaluate(input("تعليمات: ")) ```
emmuzoo/dqn-SpaceInvadersNoFrameskip-v4
emmuzoo
2023-03-23T16:08:41Z
1
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-23T15:24:59Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 467.50 +/- 191.73 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga emmuzoo -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga emmuzoo -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga emmuzoo ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 10000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
sarahmiller137/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext-ft-ncbi-disease
sarahmiller137
2023-03-23T15:57:02Z
10
0
transformers
[ "transformers", "pytorch", "safetensors", "bert", "token-classification", "named-entity-recognition", "en", "dataset:ncbi_disease", "license:cc", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-22T16:06:00Z
--- language: en license: cc tags: - named-entity-recognition - token-classification task: - named-entity-recognition - token-classification datasets: ncbi_disease metrics: - precision - recall - f1 - accuracy widget: - text: " The risk of cancer, especially lymphoid neoplasias, is substantially elevated in A-T patients and has long been associated with chromosomal instability." --- ## Model information: microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext model finetuned using the ncbi_disease dataset from the datasets library. ## Intended uses: This model is intended to be used for named entity recoginition tasks. The model will identify disease entities in text. The model will predict lables based upon the NCBI-disease dataset, please see the dataset information for details. ## Limitations: Note that the dataset and model may not be fully represetative or suitable for all needs it is recommended that the paper for the dataset and the base model card should be reviewed before using the model - - [NCBI Disease](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3951655/pdf/nihms557856.pdf) - [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) ## Widget text: The text displayed in the example widget was taken from one of the ncbi datasets abstracts. ## How to use: Load the model from the library using the following checkpoints: ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("sarahmiller137/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext-ft-ncbi-disease") model = AutoModel.from_pretrained("sarahmiller137/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext-ft-ncbi-disease") ```
sarahmiller137/BiomedNLP-PubMedBERT-base-uncased-abstract-ft-ncbi-disease
sarahmiller137
2023-03-23T15:56:40Z
21
0
transformers
[ "transformers", "pytorch", "safetensors", "bert", "token-classification", "named-entity-recognition", "entity_extraction", "multi_class_classification", "en", "dataset:ncbi_disease", "license:cc", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-22T15:28:52Z
--- language: en license: cc tags: - named-entity-recognition - token-classification - entity_extraction - multi_class_classification task: - multi_class_classification - entity_extraction - named-entity-recognition - token-classification datasets: ncbi_disease metrics: - precision - recall - f1 - accuracy widget: - text: " The risk of cancer, especially lymphoid neoplasias, is substantially elevated in A-T patients and has long been associated with chromosomal instability." --- ## Model information: microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract model finetuned using the ncbi_disease dataset from the datasets library. ## Intended uses: This model is intended to be used for named entity recoginition tasks. The model will identify disease entities in text. The model will predict lables based upon the NCBI-disease dataset, please see the dataset information for details. ## Limitations: Note that the dataset and model may not be fully represetative or suitable for all needs it is recommended that the paper for the dataset and the base model card should be reviewed before using the model - - [NCBI Disease](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3951655/pdf/nihms557856.pdf) - [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-ft-ncbi-disease](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract) ## How to use: Load the model from the library using the following checkpoints: ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("sarahmiller137/BiomedNLP-PubMedBERT-base-uncased-abstract-ft-ncbi-disease") model = AutoModel.from_pretrained("sarahmiller137/BiomedNLP-PubMedBERT-base-uncased-abstract-ft-ncbi-disease") ```
Lowkey17/cas
Lowkey17
2023-03-23T15:45:35Z
32
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-03-23T15:32:14Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### cas Dreambooth model trained by Lowkey17 with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
aszfcxcgszdx/t5-large-en-de
aszfcxcgszdx
2023-03-23T15:37:12Z
13
0
transformers
[ "transformers", "pytorch", "safetensors", "t5", "text2text-generation", "autotrain", "translation", "en", "de", "dataset:aszfcxcgszdx/autotrain-data-translator", "co2_eq_emissions", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
translation
2023-03-13T19:48:55Z
--- tags: - autotrain - translation language: - en - de datasets: - aszfcxcgszdx/autotrain-data-translator co2_eq_emissions: emissions: 4.2211417553362205 --- # Model Trained Using AutoTrain - Problem type: Translation - Finetuned from t5 large - Model ID: 40847105640 - CO2 Emissions (in grams): 4.2211 ## Validation Metrics - Loss: 0.994 - SacreBLEU: 10.222 - Gen len: 16.562
vocabtrimmer/mt5-small-trimmed-fr-30000-frquad-qg
vocabtrimmer
2023-03-23T15:35:29Z
106
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "question generation", "fr", "dataset:lmqg/qg_frquad", "arxiv:2210.03992", "license:cc-by-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-19T02:04:19Z
--- license: cc-by-4.0 metrics: - bleu4 - meteor - rouge-l - bertscore - moverscore language: fr datasets: - lmqg/qg_frquad pipeline_tag: text2text-generation tags: - question generation widget: - text: "Créateur » (Maker), lui aussi au singulier, « <hl> le Suprême Berger <hl> » (The Great Shepherd) ; de l'autre, des réminiscences de la théologie de l'Antiquité : le tonnerre, voix de Jupiter, « Et souvent ta voix gronde en un tonnerre terrifiant », etc." example_title: "Question Generation Example 1" - text: "Ce black dog peut être lié à des évènements traumatisants issus du monde extérieur, tels que son renvoi de l'Amirauté après la catastrophe des Dardanelles, lors de la <hl> Grande Guerre <hl> de 14-18, ou son rejet par l'électorat en juillet 1945." example_title: "Question Generation Example 2" - text: "contre <hl> Normie Smith <hl> et 15 000 dollars le 28 novembre 1938." example_title: "Question Generation Example 3" model-index: - name: vocabtrimmer/mt5-small-trimmed-fr-30000-frquad-qg results: - task: name: Text2text Generation type: text2text-generation dataset: name: lmqg/qg_frquad type: default args: default metrics: - name: BLEU4 (Question Generation) type: bleu4_question_generation value: 6.88 - name: ROUGE-L (Question Generation) type: rouge_l_question_generation value: 26.45 - name: METEOR (Question Generation) type: meteor_question_generation value: 15.82 - name: BERTScore (Question Generation) type: bertscore_question_generation value: 78.82 - name: MoverScore (Question Generation) type: moverscore_question_generation value: 55.11 --- # Model Card of `vocabtrimmer/mt5-small-trimmed-fr-30000-frquad-qg` This model is fine-tuned version of [ckpts/mt5-small-trimmed-fr-30000](https://huggingface.co/ckpts/mt5-small-trimmed-fr-30000) for question generation task on the [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation). ### Overview - **Language model:** [ckpts/mt5-small-trimmed-fr-30000](https://huggingface.co/ckpts/mt5-small-trimmed-fr-30000) - **Language:** fr - **Training data:** [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) (default) - **Online Demo:** [https://autoqg.net/](https://autoqg.net/) - **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation) - **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992) ### Usage - With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-) ```python from lmqg import TransformersQG # initialize model model = TransformersQG(language="fr", model="vocabtrimmer/mt5-small-trimmed-fr-30000-frquad-qg") # model prediction questions = model.generate_q(list_context="Créateur » (Maker), lui aussi au singulier, « le Suprême Berger » (The Great Shepherd) ; de l'autre, des réminiscences de la théologie de l'Antiquité : le tonnerre, voix de Jupiter, « Et souvent ta voix gronde en un tonnerre terrifiant », etc.", list_answer="le Suprême Berger") ``` - With `transformers` ```python from transformers import pipeline pipe = pipeline("text2text-generation", "vocabtrimmer/mt5-small-trimmed-fr-30000-frquad-qg") output = pipe("Créateur » (Maker), lui aussi au singulier, « <hl> le Suprême Berger <hl> » (The Great Shepherd) ; de l'autre, des réminiscences de la théologie de l'Antiquité : le tonnerre, voix de Jupiter, « Et souvent ta voix gronde en un tonnerre terrifiant », etc.") ``` ## Evaluation - ***Metric (Question Generation)***: [raw metric file](https://huggingface.co/vocabtrimmer/mt5-small-trimmed-fr-30000-frquad-qg/raw/main/eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_frquad.default.json) | | Score | Type | Dataset | |:-----------|--------:|:--------|:-----------------------------------------------------------------| | BERTScore | 78.82 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) | | Bleu_1 | 26.41 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) | | Bleu_2 | 15 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) | | Bleu_3 | 9.91 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) | | Bleu_4 | 6.88 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) | | METEOR | 15.82 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) | | MoverScore | 55.11 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) | | ROUGE_L | 26.45 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) | ## Training hyperparameters The following hyperparameters were used during fine-tuning: - dataset_path: lmqg/qg_frquad - dataset_name: default - input_types: paragraph_answer - output_types: question - prefix_types: None - model: ckpts/mt5-small-trimmed-fr-30000 - max_length: 512 - max_length_output: 32 - epoch: 16 - batch: 16 - lr: 0.0005 - fp16: False - random_seed: 1 - gradient_accumulation_steps: 4 - label_smoothing: 0.15 The full configuration can be found at [fine-tuning config file](https://huggingface.co/vocabtrimmer/mt5-small-trimmed-fr-30000-frquad-qg/raw/main/trainer_config.json). ## Citation ``` @inproceedings{ushio-etal-2022-generative, title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration", author = "Ushio, Asahi and Alva-Manchego, Fernando and Camacho-Collados, Jose", booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing", month = dec, year = "2022", address = "Abu Dhabi, U.A.E.", publisher = "Association for Computational Linguistics", } ```
SirVeggie/wlop_lora
SirVeggie
2023-03-23T15:25:22Z
0
5
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-03-23T14:30:45Z
--- license: creativeml-openrail-m --- # WLOP lora Original artist: https://www.patreon.com/wlop ### Lora details I haven't tested extensively yet, but sv_wlop is the 14 epoch version that I've mainly used and it works quite well. Lora works pretty well at and below weight 1. A good negative is helpful for optimal results. Here are some options: ``` (low quality, worst quality:1.4), (bad anatomy), extra digit, fewer digits, (extra arms:1.2), bad hands, by (bad-artist:0.6), bad-image-v2-39000 [low quality easynegative|worst quality 3d] ``` https://huggingface.co/datasets/gsdf/EasyNegative \ https://huggingface.co/nick-x-hacker/bad-artist \ https://huggingface.co/Xynon/models/tree/main/experimentals/TI ### Keywords wlop, aeolian, yan, jade The keywords other than `wlop` don't have much effect, but describing the characters will make them appear to a degree. ## Images ![img1](wlop_lora_1.png) ![img2](wlop_lora_2.png) ![img3](wlop_lora_3.png) ![img4](wlop_lora_4.png) ![img5](wlop_lora_5.png)
BobMcDear/swin_base_window6_simmim_in1k_100ep_ft_in1k_192
BobMcDear
2023-03-23T15:18:41Z
0
0
null
[ "region:us" ]
null
2023-03-23T15:15:28Z
Please refer to [flaim](https://github.com/bobmcdear/flaim) for sample usage and more information.
BobMcDear/swin_base_window7_simmim_in1k_100ep_ft_in1k_224
BobMcDear
2023-03-23T15:18:31Z
0
0
null
[ "region:us" ]
null
2023-03-23T15:15:29Z
Please refer to [flaim](https://github.com/bobmcdear/flaim) for sample usage and more information.
BobMcDear/swin_base_window6_simmim_in1k_800ep_192
BobMcDear
2023-03-23T15:17:49Z
0
0
null
[ "region:us" ]
null
2023-03-23T15:15:30Z
Please refer to [flaim](https://github.com/bobmcdear/flaim) for sample usage and more information.
KoRo8888/Ohayou_Locon
KoRo8888
2023-03-23T15:01:31Z
0
6
null
[ "region:us" ]
null
2023-03-23T14:35:31Z
512x512 with HiRes is most recommended - activation token is "Ohayou" special thanks to "Wes#9704","Luna 🌙#9999","홍차세잔#9115","Vil#0404" for testing it! ![tmp84vl0r7a-1.png](https://s3.amazonaws.com/moonup/production/uploads/639b1d7a5d6e30f96220eb7c/F82Ftoidpz_wP6zC4ZXpa.png)
TerryYH/ppo-LunarLander-v2
TerryYH
2023-03-23T14:57:54Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-23T14:57:33Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 275.30 +/- 14.87 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
micromind/CIFAR-10
micromind
2023-03-23T14:53:05Z
0
0
null
[ "image-classification", "en", "dataset:cifar10", "license:mit", "region:us" ]
image-classification
2023-02-22T09:40:22Z
--- license: mit datasets: - cifar10 language: - en pipeline_tag: image-classification --- # micromind checkpoints for CIFAR-10 This repository contains checkpoints for the CIFAR-10 dataset for the following networks: | Model | Top 1 Accuracy | Top 5 Accuracy | | ------------------ |---------------- | -------------- | | `PhiNet(alpha=3, beta=0.75, t_zero=6, num_layers=7, resolution=160)` | 93.61% | 99.77% | | `PhiNet(alpha=0.75, beta=1, t_zero=6, num_layers=5, resolution=160)` | 86.8% | 99.5% | | `PhiNet(alpha=0.35, beta=1, t_zero=6, num_layers=7, resolution=160)` | 88.08% | 99.48% | | `PhiNet(alpha=0.25, beta=1, t_zero=6, num_layers=7, resolution=160)` | 84.97% | 99.3% | | `PhiNet(alpha=0.25, beta=1, t_zero=5, num_layers=7, resolution=160)` | 83.01% | 99.2% | To download and use this repo: ``` from micromind import PhiNet model = PhiNet.from_pretrained("CIFAR-10", alpha=3.0, beta=0.75, t_zero=6, num_layers=7, num_classes=10, resolution=160) ``` ## Authors - [@fpaissan](https://www.github.com/fpaissan) - [@matteobeltrami](https://www.github.com/matteobeltrami) --- license: mit ---
unagui/taxiv0
unagui
2023-03-23T14:36:35Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-23T14:36:33Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: taxiv0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.50 +/- 2.75 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="unagui/taxiv0", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Vaibhavoutat/ppo-Huggy
Vaibhavoutat
2023-03-23T14:20:31Z
9
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-03-23T14:20:23Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Find your model_id: Vaibhavoutat/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Periramm/ppo-PyramidsTraining
Periramm
2023-03-23T14:18:45Z
6
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-03-23T14:18:26Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Find your model_id: Periramm/ppo-PyramidsTraining 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
kikijiki/q-FrozenLake-v1-4x4-noSlippery
kikijiki
2023-03-23T14:05:46Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-23T14:05:42Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="kikijiki/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
hidude562/Wiki-Complexity
hidude562
2023-03-23T13:52:40Z
27
4
transformers
[ "transformers", "pytorch", "jax", "safetensors", "distilbert", "text-classification", "autotrain", "en", "dataset:hidude562/autotrain-data-SimpleDetect", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-07T19:37:14Z
--- tags: autotrain language: en widget: - text: "I quite enjoy using AutoTrain due to its simplicity." datasets: - hidude562/autotrain-data-SimpleDetect co2_eq_emissions: 0.21691606119445225 --- # Model Description This model detects if you are writing in a format that is more similar to Simple English Wikipedia or English Wikipedia. This can be extended to applications that aren't Wikipedia as well and to some extent, it can be used for other languages. Please also note there is a major bias to special characters (Mainly the hyphen mark, but it also applies to others) so I would recommend removing them from your input text. # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 837726721 - CO2 Emissions (in grams): 0.21691606119445225 ## Validation Metrics - Loss: 0.010096958838403225 - Accuracy: 0.996223414828066 - Macro F1: 0.996179398826373 - Micro F1: 0.996223414828066 - Weighted F1: 0.996223414828066 - Macro Precision: 0.996179398826373 - Micro Precision: 0.996223414828066 - Weighted Precision: 0.996223414828066 - Macro Recall: 0.996179398826373 - Micro Recall: 0.996223414828066 - Weighted Recall: 0.996223414828066 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I quite enjoy using AutoTrain due to its simplicity."}' https://api-inference.huggingface.co/models/hidude562/Wiki-Complexity ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("hidude562/Wiki-Complexity", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("hidude562/Wiki-Complexity", use_auth_token=True) inputs = tokenizer("I quite enjoy using AutoTrain due to its simplicity.", return_tensors="pt") outputs = model(**inputs) ```
shahrukhx01/paraphrase-mpnet-base-v2-fuzzy-matcher
shahrukhx01
2023-03-23T13:38:20Z
3,214
10
transformers
[ "transformers", "pytorch", "safetensors", "mpnet", "feature-extraction", "fuzzy-matching", "fuzzy-search", "entity-resolution", "record-linking", "structured-data-search", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
--- tags: - fuzzy-matching - fuzzy-search - entity-resolution - record-linking - structured-data-search --- A Siamese BERT architecture trained at character levels tokens for embedding based Fuzzy matching. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer, util word1 = "fuzzformer" word1 = " ".join([char for char in word1]) ## divide the word to char level to fuzzy match word2 = "fizzformer" word2 = " ".join([char for char in word2]) ## divide the word to char level to fuzzy match words = [word1, word2] model = SentenceTransformer('shahrukhx01/paraphrase-mpnet-base-v2-fuzzy-matcher') fuzzy_embeddings = model.encode(words) print("Fuzzy Match score:") print(util.cos_sim(fuzzy_embeddings[0], fuzzy_embeddings[1])) ``` ## Usage (HuggingFace Transformers) ```python import torch from transformers import AutoTokenizer, AutoModel from torch import Tensor, device def cos_sim(a: Tensor, b: Tensor): """ borrowed from sentence transformers repo Computes the cosine similarity cos_sim(a[i], b[j]) for all i and j. :return: Matrix with res[i][j] = cos_sim(a[i], b[j]) """ if not isinstance(a, torch.Tensor): a = torch.tensor(a) if not isinstance(b, torch.Tensor): b = torch.tensor(b) if len(a.shape) == 1: a = a.unsqueeze(0) if len(b.shape) == 1: b = b.unsqueeze(0) a_norm = torch.nn.functional.normalize(a, p=2, dim=1) b_norm = torch.nn.functional.normalize(b, p=2, dim=1) return torch.mm(a_norm, b_norm.transpose(0, 1)) #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Words we want fuzzy embeddings for word1 = "fuzzformer" word1 = " ".join([char for char in word1]) ## divide the word to char level to fuzzy match word2 = "fizzformer" word2 = " ".join([char for char in word2]) ## divide the word to char level to fuzzy match words = [word1, word2] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('shahrukhx01/paraphrase-mpnet-base-v2-fuzzy-matcher') model = AutoModel.from_pretrained('shahrukhx01/paraphrase-mpnet-base-v2-fuzzy-matcher') # Tokenize sentences encoded_input = tokenizer(words, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. fuzzy_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Fuzzy Match score:") print(cos_sim(fuzzy_embeddings[0], fuzzy_embeddings[1])) ``` ## ACKNOWLEDGEMENT A big thank you to [Sentence Transformers](https://github.com/UKPLab/sentence-transformers) as their implementation really expedited the implementation of Fuzzformer. ## Citation To cite FuzzTransformer in your work, please use the following bibtex reference: @misc{shahrukhkhan2021fuzzTransformer, <br> author = {Shahrukh Khan},<br> title = {FuzzTransformer: A character level embedding based Siamese transformer for fuzzy string matching.},<br> year = 2021,<br> publisher = {Coming soon},<br> doi = {Coming soon},<br> url = {Coming soon}<br> }
kebei/q-FrozenLake-v1-4x4-noSlippery
kebei
2023-03-23T13:38:13Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-23T13:38:05Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="kebei/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
obsei-ai/sell-buy-intent-classifier-bert-mini
obsei-ai
2023-03-23T13:38:00Z
30
3
transformers
[ "transformers", "pytorch", "safetensors", "bert", "text-classification", "buy-intent", "sell-intent", "consumer-intent", "en", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- language: "en" tags: - buy-intent - sell-intent - consumer-intent widget: - text: "Can you please share pictures for Face Shields ? We are looking for large quantity pcs" --- # Buy vs Sell Intent Classifier | Train Loss | Validation Acc.| Test Acc.| | ------------- |:-------------: | -----: | | 0.013 | 0.988 | 0.992 | # Sample Intents for Testings LABEL_0 => **"SELLING_INTENT"** <br/> LABEL_1 => **"BUYING_INTENT"** ## Buying Intents - I am interested in this style of PGN-ES-D-6150 /Direct drive energy saving servo motor price and in doing business with you. Could you please send me the quotation - Hi, I am looking for a supplier of calcium magnesium carbonate fertilizer. Can you send 1 bag sample via air freight to the USA? - I am looking for the purple ombre dress with floral bodice in a size 12 for my wedding in June this year - we are interested in your Corned Beef. do you have any quality assurance certificates? looking forward to hearing from you. - I would like to know if pet nail clippers are of high quality. And if you would send a free sample? ## Selling Intents - Black full body massage chair for sale. - Boiler over 7 years old - Polyester trousers black, size 24. - Oliver Twist £1, German Dictionary 50p (Cold War s0ld), Penguin Plays £1, post by arrangement. The bundle price is £2. Will separate (Twelfth Night and Sketch B&W Sold) - Brand new Royal Doulton bone China complete Dinner Service comprising 55 pieces including coffee pot and cups. (6 PLACE SETTING) ! 'Diana' design delicate pattern. ## Usage in Transformers ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("obsei-ai/sell-buy-intent-classifier-bert-mini") model = AutoModelForSequenceClassification.from_pretrained("obsei-ai/sell-buy-intent-classifier-bert-mini") ``` ## <p style='color:red'>Due to the privacy reasons, I unfortunately can't share the dataset and its splits.</p>
ankandrew/ppo-SnowballTarget
ankandrew
2023-03-23T13:17:51Z
4
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-03-23T13:17:45Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Find your model_id: ankandrew/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
enlyth/baj-tts
enlyth
2023-03-23T13:16:04Z
0
6
null
[ "tts", "vits", "license:openrail", "region:us" ]
null
2023-02-13T19:51:05Z
--- license: openrail tags: - tts - vits --- Pretrained VITS Text-to-Speech models for some popular personalities or celebrities. Forsen, XQC, Juice WRLD, Donald Trump, David Attenborough, Obi-Wan Kenobi (Alec Guiness) https://github.com/enlyth/baj-tts
Mehtap/base_10
Mehtap
2023-03-23T13:08:25Z
78
1
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "tr", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-03-22T09:09:47Z
--- language: - tr license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer metrics: - wer model-index: - name: base Turkish Whisper (bTW) results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # base Turkish Whisper (bTW) This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the Ermetal Meetings dataset. It achieves the following results on the evaluation set: - Loss: 1.8564 - Wer: 1.2482 - Cer: 0.7381 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 1.6604 | 2.86 | 100 | 1.9378 | 1.1296 | 0.6334 | | 0.6453 | 5.71 | 200 | 1.4655 | 0.9878 | 0.5974 | | 0.3912 | 8.57 | 300 | 1.4669 | 1.2543 | 0.7557 | | 0.2081 | 11.43 | 400 | 1.4622 | 0.8203 | 0.5123 | | 0.094 | 14.29 | 500 | 1.6592 | 0.9535 | 0.6367 | | 0.039 | 17.14 | 600 | 1.6946 | 0.9658 | 0.5706 | | 0.0172 | 20.0 | 700 | 1.8271 | 1.4046 | 1.0027 | | 0.0086 | 22.86 | 800 | 1.8149 | 1.2567 | 0.7530 | | 0.0064 | 25.71 | 900 | 1.8478 | 1.2311 | 0.7279 | | 0.0061 | 28.57 | 1000 | 1.8564 | 1.2482 | 0.7381 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.12.0+cu102 - Datasets 2.9.0 - Tokenizers 0.13.2
enlyth/tresh-tortoise
enlyth
2023-03-23T13:02:48Z
0
0
null
[ "license:openrail", "region:us" ]
null
2023-03-23T12:40:53Z
--- license: openrail --- Tresh voice, from the forsen stream. Model and dataset, to be used with https://git.ecker.tech/mrq/ai-voice-cloning Sample: https://soundcloud.com/enlyth/tresh-00016
arrandi/rl_course_vizdoom_health_gathering_supreme
arrandi
2023-03-23T12:52:24Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-23T10:54:23Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 18.04 +/- 4.66 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r arrandi/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.local.lib.python3.9.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.local.lib.python3.9.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
Krzysiek111/lunar_lander_v1
Krzysiek111
2023-03-23T12:39:09Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-23T12:29:57Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 269.74 +/- 16.55 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
harikc456/poca-SoccerTwos
harikc456
2023-03-23T12:17:48Z
151
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-03-20T14:59:26Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: harikc456/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
tobiasc/segformer-b0-finetuned-segments-sidewalk
tobiasc
2023-03-23T12:09:17Z
1,039
1
transformers
[ "transformers", "pytorch", "safetensors", "segformer", "vision", "image-segmentation", "dataset:segments/sidewalk-semantic", "arxiv:2105.15203", "endpoints_compatible", "region:us" ]
image-segmentation
2022-03-03T16:41:19Z
--- tags: - vision - image-segmentation datasets: - segments/sidewalk-semantic widget: - src: https://segmentsai-prod.s3.eu-west-2.amazonaws.com/assets/admin-tobias/439f6843-80c5-47ce-9b17-0b2a1d54dbeb.jpg example_title: Brugge --- # SegFormer (b0-sized) model fine-tuned on Segments.ai sidewalk-semantic. SegFormer model fine-tuned on [Segments.ai](https://segments.ai) [`sidewalk-semantic`](https://huggingface.co/datasets/segments/sidewalk-semantic). It was introduced in the paper [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) by Xie et al. and first released in [this repository](https://github.com/NVlabs/SegFormer). ## Model description SegFormer consists of a hierarchical Transformer encoder and a lightweight all-MLP decode head to achieve great results on semantic segmentation benchmarks such as ADE20K and Cityscapes. The hierarchical Transformer is first pre-trained on ImageNet-1k, after which a decode head is added and fine-tuned altogether on a downstream dataset. ### How to use Here is how to use this model to classify an image of the sidewalk dataset: ```python from transformers import SegformerFeatureExtractor, SegformerForSemanticSegmentation from PIL import Image import requests feature_extractor = SegformerFeatureExtractor.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512") model = SegformerForSemanticSegmentation.from_pretrained("segments-tobias/segformer-b0-finetuned-segments-sidewalk") url = "https://segmentsai-prod.s3.eu-west-2.amazonaws.com/assets/admin-tobias/439f6843-80c5-47ce-9b17-0b2a1d54dbeb.jpg" image = Image.open(requests.get(url, stream=True).raw) inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # shape (batch_size, num_labels, height/4, width/4) ``` For more code examples, we refer to the [documentation](https://huggingface.co/transformers/model_doc/segformer.html#). ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2105-15203, author = {Enze Xie and Wenhai Wang and Zhiding Yu and Anima Anandkumar and Jose M. Alvarez and Ping Luo}, title = {SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers}, journal = {CoRR}, volume = {abs/2105.15203}, year = {2021}, url = {https://arxiv.org/abs/2105.15203}, eprinttype = {arXiv}, eprint = {2105.15203}, timestamp = {Wed, 02 Jun 2021 11:46:42 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2105-15203.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
rng0x17/ppo-LunarLander-v2
rng0x17
2023-03-23T12:00:45Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-22T22:20:24Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 282.19 +/- 20.79 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
EddyWebb/vit-base-patch16-224-finetuned-flower
EddyWebb
2023-03-23T11:57:00Z
18
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-03-23T11:49:38Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder model-index: - name: vit-base-patch16-224-finetuned-flower results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-patch16-224-finetuned-flower This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.1+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
SpookyWooky5/q-FrozenLake-v1-4x4-noSlippery
SpookyWooky5
2023-03-23T11:54:49Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-23T11:54:46Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="SpookyWooky5/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
rossHuggingMay/ppo-SnowballTarget
rossHuggingMay
2023-03-23T11:38:55Z
5
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-03-23T11:38:49Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Find your model_id: rossHuggingMay/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
vocabtrimmer/xlm-roberta-base-tweet-sentiment-de-trimmed-de-15000
vocabtrimmer
2023-03-23T11:29:55Z
105
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-15T22:09:18Z
# Vocabulary Trimmed [cardiffnlp/xlm-roberta-base-tweet-sentiment-de](https://huggingface.co/cardiffnlp/xlm-roberta-base-tweet-sentiment-de): `vocabtrimmer/xlm-roberta-base-tweet-sentiment-de-trimmed-de-15000` This model is a trimmed version of [cardiffnlp/xlm-roberta-base-tweet-sentiment-de](https://huggingface.co/cardiffnlp/xlm-roberta-base-tweet-sentiment-de) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | cardiffnlp/xlm-roberta-base-tweet-sentiment-de | vocabtrimmer/xlm-roberta-base-tweet-sentiment-de-trimmed-de-15000 | |:---------------------------|:-------------------------------------------------|:--------------------------------------------------------------------| | parameter_size_full | 278,045,955 | 97,565,955 | | parameter_size_embedding | 192,001,536 | 11,521,536 | | vocab_size | 250,002 | 15,002 | | compression_rate_full | 100.0 | 35.09 | | compression_rate_embedding | 100.0 | 6.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | de | vocabtrimmer/mc4_validation | text | de | validation | 15000 | 2 |
Periramm/ppo-SnowballTarget
Periramm
2023-03-23T11:27:45Z
6
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-03-23T11:27:40Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Find your model_id: Periramm/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
marimurta/q-Taxi-v3
marimurta
2023-03-23T11:27:10Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-23T11:27:09Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="marimurta/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
hruslen/Reinforce-CartPole-v1
hruslen
2023-03-23T11:23:32Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-03-23T11:23:22Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
vocabtrimmer/xlm-roberta-base-tweet-sentiment-de-trimmed-de-5000
vocabtrimmer
2023-03-23T11:22:08Z
4
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-15T22:01:07Z
# Vocabulary Trimmed [cardiffnlp/xlm-roberta-base-tweet-sentiment-de](https://huggingface.co/cardiffnlp/xlm-roberta-base-tweet-sentiment-de): `vocabtrimmer/xlm-roberta-base-tweet-sentiment-de-trimmed-de-5000` This model is a trimmed version of [cardiffnlp/xlm-roberta-base-tweet-sentiment-de](https://huggingface.co/cardiffnlp/xlm-roberta-base-tweet-sentiment-de) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | cardiffnlp/xlm-roberta-base-tweet-sentiment-de | vocabtrimmer/xlm-roberta-base-tweet-sentiment-de-trimmed-de-5000 | |:---------------------------|:-------------------------------------------------|:-------------------------------------------------------------------| | parameter_size_full | 278,045,955 | 89,885,955 | | parameter_size_embedding | 192,001,536 | 3,841,536 | | vocab_size | 250,002 | 5,002 | | compression_rate_full | 100.0 | 32.33 | | compression_rate_embedding | 100.0 | 2.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | de | vocabtrimmer/mc4_validation | text | de | validation | 5000 | 2 |
quilaquedi/Reinforce-Pixelcopter-PLE-v0
quilaquedi
2023-03-23T11:15:06Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-03-23T11:14:59Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 23.30 +/- 25.75 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
rootacess/distilbert-base-uncased-finetuned-mathQA
rootacess
2023-03-23T11:14:46Z
15
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-06T13:29:55Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-mathQA results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-mathQA This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0752 - Accuracy: 0.9857 - F1: 0.9857 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.3155 | 1.0 | 1865 | 0.0997 | 0.9727 | 0.9727 | | 0.0726 | 2.0 | 3730 | 0.0813 | 0.9826 | 0.9825 | | 0.0292 | 3.0 | 5595 | 0.0752 | 0.9857 | 0.9857 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
berchielli/cabrita-7b-pt-br
berchielli
2023-03-23T11:09:02Z
0
0
null
[ "region:us" ]
null
2023-03-23T10:57:09Z
Model based on https://github.com/22-hours/cabrita Install dependencies ``` !pip install -q datasets loralib sentencepiece !pip uninstall transformers -y !pip install git+https://github.com/huggingface/transformers.git !pip -q install git+https://github.com/huggingface/peft.git !pip -q install bitsandbytes ``` Import ``` from peft import PeftModel from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig import textwrap ``` Define model ``` tokenizer = LlamaTokenizer.from_pretrained("decapoda-research/llama-7b-hf") model = LlamaForCausalLM.from_pretrained( "decapoda-research/llama-7b-hf", load_in_8bit=True, device_map="auto", ) model = PeftModel.from_pretrained(model, "berchielli/cabrita-7b-pt-br") ``` Use the model for inferences ``` generation_config = GenerationConfig( temperature=0.9, top_p=0.75, num_beams=4, ) prompt = inputs = tokenizer(prompt, return_tensors="pt") input_ids = inputs["input_ids"].cuda() generation_output = model.generate( input_ids=input_ids, generation_config=generation_config, return_dict_in_generate=True, output_scores=True, max_new_tokens=256 ) ```
vocabtrimmer/xlm-roberta-base-tweet-sentiment-es-trimmed-es-60000
vocabtrimmer
2023-03-23T11:06:10Z
7
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-15T21:44:14Z
# Vocabulary Trimmed [cardiffnlp/xlm-roberta-base-tweet-sentiment-es](https://huggingface.co/cardiffnlp/xlm-roberta-base-tweet-sentiment-es): `vocabtrimmer/xlm-roberta-base-tweet-sentiment-es-trimmed-es-60000` This model is a trimmed version of [cardiffnlp/xlm-roberta-base-tweet-sentiment-es](https://huggingface.co/cardiffnlp/xlm-roberta-base-tweet-sentiment-es) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | cardiffnlp/xlm-roberta-base-tweet-sentiment-es | vocabtrimmer/xlm-roberta-base-tweet-sentiment-es-trimmed-es-60000 | |:---------------------------|:-------------------------------------------------|:--------------------------------------------------------------------| | parameter_size_full | 278,045,955 | 132,125,955 | | parameter_size_embedding | 192,001,536 | 46,081,536 | | vocab_size | 250,002 | 60,002 | | compression_rate_full | 100.0 | 47.52 | | compression_rate_embedding | 100.0 | 24.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | es | vocabtrimmer/mc4_validation | text | es | validation | 60000 | 2 |
vocabtrimmer/xlm-roberta-base-tweet-sentiment-es-trimmed-es-30000
vocabtrimmer
2023-03-23T11:00:43Z
10
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-15T21:37:41Z
# Vocabulary Trimmed [cardiffnlp/xlm-roberta-base-tweet-sentiment-es](https://huggingface.co/cardiffnlp/xlm-roberta-base-tweet-sentiment-es): `vocabtrimmer/xlm-roberta-base-tweet-sentiment-es-trimmed-es-30000` This model is a trimmed version of [cardiffnlp/xlm-roberta-base-tweet-sentiment-es](https://huggingface.co/cardiffnlp/xlm-roberta-base-tweet-sentiment-es) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | cardiffnlp/xlm-roberta-base-tweet-sentiment-es | vocabtrimmer/xlm-roberta-base-tweet-sentiment-es-trimmed-es-30000 | |:---------------------------|:-------------------------------------------------|:--------------------------------------------------------------------| | parameter_size_full | 278,045,955 | 109,085,955 | | parameter_size_embedding | 192,001,536 | 23,041,536 | | vocab_size | 250,002 | 30,002 | | compression_rate_full | 100.0 | 39.23 | | compression_rate_embedding | 100.0 | 12.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | es | vocabtrimmer/mc4_validation | text | es | validation | 30000 | 2 |
Ryosei0304/q-FrozenLake-v1-4x4-noSlippery
Ryosei0304
2023-03-23T10:58:55Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-23T10:58:48Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Ryosei0304/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
makaveli10/q-FrozenLake-v1-4x4-noSlippery
makaveli10
2023-03-23T10:57:50Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-23T10:57:39Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="makaveli10/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
vocabtrimmer/xlm-roberta-base-tweet-sentiment-es-trimmed-es-15000
vocabtrimmer
2023-03-23T10:57:13Z
105
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-15T21:32:55Z
# Vocabulary Trimmed [cardiffnlp/xlm-roberta-base-tweet-sentiment-es](https://huggingface.co/cardiffnlp/xlm-roberta-base-tweet-sentiment-es): `vocabtrimmer/xlm-roberta-base-tweet-sentiment-es-trimmed-es-15000` This model is a trimmed version of [cardiffnlp/xlm-roberta-base-tweet-sentiment-es](https://huggingface.co/cardiffnlp/xlm-roberta-base-tweet-sentiment-es) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | cardiffnlp/xlm-roberta-base-tweet-sentiment-es | vocabtrimmer/xlm-roberta-base-tweet-sentiment-es-trimmed-es-15000 | |:---------------------------|:-------------------------------------------------|:--------------------------------------------------------------------| | parameter_size_full | 278,045,955 | 97,565,955 | | parameter_size_embedding | 192,001,536 | 11,521,536 | | vocab_size | 250,002 | 15,002 | | compression_rate_full | 100.0 | 35.09 | | compression_rate_embedding | 100.0 | 6.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | es | vocabtrimmer/mc4_validation | text | es | validation | 15000 | 2 |
karolill/mbert_LR3e-05_WR0.1_OPTIMadamw_hf_WD0.1
karolill
2023-03-23T10:56:43Z
91
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-23T10:52:11Z
--- license: mit --- This is a [multilingual BERT](https://huggingface.co/bert-base-multilingual-cased) model fine-tuned on 4000 examples of the [NoReC dataset](https://github.com/ltgoslo/norec) where examples with score 1/2 were marked as negative and 5/6 were marked as positive. The model was fine-tuned for 2 epochs with the following parameters: - learning_rate = 3e-05 - warmup_ratio = 0.1 - optim = 'adamw_hf' - weight_decay = 0.1