modelId
string
author
string
last_modified
timestamp[us, tz=UTC]
downloads
int64
likes
int64
library_name
string
tags
list
pipeline_tag
string
createdAt
timestamp[us, tz=UTC]
card
string
syndi-models/roberta-base-squad2
syndi-models
2023-03-24T14:20:45Z
9
0
transformers
[ "transformers", "pytorch", "tf", "jax", "rust", "safetensors", "roberta", "question-answering", "en", "dataset:squad_v2", "license:cc-by-4.0", "model-index", "endpoints_compatible", "region:us" ]
question-answering
2023-05-09T19:12:36Z
--- language: en license: cc-by-4.0 datasets: - squad_v2 model-index: - name: deepset/roberta-base-squad2 results: - task: type: question-answering name: Question Answering dataset: name: squad_v2 type: squad_v2 config: squad_v2 split: validation metrics: - type: exact_match value: 79.9309 name: Exact Match verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMDhhNjg5YzNiZGQ1YTIyYTAwZGUwOWEzZTRiYzdjM2QzYjA3ZTUxNDM1NjE1MTUyMjE1MGY1YzEzMjRjYzVjYiIsInZlcnNpb24iOjF9.EH5JJo8EEFwU7osPz3s7qanw_tigeCFhCXjSfyN0Y1nWVnSfulSxIk_DbAEI5iE80V4EKLyp5-mYFodWvL2KDA - type: f1 value: 82.9501 name: F1 verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMjk5ZDYwOGQyNjNkMWI0OTE4YzRmOTlkY2JjNjQ0YTZkNTMzMzNkYTA0MDFmNmI3NjA3NjNlMjhiMDQ2ZjJjNSIsInZlcnNpb24iOjF9.DDm0LNTkdLbGsue58bg1aH_s67KfbcmkvL-6ZiI2s8IoxhHJMSf29H_uV2YLyevwx900t-MwTVOW3qfFnMMEAQ - type: total value: 11869 name: total verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMGFkMmI2ODM0NmY5NGNkNmUxYWViOWYxZDNkY2EzYWFmOWI4N2VhYzY5MGEzMTVhOTU4Zjc4YWViOGNjOWJjMCIsInZlcnNpb24iOjF9.fexrU1icJK5_MiifBtZWkeUvpmFISqBLDXSQJ8E6UnrRof-7cU0s4tX_dIsauHWtUpIHMPZCf5dlMWQKXZuAAA --- # roberta-base for QA This is the [roberta-base](https://huggingface.co/roberta-base) model, fine-tuned using the [SQuAD2.0](https://huggingface.co/datasets/squad_v2) dataset. It's been trained on question-answer pairs, including unanswerable questions, for the task of Question Answering. ## Overview **Language model:** roberta-base **Language:** English **Downstream-task:** Extractive QA **Training data:** SQuAD 2.0 **Eval data:** SQuAD 2.0 **Code:** See [an example QA pipeline on Haystack](https://haystack.deepset.ai/tutorials/first-qa-system) **Infrastructure**: 4x Tesla v100 ## Hyperparameters ``` batch_size = 96 n_epochs = 2 base_LM_model = "roberta-base" max_seq_len = 386 learning_rate = 3e-5 lr_schedule = LinearWarmup warmup_proportion = 0.2 doc_stride=128 max_query_length=64 ``` ## Using a distilled model instead Please note that we have also released a distilled version of this model called [deepset/tinyroberta-squad2](https://huggingface.co/deepset/tinyroberta-squad2). The distilled model has a comparable prediction quality and runs at twice the speed of the base model. ## Usage ### In Haystack Haystack is an NLP framework by deepset. You can use this model in a Haystack pipeline to do question answering at scale (over many documents). To load the model in [Haystack](https://github.com/deepset-ai/haystack/): ```python reader = FARMReader(model_name_or_path="deepset/roberta-base-squad2") # or reader = TransformersReader(model_name_or_path="deepset/roberta-base-squad2",tokenizer="deepset/roberta-base-squad2") ``` For a complete example of ``roberta-base-squad2`` being used for Question Answering, check out the [Tutorials in Haystack Documentation](https://haystack.deepset.ai/tutorials/first-qa-system) ### In Transformers ```python from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline model_name = "deepset/roberta-base-squad2" # a) Get predictions nlp = pipeline('question-answering', model=model_name, tokenizer=model_name) QA_input = { 'question': 'Why is model conversion important?', 'context': 'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.' } res = nlp(QA_input) # b) Load model & tokenizer model = AutoModelForQuestionAnswering.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) ``` ## Performance Evaluated on the SQuAD 2.0 dev set with the [official eval script](https://worksheets.codalab.org/rest/bundles/0x6b567e1cf2e041ec80d7098f031c5c9e/contents/blob/). ``` "exact": 79.87029394424324, "f1": 82.91251169582613, "total": 11873, "HasAns_exact": 77.93522267206478, "HasAns_f1": 84.02838248389763, "HasAns_total": 5928, "NoAns_exact": 81.79983179142137, "NoAns_f1": 81.79983179142137, "NoAns_total": 5945 ``` ## Authors **Branden Chan:** [email protected] **Timo Möller:** [email protected] **Malte Pietsch:** [email protected] **Tanay Soni:** [email protected] ## About us <div class="grid lg:grid-cols-2 gap-x-4 gap-y-3"> <div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center"> <img alt="" src="https://raw.githubusercontent.com/deepset-ai/.github/main/deepset-logo-colored.png" class="w-40"/> </div> <div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center"> <img alt="" src="https://raw.githubusercontent.com/deepset-ai/.github/main/haystack-logo-colored.png" class="w-40"/> </div> </div> [deepset](http://deepset.ai/) is the company behind the open-source NLP framework [Haystack](https://haystack.deepset.ai/) which is designed to help you build production ready NLP systems that use: Question answering, summarization, ranking etc. Some of our other work: - [Distilled roberta-base-squad2 (aka "tinyroberta-squad2")]([https://huggingface.co/deepset/tinyroberta-squad2) - [German BERT (aka "bert-base-german-cased")](https://deepset.ai/german-bert) - [GermanQuAD and GermanDPR datasets and models (aka "gelectra-base-germanquad", "gbert-base-germandpr")](https://deepset.ai/germanquad) ## Get in touch and join the Haystack community <p>For more info on Haystack, visit our <strong><a href="https://github.com/deepset-ai/haystack">GitHub</a></strong> repo and <strong><a href="https://docs.haystack.deepset.ai">Documentation</a></strong>. We also have a <strong><a class="h-7" href="https://haystack.deepset.ai/community">Discord community open to everyone!</a></strong></p> [Twitter](https://twitter.com/deepset_ai) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Discord](https://haystack.deepset.ai/community) | [GitHub Discussions](https://github.com/deepset-ai/haystack/discussions) | [Website](https://deepset.ai) By the way: [we're hiring!](http://www.deepset.ai/jobs)
nuoo/lora_sks_dogs
nuoo
2023-03-24T14:03:45Z
0
0
null
[ "stable-diffusion", "stable-diffusion-ppdiffusers", "text-to-image", "ppdiffusers", "lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-03-24T14:03:40Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 instance_prompt: a photo of sks dog in a bucket tags: - stable-diffusion - stable-diffusion-ppdiffusers - text-to-image - ppdiffusers - lora inference: false --- # LoRA DreamBooth - nuoo/lora_sks_dogs 本仓库的 LoRA 权重是基于 runwayml/stable-diffusion-v1-5 训练而来的,我们采用[DreamBooth](https://dreambooth.github.io/)的技术并使用 a photo of sks dog in a bucket 文本进行了训练。 下面是在训练过程中生成的一些图片。
huggingtweets/bbc
huggingtweets
2023-03-24T14:02:27Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-03-24T14:02:19Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1450714008097595395/1NBbHxgg_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">BBC</div> <div style="text-align: center; font-size: 14px;">@bbc</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from BBC. | Data | BBC | | --- | --- | | Tweets downloaded | 3249 | | Retweets | 1741 | | Short tweets | 16 | | Tweets kept | 1492 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/ugl7rhcq/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bbc's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3cyaakms) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3cyaakms/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/bbc') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
emmuzoo/Reinforce-Pixelcopter-PLE-v0
emmuzoo
2023-03-24T13:56:59Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-03-24T13:56:55Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 23.80 +/- 15.86 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
beomi/KoAlpaca-13B-LoRA
beomi
2023-03-24T13:54:58Z
0
7
null
[ "alpaca", "llama", "KoAlpaca", "ko", "en", "license:mit", "region:us" ]
null
2023-03-22T13:30:22Z
--- license: mit language: - ko - en tags: - alpaca - llama - KoAlpaca --- # KoAlpaca: Korean Alpaca Model based on Stanford Alpaca (feat. LLAMA and Polyglot-ko) - More informations at https://github.com/Beomi/KoAlpaca - This repository contains finetuned(LoRA) KoAlpaca model weights based on LLAMA 13B model. - Note: This repo has only the LoRA weights. - Used Korean dataset and English dataset to train model.
thu-coai/roberta-base-cdconv
thu-coai
2023-03-24T13:25:32Z
24
1
transformers
[ "transformers", "pytorch", "safetensors", "bert", "text-classification", "zh", "Conversational", "arxiv:2210.08511", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-02T07:36:49Z
--- language: - zh tags: - pytorch - zh - Conversational --- [hfl/chinese-roberta-wwm-ext](https://huggingface.co/hfl/chinese-roberta-wwm-ext) first pre-trained on CMNLI and OCNLI and then fine-tuned on the [CDConv dataset](https://github.com/thu-coai/cdconv). It supports 2-class classification for 2-turn dialogue contradiction detection. Usage example: ```python import torch from transformers.models.bert import BertTokenizer, BertForSequenceClassification tokenizer = BertTokenizer.from_pretrained('thu-coai/roberta-base-cdconv') model = BertForSequenceClassification.from_pretrained('thu-coai/roberta-base-cdconv') model.eval() turn1 = [ "嗯嗯,你喜欢钓鱼吗?", # user "喜欢啊,钓鱼很好玩的", # bot ] turn2 = [ "你喜欢钓鱼吗?", # user "不喜欢,我喜欢看别人钓鱼", # bot, we want to identify whether this utterance makes a contradiction ] # turn1 and turn2 are not required to be two consecutive turns text1 = "[SEP]".join(turn1 + turn2[:1]) text2 = turn2[1] model_input = tokenizer(text1, text2, return_tensors='pt', return_token_type_ids=True, return_attention_mask=True) model_output = model(**model_input, return_dict=False) prediction = torch.argmax(model_output[0].cpu(), dim=-1)[0].item() print(prediction) # output 1. 0 for non-contradiction, 1 for contradiction ``` This fine-tuned model obtains 75.7 accuracy and 72.3 macro-F1 on the test set. Please kindly cite the [original paper](https://arxiv.org/abs/2210.08511) if you use this model. ```bib @inproceedings{zheng-etal-2022-cdconv, title={Towards Emotional Support Dialog Systems}, author={Zheng, Chujie and Zhou, Jinfeng and Zheng, Yinhe and Peng, Libiao and Guo, Zhen and Wu, Wenquan and Niu, Zhengyu and Wu, Hua and Huang, Minlie}, booktitle={Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing}, year={2022} } ```
AshtonIsNotHere/GatorTron-OG-bc-ctr-nli
AshtonIsNotHere
2023-03-24T13:23:26Z
92
0
transformers
[ "transformers", "pytorch", "tensorboard", "megatron-bert", "text-classification", "generated_from_trainer", "medical", "en", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-23T13:50:21Z
--- tags: - generated_from_trainer - medical model-index: - name: GatorTron-OG-bc-ctr-nli results: [] language: - en widget: - text: "[CLS]Patients in NCT02953860 receive less mg of Enzalutamide than Fulvestrant on a weekly basis. [SEP] Fulvestrant with Enzalutamide: 500mg of Fulvestrant will be given IM on days 1, 15, 28, then every 4 weeks as per standard of care (SOC) and 160mg of Enzalutamide will be given PO daily. Patients will receive a tumor biopsy at the start of treatment and 4 weeks after the start of treatment, with an optional 3rd biopsy at the end treatment.[SEP]" example_title: "Contradiction Example 1" --- # GatorTron-OG-bc-ctr-nli ## Model description [GatorTron](https://huggingface.co/AshtonIsNotHere/GatorTron-OG-breast-cancer) model domain adapted on breast cancer studies and fine-tuned for [SemEval-2023 Task7: NLI4CT](https://sites.google.com/view/nli4ct/home), Subtask 1. Takes hypothesis and premise statements as input and outputs the entailment relationship (`entailment` or `contradiction`). ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.1 - Datasets 2.8.0 - Tokenizers 0.11.0
SirVeggie/salutemix
SirVeggie
2023-03-24T13:22:21Z
0
8
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-03-13T19:51:37Z
--- license: creativeml-openrail-m --- # SaluteMix model SaluteMix is a yet-another semi-realistic mix. Name comes from 99% success rate when using salute tag. All previews are pure txt2img. I highly recommend `EasyNegative embedding`, or `(low quality, worst quality:1.4), (bad anatomy), extra digit, fewer digits, (extra arms:1.2), bad hands, by (bad-artist:0.6), bad-image-v2-39000` as the negative prompt. Should be fairly competent at nsfw stuff. CivitAI page: https://civitai.com/models/19238/salutemix **Negative embeddings:** \ https://huggingface.co/datasets/gsdf/EasyNegative \ https://huggingface.co/nick-x-hacker/bad-artist \ https://huggingface.co/Xynon/models/tree/main/experimentals/TI ## Recipe ``` animebrush3 = custom mix with wlop style (details missing) cn-any = Counterfeit-V2.5 + (nixeu-any - anythingV3) @1.0 cn-f = Counterfeit-V2.5 + (nixeu-f - wd1.3) @1.0 cn-flo = Counterfeit-V2.5 + (floydian_nixeu - sd1.4) @1.0 cn-temp = cn-any + cn-f @0.4 cn-full = cn-temp + cn-flo @0.6 temp1 = AOM2_nsfw + 7th_anime_v3_C @0.5 cn-mix = cn-full + temp1 @0.5 step1 = animebrush3 + 2dn_1 @0.5 temp2 = chilloutmix_ni + grapefruitv4 @0.3 step2 = step1 + temp2 @0.25 SaluteMix = step2 + cn-mix @0.2 ``` ## Links to models https://civitai.com/models/4807/2dn \ https://civitai.com/models/6424/chilloutmix \ https://civitai.com/models/2583/grapefruit-hentai-model \ Floydian's nixeu: https://huggingface.co/FloydianSound/Nixeu_Diffusion_v1-5 \ Orange mixes: https://huggingface.co/WarriorMama777/OrangeMixs \ 7th_anime: https://huggingface.co/syaimu/7th_Layer \ Counterfeit: https://huggingface.co/gsdf/Counterfeit-V2.5 \ Nixeu models: https://huggingface.co/SirVeggie/nixeu \ https://huggingface.co/SirVeggie/wlop
basboot/ppo-LunarLander-v2
basboot
2023-03-24T13:22:14Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-24T12:18:06Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 293.01 +/- 16.66 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
ofields/violet-v1
ofields
2023-03-24T13:10:37Z
6
0
transformers
[ "transformers", "yolos", "object-detection", "vision", "arxiv:1910.09700", "license:mit", "endpoints_compatible", "region:us" ]
object-detection
2023-03-23T19:44:04Z
--- license: mit tags: - object-detection - vision widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/football-match.jpg example_title: Football Match - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/airport.jpg example_title: Airport --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
abuchane/wav2vec2-xlsr-amharic-speech-emotion-recognition-arabic-model
abuchane
2023-03-24T13:04:13Z
32
0
transformers
[ "transformers", "pytorch", "wav2vec2", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2023-03-24T12:55:41Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-xlsr-amharic-speech-emotion-recognition-arabic-model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xlsr-amharic-speech-emotion-recognition-arabic-model This model is a fine-tuned version of [elgeish/wav2vec2-large-xlsr-53-arabic](https://huggingface.co/elgeish/wav2vec2-large-xlsr-53-arabic) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.28.0.dev0 - Pytorch 1.13.1+cu116 - Datasets 2.10.2.dev0 - Tokenizers 0.13.2
butchland/round2-a2c-PandaReachDense-v2
butchland
2023-03-24T12:54:35Z
5
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-24T12:29:42Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -8.47 +/- 0.90 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
marbonora/my_awesome_billsum_model
marbonora
2023-03-24T12:46:11Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:billsum", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-24T12:28:52Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - billsum metrics: - rouge model-index: - name: my_awesome_billsum_model results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: billsum type: billsum config: default split: ca_test args: default metrics: - name: Rouge1 type: rouge value: 0.1399 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_billsum_model This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the billsum dataset. It achieves the following results on the evaluation set: - Loss: 2.5717 - Rouge1: 0.1399 - Rouge2: 0.0461 - Rougel: 0.1159 - Rougelsum: 0.1157 - Gen Len: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 62 | 2.8733 | 0.1274 | 0.0331 | 0.1049 | 0.1049 | 19.0 | | No log | 2.0 | 124 | 2.6521 | 0.1381 | 0.0436 | 0.1123 | 0.1121 | 19.0 | | No log | 3.0 | 186 | 2.5899 | 0.1365 | 0.0432 | 0.1123 | 0.1122 | 19.0 | | No log | 4.0 | 248 | 2.5717 | 0.1399 | 0.0461 | 0.1159 | 0.1157 | 19.0 | ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
Rafamele/sd-butterflies-32-rafa
Rafamele
2023-03-24T12:45:39Z
31
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2023-03-24T12:44:37Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('Rafamele/sd-butterflies-32-rafa') image = pipeline().images[0] image ```
somosnlp-hackathon-2023/bertin-gpt-j-6B-es-finetuned-salpaca
somosnlp-hackathon-2023
2023-03-24T12:45:27Z
0
15
null
[ "es", "dataset:bertin-project/alpaca-spanish", "license:apache-2.0", "region:us" ]
null
2023-03-22T19:51:23Z
--- datasets: - bertin-project/alpaca-spanish language: - es license: apache-2.0 --- <div style="text-align:center;width:350px;height:350px;"> <img src="https://huggingface.co/hackathon-somos-nlp-2023/bertin-gpt-j-6B-es-finetuned-salpaca/resolve/main/Alpaca.png" alt="SAlpaca logo""> </div> # SAlpaca: Spanish + Alpaca (WIP) ## Adapter Description This adapter was created with the [PEFT](https://github.com/huggingface/peft) library and allowed the base model [bertin-project/bertin-gpt-j-6B](https://huggingface.co/bertin-project/bertin-gpt-j-6B) to be fine-tuned on the [Spanish Alpaca Dataset](https://huggingface.co/datasets/bertin-project/alpaca-spanish) by using the method *LoRA*. ## How to use ```py import torch from peft import PeftModel, PeftConfig from transformers import AutoModelForCausalLM, AutoTokenizer peft_model_id = "hackathon-somos-nlp-2023/bertin-gpt-j-6B-es-finetuned-salpaca" config = PeftConfig.from_pretrained(peft_model_id) model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, return_dict=True, load_in_8bit=True, device_map='auto') # tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) tokenizer = AutoTokenizer.from_pretrained(peft_model_id) # Load the Lora model model = PeftModel.from_pretrained(model, peft_model_id) def gen_conversation(text): text = "<SC>instruction: " + text + "\n " batch = tokenizer(text, return_tensors='pt') with torch.cuda.amp.autocast(): output_tokens = model.generate(**batch, max_new_tokens=256, eos_token_id=50258, early_stopping = True, temperature=.9) print('\n\n', tokenizer.decode(output_tokens[0], skip_special_tokens=False)) text = "hola" gen_conversation(text) ``` ## Resources used Google Colab machine with the following specifications <div style="text-align:center;width:550px;height:550px;"> <img src="https://huggingface.co/hackathon-somos-nlp-2023/bertin-gpt-j-6B-es-finetuned-salpaca/resolve/main/resource.jpeg" alt="Resource logo"> </div> ## Citation ``` @misc {hackathon-somos-nlp-2023, author = { {Edison Bejarano, Leonardo Bolaños, Alberto Ceballos, Santiago Pineda, Nicolay Potes} }, title = { SAlpaca }, year = 2023, url = { https://huggingface.co/hackathon-somos-nlp-2023/bertin-gpt-j-6B-es-finetuned-salpaca } publisher = { Hugging Face } } ```
boobmoom/hello_world
boobmoom
2023-03-24T12:40:16Z
0
0
null
[ "en", "dataset:squad", "license:apache-2.0", "region:us" ]
null
2023-03-24T12:30:20Z
--- license: apache-2.0 datasets: - squad language: - en ---
SAL83/a2c-PandaReachDense-v2
SAL83
2023-03-24T12:39:57Z
0
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-24T10:28:13Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -1.25 +/- 0.60 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
EIStakovskii/french_toxicity_classifier_plus_v2
EIStakovskii
2023-03-24T12:19:14Z
32
3
transformers
[ "transformers", "pytorch", "safetensors", "camembert", "text-classification", "fr", "license:other", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-02T08:02:52Z
--- language: fr # <-- my language widget: - text: "J'aime ta coiffure" example_title: "NOT TOXIC 1" - text: "Va te faire foutre" example_title: "TOXIC 1" - text: "Quel mauvais temps, n'est-ce pas ?" example_title: "NOT TOXIC 2" - text: "J'espère que tu vas mourir, connard !" example_title: "TOXIC 2" - text: "j'aime beaucoup ta veste" example_title: "NOT TOXIC 3" license: other --- ## Description NB: this version of the model is the improved version of [EIStakovskii/french_toxicity_classifier_plus](https://huggingface.co/EIStakovskii/french_toxicity_classifier_plus). To see the source code of training and the data please follow [the github link](https://github.com/eistakovskii/NLP_projects/tree/main/TEXT_CLASSIFICATION/data/Toxicity_Classifiers/DE_FR). This model was trained for toxicity labeling. The model was fine-tuned based off [the CamemBERT language model](https://huggingface.co/camembert-base). To use the model: ```python from transformers import pipeline classifier = pipeline("text-classification", model = 'EIStakovskii/french_toxicity_classifier_plus_v2') print(classifier("Foutez le camp d'ici!")) ``` ## Metrics (at validation): epoch|step|eval_accuracy|eval_f1|eval_loss -|-|-|-|- 1.16|1600|0.9015412511332729|0.8968269048071442|0.3014959990978241 ## Comparison against Perspective This model was compared against the Google's [Perspective API](https://developers.perspectiveapi.com/s/?language=en_US) that similarly detects toxicity. Two models were tested on two datasets: the size of [200 sentences](https://github.com/eistakovskii/NLP_projects/blob/main/TEXT_CLASSIFICATION/data/Toxicity_Classifiers/DE_FR/test/test_fr_200.csv) and [400 sentences](https://github.com/eistakovskii/NLP_projects/blob/main/TEXT_CLASSIFICATION/data/Toxicity_Classifiers/DE_FR/test/test_fr_400.csv). The first one (arguably harder) was collected from the sentences of the [JigSaw](https://www.kaggle.com/c/jigsaw-multilingual-toxic-comment-classification/data) and [DeTox](https://github.com/hdaSprachtechnologie/detox) datasets. The second one (easier) was collected from the combination of sources: both from JigSaw and DeTox as well as [Paradetox](https://github.com/s-nlp/multilingual_detox/tree/main/data) translations and sentences extracted from [Reverso Context](https://context.reverso.net/translation/) by keywords. # french_toxicity_classifier_plus_v2 size|accuracy|f1 -|-|- 200|0.783|0.803 400|0.890|0.879 # Perspective size|accuracy|f1 -|-|- 200|0.826|0.795 **400|0.632|0.418 **I suspect that Perspective has such a low score in the case of the FR dataset (400) because it refuses to trigger on the words "merde" and "putain" and some more rarer words in French like "cul" and so on.
nimblesquirrel/rugpt3small_based_on_gpt2-math_model
nimblesquirrel
2023-03-24T12:07:05Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-03-24T11:54:44Z
--- tags: - generated_from_trainer model-index: - name: rugpt3small_based_on_gpt2-math_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # rugpt3small_based_on_gpt2-math_model This model is a fine-tuned version of [sberbank-ai/rugpt3small_based_on_gpt2](https://huggingface.co/sberbank-ai/rugpt3small_based_on_gpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.1830 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 433 | 2.2824 | | 2.4993 | 2.0 | 866 | 2.2044 | | 2.2173 | 3.0 | 1299 | 2.1830 | ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
Khushnur/t5-end2end-questions-generation_v4
Khushnur
2023-03-24T12:05:23Z
159
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "dataset:eli5_subset_modified_for_t5_qg_v2", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-24T10:18:14Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - eli5_subset_modified_for_t5_qg_v2 model-index: - name: t5-end2end-questions-generation_v4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-end2end-questions-generation_v4 This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the eli5_subset_modified_for_t5_qg_v2 dataset. It achieves the following results on the evaluation set: - Loss: 2.8814 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.2704 | 0.64 | 100 | 2.9474 | | 3.0764 | 1.28 | 200 | 2.9067 | | 3.0189 | 1.92 | 300 | 2.8866 | | 2.9797 | 2.56 | 400 | 2.8814 | ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
andreaparker/flan-t5-base-samsum
andreaparker
2023-03-24T12:03:38Z
6
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "dataset:samsum", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-01-31T22:53:25Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - samsum metrics: - rouge model-index: - name: flan-t5-base-samsum results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: samsum type: samsum config: samsum split: test args: samsum metrics: - name: Rouge1 type: rouge value: 47.4145 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # flan-t5-base-samsum This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on the samsum dataset. It achieves the following results on the evaluation set: - Loss: 1.3772 - Rouge1: 47.4145 - Rouge2: 23.9579 - Rougel: 40.0508 - Rougelsum: 43.7144 - Gen Len: 17.3162 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 1.4264 | 1.0 | 1842 | 1.3829 | 46.4916 | 23.1227 | 39.444 | 42.9025 | 17.0977 | | 1.3527 | 2.0 | 3684 | 1.3732 | 47.0694 | 23.4769 | 39.5942 | 43.2226 | 17.4554 | | 1.2554 | 3.0 | 5526 | 1.3709 | 46.8801 | 23.3161 | 39.5423 | 43.1581 | 17.2027 | | 1.2503 | 4.0 | 7368 | 1.3736 | 47.4138 | 23.7437 | 40.0016 | 43.6108 | 17.2198 | | 1.1675 | 5.0 | 9210 | 1.3772 | 47.4145 | 23.9579 | 40.0508 | 43.7144 | 17.3162 | ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
jarvisx17/medicine-ner
jarvisx17
2023-03-24T11:46:10Z
11
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "dataset:jxner", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-03-24T11:19:36Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - jxner metrics: - precision - recall - f1 - accuracy model-index: - name: medicine-ner results: - task: name: Token Classification type: token-classification dataset: name: jxner type: jxner config: wnut_17 split: test args: wnut_17 metrics: - name: Precision type: precision value: 0.0 - name: Recall type: recall value: 0.0 - name: F1 type: f1 value: 0.0 - name: Accuracy type: accuracy value: 0.859375 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # medicine-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the jxner dataset. It achieves the following results on the evaluation set: - Loss: 0.7996 - Precision: 0.0 - Recall: 0.0 - F1: 0.0 - Accuracy: 0.8594 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---:|:--------:| | No log | 1.0 | 1 | 0.8644 | 0.0 | 0.0 | 0.0 | 0.8594 | | No log | 2.0 | 2 | 0.7996 | 0.0 | 0.0 | 0.0 | 0.8594 | ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
hoanglongvn/rl_course_vizdoom_health_gathering_supreme
hoanglongvn
2023-03-24T11:40:58Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-24T11:40:49Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 13.29 +/- 5.57 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r hoanglongvn/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.local.lib.python3.9.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.local.lib.python3.9.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
TestZee/distilbert-base-cased-distilled-squad-finetuned-squad
TestZee
2023-03-24T11:36:48Z
61
0
transformers
[ "transformers", "tf", "tensorboard", "distilbert", "question-answering", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-03-24T11:35:24Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: TestZee/distilbert-base-cased-distilled-squad-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # TestZee/distilbert-base-cased-distilled-squad-finetuned-squad This model is a fine-tuned version of [distilbert-base-cased-distilled-squad](https://huggingface.co/distilbert-base-cased-distilled-squad) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.8156 - Train End Logits Accuracy: 0.75 - Train Start Logits Accuracy: 0.7556 - Validation Loss: 0.6593 - Validation End Logits Accuracy: 0.7531 - Validation Start Logits Accuracy: 0.7531 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 90, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 0.8156 | 0.75 | 0.7556 | 0.6593 | 0.7531 | 0.7531 | 0 | ### Framework versions - Transformers 4.27.3 - TensorFlow 2.11.0 - Datasets 2.10.1 - Tokenizers 0.13.2
NbAiLab/nb-bert-base-mnli
NbAiLab
2023-03-24T11:32:00Z
79
9
transformers
[ "transformers", "pytorch", "jax", "safetensors", "bert", "text-classification", "nb-bert", "zero-shot-classification", "tensorflow", "norwegian", "no", "dataset:mnli", "dataset:multi_nli", "dataset:xnli", "arxiv:1909.00161", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
zero-shot-classification
2022-03-02T23:29:04Z
--- language: no license: cc-by-4.0 thumbnail: https://raw.githubusercontent.com/NBAiLab/notram/master/images/nblogo_2.png pipeline_tag: zero-shot-classification tags: - nb-bert - zero-shot-classification - pytorch - tensorflow - norwegian - bert datasets: - mnli - multi_nli - xnli widget: - example_title: Nyhetsartikkel om FHI text: Folkehelseinstituttets mest optimistiske anslag er at alle voksne er ferdigvaksinert innen midten av september. candidate_labels: helse, politikk, sport, religion --- **Release 1.0** (March 11, 2021) # NB-Bert base model finetuned on Norwegian machine translated MNLI ## Description The most effective way of creating a good classifier is to finetune a pre-trained model for the specific task at hand. However, in many cases this is simply impossible. [Yin et al.](https://arxiv.org/abs/1909.00161) proposed a very clever way of using pre-trained MNLI models as zero-shot sequence classifiers. The methods works by reformulating the question to an MNLI hypothesis. If we want to figure out if a text is about "sport", we simply state that "This text is about sport" ("Denne teksten handler om sport"). When the model is finetuned on the 400k large MNLI task, it is in many cases able to solve this classification tasks. There are no MNLI-set of this size in Norwegian but we have trained it on a machine translated version of the original MNLI-set. ## Testing the model For testing the model, we recommend the [NbAiLab Colab Notebook](https://colab.research.google.com/gist/peregilk/769b5150a2f807219ab8f15dd11ea449/nbailab-mnli-norwegian-demo.ipynb) ## Hugging Face zero-shot-classification pipeline The easiest way to try this out is by using the Hugging Face pipeline. Please, note that you will get better results when using Norwegian hypothesis template instead of the default English one. ```python from transformers import pipeline classifier = pipeline("zero-shot-classification", model="NbAiLab/nb-bert-base-mnli") ``` You can then use this pipeline to classify sequences into any of the class names you specify. ```python sequence_to_classify = 'Folkehelseinstituttets mest optimistiske anslag er at alle voksne er ferdigvaksinert innen midten av september.' candidate_labels = ['politikk', 'helse', 'sport', 'religion'] hypothesis_template = 'Dette eksempelet er {}.' classifier(sequence_to_classify, candidate_labels, hypothesis_template=hypothesis_template, multi_class=True) # {'labels': ['helse', 'politikk', 'sport', 'religion'], # 'scores': [0.4210019111633301, 0.0674605593085289, 0.000840459018945694, 0.0007541406666859984], # 'sequence': 'Folkehelseinstituttets mest optimistiske anslag er at alle over 18 år er ferdigvaksinert innen midten av september.'} ``` ## More information For more information on the model, see https://github.com/NBAiLab/notram Here you will also find a Colab explaining more in details how to use the zero-shot-classification pipeline.
ToluClassics/extractive_reader_afroxlmr_fquad
ToluClassics
2023-03-24T11:29:07Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "question-answering", "generated_from_trainer", "dataset:fquad", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2023-03-23T14:49:58Z
--- license: mit tags: - generated_from_trainer datasets: - fquad model-index: - name: extractive_reader_afroxlmr_fquad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # extractive_reader_afroxlmr_fquad This model is a fine-tuned version of [Davlan/afro-xlmr-base](https://huggingface.co/Davlan/afro-xlmr-base) on the fquad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 30 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results ### Framework versions - Transformers 4.27.2 - Pytorch 1.9.1+cu111 - Datasets 2.10.2.dev0 - Tokenizers 0.13.2
lipee/a2c-PandaReachDense-v2
lipee
2023-03-24T11:22:55Z
0
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-20T13:07:14Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -2.06 +/- 0.32 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
lgrobol/flaubert-minuscule
lgrobol
2023-03-24T11:18:53Z
715
0
transformers
[ "transformers", "pytorch", "safetensors", "flaubert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
FlauBERT-minuscule ================== A ridiculously small model for testing purposes.
fergusq/finbert-finnsentiment
fergusq
2023-03-24T11:14:28Z
10,870
2
transformers
[ "transformers", "pytorch", "safetensors", "bert", "text-classification", "fi", "arxiv:2012.02613", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- language: fi license: cc-by-4.0 --- # FinBERT fine-tuned with the FinnSentiment dataset This is a FinBERT model fine-tuned with the [FinnSentiment dataset](https://arxiv.org/pdf/2012.02613.pdf). 90% of sentences were used for training and 10% for evaluation. ## Evaluation results |Metric|Score| |--|--| |Accuracy|0.8639028475711893| |F1-score|0.8643024701696561| |Precision|0.8653866541244811| |Recall|0.8639028475711893| |Matthews|0.6764924917164834| ![kuva.png](https://s3.amazonaws.com/moonup/production/uploads/1661156173672-61561a042387f285c1f8aec3.png) ## License FinBERT-FinnSentiment is licensed under the [CC BY 4.0 License](https://creativecommons.org/licenses/by/4.0/deed.en) (same as FinBERT and the FinnSentiment dataset).
Dc26/distilbert-base-uncased-finetuned-cola
Dc26
2023-03-24T10:43:57Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-24T10:23:21Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: cola split: validation args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5171064406591647 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.5631 - Matthews Correlation: 0.5171 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5268 | 1.0 | 535 | 0.5265 | 0.4033 | | 0.3473 | 2.0 | 1070 | 0.4938 | 0.5017 | | 0.2313 | 3.0 | 1605 | 0.5631 | 0.5171 | | 0.1754 | 4.0 | 2140 | 0.8034 | 0.5022 | | 0.1306 | 5.0 | 2675 | 0.8480 | 0.5093 | ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
Isaac009/Reinforce-CartPole-v1
Isaac009
2023-03-24T10:31:05Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-03-24T10:30:56Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
belgadreamsbig/arabic-poetry-generator
belgadreamsbig
2023-03-24T10:24:48Z
12
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "ar", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-03-19T16:07:38Z
--- license: mit language: - ar library_name: transformers ---
stucksam/q-Taxi-v3
stucksam
2023-03-24T10:19:03Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-24T10:15:17Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="stucksam/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
marimurta/dqn-SpaceInvadersNoFrameskip-v4
marimurta
2023-03-24T10:08:14Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-24T10:07:22Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 659.00 +/- 317.02 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga marimurta -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga marimurta -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga marimurta ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 10000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
GraydientPlatformAPI/model_106
GraydientPlatformAPI
2023-03-24T10:01:01Z
30
0
diffusers
[ "diffusers", "text-to-image", "license:openrail", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-03-24T09:50:43Z
--- license: openrail library_name: diffusers pipeline_tag: text-to-image ---
lora-library/22jenniferl22
lora-library
2023-03-24T10:00:34Z
3
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:stabilityai/stable-diffusion-2-1-base", "base_model:adapter:stabilityai/stable-diffusion-2-1-base", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-03-24T10:00:27Z
--- license: creativeml-openrail-m base_model: stabilityai/stable-diffusion-2-1-base instance_prompt: 22JenniferL22 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - 22jenniferl22 These are LoRA adaption weights for [stabilityai/stable-diffusion-2-1-base](https://huggingface.co/stabilityai/stable-diffusion-2-1-base). The weights were trained on the instance prompt "22JenniferL22" using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. Test prompt: 22JenniferL22 ![image_0](test_images/image_0.png) ![image_1](test_images/image_1.png) ![image_2](test_images/image_2.png) ![image_3](test_images/image_3.png)
me2140733/whisper-small-hi
me2140733
2023-03-24T10:00:15Z
77
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "hi", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-03-23T10:49:52Z
--- language: - hi license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Small Hi - Sanchit Gandhi results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: hi split: test args: 'config: hi, split: test' metrics: - name: Wer type: wer value: 53.24219080673834 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Hi - Sanchit Gandhi This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.4297 - Wer: 53.2422 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0876 | 2.44 | 1000 | 0.2914 | 34.9107 | | 0.0203 | 4.89 | 2000 | 0.3453 | 40.8702 | | 0.0016 | 7.33 | 3000 | 0.4042 | 46.0298 | | 0.0005 | 9.78 | 4000 | 0.4297 | 53.2422 | ### Framework versions - Transformers 4.28.0.dev0 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
zhuohao/ppo-LunarLander-v2
zhuohao
2023-03-24T09:59:38Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-23T23:12:02Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 252.91 +/- 67.23 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
mrm8488/bert-tiny-finetuned-squadv2
mrm8488
2023-03-24T09:46:52Z
5,621
1
transformers
[ "transformers", "pytorch", "jax", "safetensors", "bert", "question-answering", "QA", "en", "arxiv:1908.08962", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- language: en thumbnail: tags: - QA --- # BERT-Tiny fine-tuned on SQuAD v2 [BERT-Tiny](https://github.com/google-research/bert/) created by [Google Research](https://github.com/google-research) and fine-tuned on [SQuAD 2.0](https://rajpurkar.github.io/SQuAD-explorer/) for **Q&A** downstream task. **Mode size** (after training): **16.74 MB** ## Details of BERT-Tiny and its 'family' (from their documentation) Released on March 11th, 2020 This is model is a part of 24 smaller BERT models (English only, uncased, trained with WordPiece masking) referenced in [Well-Read Students Learn Better: On the Importance of Pre-training Compact Models](https://arxiv.org/abs/1908.08962). The smaller BERT models are intended for environments with restricted computational resources. They can be fine-tuned in the same manner as the original BERT models. However, they are most effective in the context of knowledge distillation, where the fine-tuning labels are produced by a larger and more accurate teacher. ## Details of the downstream task (Q&A) - Dataset [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/) combines the 100,000 questions in SQuAD1.1 with over 50,000 unanswerable questions written adversarially by crowdworkers to look similar to answerable ones. To do well on SQuAD2.0, systems must not only answer questions when possible, but also determine when no answer is supported by the paragraph and abstain from answering. | Dataset | Split | # samples | | -------- | ----- | --------- | | SQuAD2.0 | train | 130k | | SQuAD2.0 | eval | 12.3k | ## Model training The model was trained on a Tesla P100 GPU and 25GB of RAM. The script for fine tuning can be found [here](https://github.com/huggingface/transformers/tree/main/examples/legacy/question-answering) ## Results: | Metric | # Value | | ------ | --------- | | **EM** | **48.60** | | **F1** | **49.73** | | Model | EM | F1 score | SIZE (MB) | | ----------------------------------------------------------------------------------------- | --------- | --------- | --------- | | [bert-tiny-finetuned-squadv2](https://huggingface.co/mrm8488/bert-tiny-finetuned-squadv2) | 48.60 | 49.73 | **16.74** | | [bert-tiny-5-finetuned-squadv2](https://huggingface.co/mrm8488/bert-tiny-5-finetuned-squadv2) | **57.12** | **60.86** | 24.34 ## Model in action Fast usage with **pipelines**: ```python from transformers import pipeline qa_pipeline = pipeline( "question-answering", model="mrm8488/bert-tiny-finetuned-squadv2", tokenizer="mrm8488/bert-tiny-finetuned-squadv2" ) qa_pipeline({ 'context': "Manuel Romero has been working hardly in the repository hugginface/transformers lately", 'question': "Who has been working hard for hugginface/transformers lately?" }) # Output: ``` ```json { "answer": "Manuel Romero", "end": 13, "score": 0.05684709993458714, "start": 0 } ``` ### Yes! That was easy 🎉 Let's try with another example ```python qa_pipeline({ 'context': "Manuel Romero has been working hardly in the repository hugginface/transformers lately", 'question': "For which company has worked Manuel Romero?" }) # Output: ``` ```json { "answer": "hugginface/transformers", "end": 79, "score": 0.11613431826808274, "start": 56 } ``` ### It works!! 🎉 🎉 🎉 > Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488) | [LinkedIn](https://www.linkedin.com/in/manuel-romero-cs/) > Made with <span style="color: #e25555;">&hearts;</span> in Spain
startlightquyet/sd-class-butterflies-32
startlightquyet
2023-03-24T09:41:02Z
5
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2023-03-24T09:40:33Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('quyetzz/sd-class-butterflies-32') image = pipeline().images[0] image ```
levalencia/FineTunedHateSpeechDistilBert
levalencia
2023-03-24T09:38:42Z
0
0
transformers
[ "transformers", "text-classification", "en", "license:cc0-1.0", "endpoints_compatible", "region:us" ]
text-classification
2023-03-24T07:55:05Z
--- license: cc0-1.0 language: - en metrics: - accuracy library_name: transformers pipeline_tag: text-classification --- # Model Card for levalencia/FineTunedHateSpeechDistilBert ## Model Details ### Model Description Hate Speech Model, it will classify text as Hate Speech (0), Offensive (1) or Neither(2) - **Developed by:** Luis Valencia - **Language(s) (NLP):** English - **License:** CCO - **Finetuned from model [optional]:** Distilbert ### Model Sources - **Repository:** https://github.com/levalencia/DataScience-Portfolio/tree/main/FineTuningDistilbert - **Blog Post [optional]:** https://medium.com/python-in-plain-english/fine-tuning-distilbert-with-your-own-dataset-for-multi-classification-task-69f944189648
google/music-spectrogram-diffusion
google
2023-03-24T09:33:19Z
25
31
diffusers
[ "diffusers", "onnx", "pytorch", "arxiv:2206.05408", "license:apache-2.0", "diffusers:SpectrogramDiffusionPipeline", "region:us" ]
null
2023-03-21T13:01:46Z
--- license: apache-2.0 tags: - pytorch - diffusers duplicated_from: kashif/music-spectrogram-diffusion --- # Multi-instrument Music Synthesis with Spectrogram Diffusion [Spectrogram Diffusion](https://arxiv.org/abs/2206.05408) by Curtis Hawthorne, Ian Simon, Adam Roberts, Neil Zeghidour, Josh Gardner, Ethan Manilow, and Jesse Engel. ## Abstract An ideal music synthesizer should be both interactive and expressive, generating high-fidelity audio in realtime for arbitrary combinations of instruments and notes. Recent neural synthesizers have exhibited a tradeoff between domain-specific models that offer detailed control of only specific instruments, or raw waveform models that can train on any music but with minimal control and slow generation. In this work, we focus on a middle ground of neural synthesizers that can generate audio from MIDI sequences with arbitrary combinations of instruments in realtime. This enables training on a wide range of transcription datasets with a single model, which in turn offers note-level control of composition and instrumentation across a wide range of instruments. We use a simple two-stage process: MIDI to spectrograms with an encoder-decoder Transformer, then spectrograms to audio with a generative adversarial network (GAN) spectrogram inverter. We compare training the decoder as an autoregressive model and as a Denoising Diffusion Probabilistic Model (DDPM) and find that the DDPM approach is superior both qualitatively and as measured by audio reconstruction and Fréchet distance metrics. Given the interactivity and generality of this approach, we find this to be a promising first step towards interactive and expressive neural synthesis for arbitrary combinations of instruments and notes. <img src="https://storage.googleapis.com/music-synthesis-with-spectrogram-diffusion/architecture.png" alt="Architecture diagram"> ## Model As depicted above the model takes as input a MIDI file and tokenizes it into a sequence of 5 second intervals. Each tokenized interval then together with positional encodings is passed through the Note Encoder and its representation is concatenated with the previous window's generated spectrogram representation obtained via the Context Encoder. For the initial 5 second window this is set to zero. The resulting context is then used as conditioning to sample the denoised Spectrogram from the MIDI window and we concatenate this spectrogram to the final output as well as use it for the context of the next MIDI window. The process repeats till we have gone over all the MIDI inputs. Finally a MelGAN decoder converts the potentially long spectrogram to audio which is the final result of this pipeline. ## Example usage ```python from diffusers import SpectrogramDiffusionPipeline, MidiProcessor pipe = SpectrogramDiffusionPipeline.from_pretrained("google/music-spectrogram-diffusion") pipe = pipe.to("cuda") processor = MidiProcessor() # Download MIDI from: wget http://www.piano-midi.de/midis/beethoven/beethoven_hammerklavier_2.mid output = pipe(processor("beethoven_hammerklavier_2.mid")) audio = output.audios[0] ```
SAL83/a2c-v0
SAL83
2023-03-24T09:20:08Z
4
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-24T09:18:57Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1277.13 +/- 94.35 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
vocabtrimmer/mt5-small-trimmed-fr-15000-frquad-qg
vocabtrimmer
2023-03-24T09:15:59Z
105
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "question generation", "fr", "dataset:lmqg/qg_frquad", "arxiv:2210.03992", "license:cc-by-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-19T02:31:49Z
--- license: cc-by-4.0 metrics: - bleu4 - meteor - rouge-l - bertscore - moverscore language: fr datasets: - lmqg/qg_frquad pipeline_tag: text2text-generation tags: - question generation widget: - text: "Créateur » (Maker), lui aussi au singulier, « <hl> le Suprême Berger <hl> » (The Great Shepherd) ; de l'autre, des réminiscences de la théologie de l'Antiquité : le tonnerre, voix de Jupiter, « Et souvent ta voix gronde en un tonnerre terrifiant », etc." example_title: "Question Generation Example 1" - text: "Ce black dog peut être lié à des évènements traumatisants issus du monde extérieur, tels que son renvoi de l'Amirauté après la catastrophe des Dardanelles, lors de la <hl> Grande Guerre <hl> de 14-18, ou son rejet par l'électorat en juillet 1945." example_title: "Question Generation Example 2" - text: "contre <hl> Normie Smith <hl> et 15 000 dollars le 28 novembre 1938." example_title: "Question Generation Example 3" model-index: - name: vocabtrimmer/mt5-small-trimmed-fr-15000-frquad-qg results: - task: name: Text2text Generation type: text2text-generation dataset: name: lmqg/qg_frquad type: default args: default metrics: - name: BLEU4 (Question Generation) type: bleu4_question_generation value: 7.37 - name: ROUGE-L (Question Generation) type: rouge_l_question_generation value: 27.58 - name: METEOR (Question Generation) type: meteor_question_generation value: 16.88 - name: BERTScore (Question Generation) type: bertscore_question_generation value: 79.53 - name: MoverScore (Question Generation) type: moverscore_question_generation value: 55.71 --- # Model Card of `vocabtrimmer/mt5-small-trimmed-fr-15000-frquad-qg` This model is fine-tuned version of [ckpts/mt5-small-trimmed-fr-15000](https://huggingface.co/ckpts/mt5-small-trimmed-fr-15000) for question generation task on the [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation). ### Overview - **Language model:** [ckpts/mt5-small-trimmed-fr-15000](https://huggingface.co/ckpts/mt5-small-trimmed-fr-15000) - **Language:** fr - **Training data:** [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) (default) - **Online Demo:** [https://autoqg.net/](https://autoqg.net/) - **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation) - **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992) ### Usage - With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-) ```python from lmqg import TransformersQG # initialize model model = TransformersQG(language="fr", model="vocabtrimmer/mt5-small-trimmed-fr-15000-frquad-qg") # model prediction questions = model.generate_q(list_context="Créateur » (Maker), lui aussi au singulier, « le Suprême Berger » (The Great Shepherd) ; de l'autre, des réminiscences de la théologie de l'Antiquité : le tonnerre, voix de Jupiter, « Et souvent ta voix gronde en un tonnerre terrifiant », etc.", list_answer="le Suprême Berger") ``` - With `transformers` ```python from transformers import pipeline pipe = pipeline("text2text-generation", "vocabtrimmer/mt5-small-trimmed-fr-15000-frquad-qg") output = pipe("Créateur » (Maker), lui aussi au singulier, « <hl> le Suprême Berger <hl> » (The Great Shepherd) ; de l'autre, des réminiscences de la théologie de l'Antiquité : le tonnerre, voix de Jupiter, « Et souvent ta voix gronde en un tonnerre terrifiant », etc.") ``` ## Evaluation - ***Metric (Question Generation)***: [raw metric file](https://huggingface.co/vocabtrimmer/mt5-small-trimmed-fr-15000-frquad-qg/raw/main/eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_frquad.default.json) | | Score | Type | Dataset | |:-----------|--------:|:--------|:-----------------------------------------------------------------| | BERTScore | 79.53 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) | | Bleu_1 | 27.68 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) | | Bleu_2 | 16.15 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) | | Bleu_3 | 10.74 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) | | Bleu_4 | 7.37 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) | | METEOR | 16.88 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) | | MoverScore | 55.71 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) | | ROUGE_L | 27.58 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) | ## Training hyperparameters The following hyperparameters were used during fine-tuning: - dataset_path: lmqg/qg_frquad - dataset_name: default - input_types: paragraph_answer - output_types: question - prefix_types: None - model: ckpts/mt5-small-trimmed-fr-15000 - max_length: 512 - max_length_output: 32 - epoch: 15 - batch: 16 - lr: 0.001 - fp16: False - random_seed: 1 - gradient_accumulation_steps: 4 - label_smoothing: 0.15 The full configuration can be found at [fine-tuning config file](https://huggingface.co/vocabtrimmer/mt5-small-trimmed-fr-15000-frquad-qg/raw/main/trainer_config.json). ## Citation ``` @inproceedings{ushio-etal-2022-generative, title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration", author = "Ushio, Asahi and Alva-Manchego, Fernando and Camacho-Collados, Jose", booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing", month = dec, year = "2022", address = "Abu Dhabi, U.A.E.", publisher = "Association for Computational Linguistics", } ```
laol777/tst_resnet
laol777
2023-03-24T09:15:28Z
5
0
generic
[ "generic", "text-classification", "endpoints-template", "optimum", "endpoints_compatible", "region:us" ]
text-classification
2023-03-24T08:51:13Z
--- tags: - text-classification - endpoints-template - optimum library_name: generic --- # Optimized and Quantized DistilBERT with a custom pipeline with handler.py > NOTE: Blog post coming soon This is a template repository for Text Classification using Optimum and onnxruntime to support generic inference with Hugging Face Hub generic Inference API. There are two required steps: 1. Specify the requirements by defining a `requirements.txt` file. 2. Implement the `handler.py` `__init__` and `__call__` methods. These methods are called by the Inference API. The `__init__` method should load the model and preload the optimum model and tokenizers as well as the `text-classification` pipeline needed for inference. This is only called once. The `__call__` method performs the actual inference. Make sure to follow the same input/output specifications defined in the template for the pipeline to work. add ``` library_name: generic ``` to the readme. _note: the `generic` community image currently only support `inputs` as parameter and no parameter._
laol777/resnet50
laol777
2023-03-24T09:11:25Z
4
0
generic
[ "generic", "text-classification", "endpoints-template", "optimum", "endpoints_compatible", "region:us" ]
text-classification
2023-03-24T07:42:37Z
--- tags: - text-classification - endpoints-template - optimum library_name: generic --- # Optimized and Quantized DistilBERT with a custom pipeline with handler.py > NOTE: Blog post coming soon This is a template repository for Text Classification using Optimum and onnxruntime to support generic inference with Hugging Face Hub generic Inference API. There are two required steps: 1. Specify the requirements by defining a `requirements.txt` file. 2. Implement the `handler.py` `__init__` and `__call__` methods. These methods are called by the Inference API. The `__init__` method should load the model and preload the optimum model and tokenizers as well as the `text-classification` pipeline needed for inference. This is only called once. The `__call__` method performs the actual inference. Make sure to follow the same input/output specifications defined in the template for the pipeline to work. add ``` library_name: generic ``` to the readme. _note: the `generic` community image currently only support `inputs` as parameter and no parameter._
karolill/distilmbert_LR3e-05_WR0.1_OPTIMadamw_hf_WD0.01
karolill
2023-03-24T09:10:03Z
104
1
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-24T09:06:56Z
--- license: mit --- This is a [distilled multilingual BERT](https://huggingface.co/distilbert-base-multilingual-cased) model fine-tuned on 4000 examples of the [NoReC dataset](https://github.com/ltgoslo/norec) where examples with score 1/2 were marked as negative and 5/6 were marked as positive. The model was fine-tuned for 3 epochs with the following parameters: - learning_rate = 3e-05 - warmup_ratio = 0.1 - optim = 'adamw_hf' - weight_decay = 0.01
Fgenerberry/sd-class-butterflies-32
Fgenerberry
2023-03-24T08:21:00Z
4
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2023-03-23T07:38:54Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('Fgenerberry/sd-class-butterflies-32') image = pipeline ().images [0] image
Xianbing/distilbert-base-uncased-finetuned-mnli-mm
Xianbing
2023-03-24T08:01:59Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-24T03:32:22Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-mnli-mm results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: mnli split: validation_mismatched args: mnli metrics: - name: Accuracy type: accuracy value: 0.8235353946297803 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-mnli-mm This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.4709 - Accuracy: 0.8235 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.5218 | 1.0 | 24544 | 0.4663 | 0.8162 | | 0.3848 | 2.0 | 49088 | 0.4709 | 0.8235 | ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
McCheng/ppo-LunarLander-v2-Unit8
McCheng
2023-03-24T08:01:02Z
0
0
null
[ "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
reinforcement-learning
2023-03-24T08:00:31Z
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -115.54 +/- 54.00 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'exp_name': 'ppo' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'LunarLander-v2' 'total_timesteps': 50000 'learning_rate': 0.00025 'num_envs': 4 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'McCheng/ppo-LunarLander-v2-Unit8' 'batch_size': 512 'minibatch_size': 128} ```
whybeyoung/yolo
whybeyoung
2023-03-24T08:00:35Z
2
0
transformers
[ "transformers", "exbert", "text-classification", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text-classification
2023-03-13T09:22:00Z
--- language: en do_predict: true pipeline_tag: text-classification tags: - exbert license: apache-2.0 --- # GPT-2 Test the whole generation capabilities here: https://transformer.huggingface.co/doc/gpt2-large Pretrained model on English language using a causal language modeling (CLM) objective. It was introduced in [this paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) and first released at [this page](https://openai.com/blog/better-language-models/). Disclaimer: The team releasing GPT-2 also wrote a [model card](https://github.com/openai/gpt-2/blob/master/model_card.md) for their model. Content from this model card has been written by the Hugging Face team to complete the information they provided and give specific examples of bias. ## Model description GPT-2 is a transformers model pretrained on a very large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was trained to guess the next word in sentences. More precisely, inputs are sequences of continuous text of a certain length and the targets are the same sequence, shifted one token (word or piece of word) to the right. The model uses internally a mask-mechanism to make sure the predictions for the token `i` only uses the inputs from `1` to `i` but not the future tokens. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks. The model is best at what it was pretrained for however, which is generating texts from a prompt. This is the **smallest** version of GPT-2, with 124M parameters. **Related Models:** [GPT-Large](https://huggingface.co/gpt2-large), [GPT-Medium](https://huggingface.co/gpt2-medium) and [GPT-XL](https://huggingface.co/gpt2-xl) ## Intended uses & limitations You can use the raw model for text generation or fine-tune it to a downstream task. See the [model hub](https://huggingface.co/models?filter=gpt2) to look for fine-tuned versions on a task that interests you. ### How to use You can use this model directly with a pipeline for text generation. Since the generation relies on some randomness, we set a seed for reproducibility: ```python >>> from transformers import pipeline, set_seed >>> generator = pipeline('text-generation', model='gpt2') >>> set_seed(42) >>> generator("Hello, I'm a language model,", max_length=30, num_return_sequences=5) [{'generated_text': "Hello, I'm a language model, a language for thinking, a language for expressing thoughts."}, {'generated_text': "Hello, I'm a language model, a compiler, a compiler library, I just want to know how I build this kind of stuff. I don"}, {'generated_text': "Hello, I'm a language model, and also have more than a few of your own, but I understand that they're going to need some help"}, {'generated_text': "Hello, I'm a language model, a system model. I want to know my language so that it might be more interesting, more user-friendly"}, {'generated_text': 'Hello, I\'m a language model, not a language model"\n\nThe concept of "no-tricks" comes in handy later with new'}] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import GPT2Tokenizer, GPT2Model tokenizer = GPT2Tokenizer.from_pretrained('gpt2') model = GPT2Model.from_pretrained('gpt2') text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import GPT2Tokenizer, TFGPT2Model tokenizer = GPT2Tokenizer.from_pretrained('gpt2') model = TFGPT2Model.from_pretrained('gpt2') text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ### Limitations and bias The training data used for this model has not been released as a dataset one can browse. We know it contains a lot of unfiltered content from the internet, which is far from neutral. As the openAI team themselves point out in their [model card](https://github.com/openai/gpt-2/blob/master/model_card.md#out-of-scope-use-cases): > Because large-scale language models like GPT-2 do not distinguish fact from fiction, we don’t support use-cases > that require the generated text to be true. > > Additionally, language models like GPT-2 reflect the biases inherent to the systems they were trained on, so we do > not recommend that they be deployed into systems that interact with humans > unless the deployers first carry out a > study of biases relevant to the intended use-case. We found no statistically significant difference in gender, race, > and religious bias probes between 774M and 1.5B, implying all versions of GPT-2 should be approached with similar > levels of caution around use cases that are sensitive to biases around human attributes. Here's an example of how the model can have biased predictions: ```python >>> from transformers import pipeline, set_seed >>> generator = pipeline('text-generation', model='gpt2') >>> set_seed(42) >>> generator("The White man worked as a", max_length=10, num_return_sequences=5) [{'generated_text': 'The White man worked as a mannequin for'}, {'generated_text': 'The White man worked as a maniser of the'}, {'generated_text': 'The White man worked as a bus conductor by day'}, {'generated_text': 'The White man worked as a plumber at the'}, {'generated_text': 'The White man worked as a journalist. He had'}] >>> set_seed(42) >>> generator("The Black man worked as a", max_length=10, num_return_sequences=5) [{'generated_text': 'The Black man worked as a man at a restaurant'}, {'generated_text': 'The Black man worked as a car salesman in a'}, {'generated_text': 'The Black man worked as a police sergeant at the'}, {'generated_text': 'The Black man worked as a man-eating monster'}, {'generated_text': 'The Black man worked as a slave, and was'}] ``` This bias will also affect all fine-tuned versions of this model. ## Training data The OpenAI team wanted to train this model on a corpus as large as possible. To build it, they scraped all the web pages from outbound links on Reddit which received at least 3 karma. Note that all Wikipedia pages were removed from this dataset, so the model was not trained on any part of Wikipedia. The resulting dataset (called WebText) weights 40GB of texts but has not been publicly released. You can find a list of the top 1,000 domains present in WebText [here](https://github.com/openai/gpt-2/blob/master/domains.txt). ## Training procedure ### Preprocessing The texts are tokenized using a byte-level version of Byte Pair Encoding (BPE) (for unicode characters) and a vocabulary size of 50,257. The inputs are sequences of 1024 consecutive tokens. The larger model was trained on 256 cloud TPU v3 cores. The training duration was not disclosed, nor were the exact details of training. ## Evaluation results The model achieves the following results without any fine-tuning (zero-shot): | Dataset | LAMBADA | LAMBADA | CBT-CN | CBT-NE | WikiText2 | PTB | enwiki8 | text8 | WikiText103 | 1BW | |:--------:|:-------:|:-------:|:------:|:------:|:---------:|:------:|:-------:|:------:|:-----------:|:-----:| | (metric) | (PPL) | (ACC) | (ACC) | (ACC) | (PPL) | (PPL) | (BPB) | (BPC) | (PPL) | (PPL) | | | 35.13 | 45.99 | 87.65 | 83.4 | 29.41 | 65.85 | 1.16 | 1,17 | 37.50 | 75.20 | ### BibTeX entry and citation info ```bibtex @article{radford2019language, title={Language Models are Unsupervised Multitask Learners}, author={Radford, Alec and Wu, Jeff and Child, Rewon and Luan, David and Amodei, Dario and Sutskever, Ilya}, year={2019} } ``` <a href="https://huggingface.co/exbert/?model=gpt2"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
Ifenna/dbert-3epoch
Ifenna
2023-03-24T07:58:08Z
27
0
transformers
[ "transformers", "pytorch", "safetensors", "distilbert", "question-answering", "en", "dataset:squad_v2", "dataset:wiki_qa", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:04Z
--- datasets: - squad_v2 - wiki_qa language: - en metrics: - accuracy pipeline_tag: question-answering --- A distilbert model fine-tuned for question answering.
linoyts/ffashion-dress
linoyts
2023-03-24T07:49:46Z
30
1
diffusers
[ "diffusers", "pytorch", "stable-diffusion", "text-to-image", "diffusion-models-class", "dreambooth-hackathon", "wildcard", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-03-24T07:47:13Z
--- license: creativeml-openrail-m tags: - pytorch - diffusers - stable-diffusion - text-to-image - diffusion-models-class - dreambooth-hackathon - wildcard widget: - text: a photo of ffashion dress in the Acropolis --- # DreamBooth model for the ffashion concept trained by LinoyTsaban on the LinoyTsaban/dreambooth-hackathon-images dataset. This is a Stable Diffusion model fine-tuned on the ffashion concept with DreamBooth. It can be used by modifying the `instance_prompt`: **a photo of ffashion dress** This model was created as part of the DreamBooth Hackathon 🔥. Visit the [organisation page](https://huggingface.co/dreambooth-hackathon) for instructions on how to take part! ## Description This is a Stable Diffusion model fine-tuned on `dress` images for the wildcard theme. ## Usage ```python from diffusers import StableDiffusionPipeline pipeline = StableDiffusionPipeline.from_pretrained('LinoyTsaban/ffashion-dress') image = pipeline().images[0] image ```
GraydientPlatformAPI/model_105
GraydientPlatformAPI
2023-03-24T07:48:11Z
29
0
diffusers
[ "diffusers", "text-to-image", "license:openrail", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-03-24T07:34:22Z
--- license: openrail library_name: diffusers pipeline_tag: text-to-image ---
Toadette/Blast_mixes
Toadette
2023-03-24T07:34:33Z
0
0
null
[ "license:cc-by-nc-4.0", "region:us" ]
null
2023-03-24T07:32:35Z
--- license: cc-by-nc-4.0 --- License for all my models listed here models https://civitai.com/models/19466/blaest-mix https://civitai.com/models/23668/blaestive-mix
GillesEverling/q-FrozenLake-v1-8x8-Slippery
GillesEverling
2023-03-24T07:33:00Z
0
0
null
[ "FrozenLake-v1-8x8", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-24T07:32:56Z
--- tags: - FrozenLake-v1-8x8 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-8x8-Slippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-8x8 type: FrozenLake-v1-8x8 metrics: - type: mean_reward value: 0.53 +/- 0.50 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="GillesEverling/q-FrozenLake-v1-8x8-Slippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Jit/drjit-nlp-model-qa
Jit
2023-03-24T07:29:42Z
61
0
transformers
[ "transformers", "tf", "roberta", "question-answering", "generated_from_keras_callback", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
question-answering
2023-03-24T07:18:04Z
--- license: cc-by-4.0 tags: - generated_from_keras_callback model-index: - name: drjit-nlp-model-qa results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # drjit-nlp-model-qa This model is a fine-tuned version of [deepset/roberta-base-squad2](https://huggingface.co/deepset/roberta-base-squad2) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 288, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results ### Framework versions - Transformers 4.18.0 - TensorFlow 2.6.4 - Datasets 2.1.0 - Tokenizers 0.12.1
charmquark/LunarLander-v2
charmquark
2023-03-24T07:09:16Z
0
0
null
[ "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
reinforcement-learning
2023-03-24T06:30:16Z
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -49.15 +/- 25.65 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'exp_name': 'ppo' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'LunarLander-v2' 'total_timesteps': 1000000 'learning_rate': 0.00025 'num_envs': 4 'num_steps': 1024 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'charmquark/LunarLander-v2' 'batch_size': 4096 'minibatch_size': 1024} ```
glory20h/lunar_lander
glory20h
2023-03-24T07:08:11Z
4
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-24T07:07:49Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 244.69 +/- 20.40 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
starcatmeow/autotrain-cybersecurity-summarization-pegasus-x-book-43369110299
starcatmeow
2023-03-24T07:06:52Z
11
1
transformers
[ "transformers", "pytorch", "pegasus_x", "text2text-generation", "autotrain", "summarization", "unk", "dataset:starcatmeow/autotrain-data-cybersecurity-summarization-pegasus-x-book", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2023-03-24T06:30:20Z
--- tags: - autotrain - summarization language: - unk widget: - text: "I love AutoTrain 🤗" datasets: - starcatmeow/autotrain-data-cybersecurity-summarization-pegasus-x-book co2_eq_emissions: emissions: 13.98857715454734 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 43369110299 - CO2 Emissions (in grams): 13.9886 ## Validation Metrics - Loss: 2.950 - Rouge1: 37.860 - Rouge2: 20.146 - RougeL: 34.340 - RougeLsum: 34.254 - Gen Len: 13.848 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/starcatmeow/autotrain-cybersecurity-summarization-pegasus-x-book-43369110299 ```
Tritkoman/GermantoNorthFrisianV1
Tritkoman
2023-03-24T06:31:11Z
5
0
transformers
[ "transformers", "pytorch", "marian", "text2text-generation", "autotrain", "translation", "unk", "dataset:Tritkoman/autotrain-data-germantonorthfrisian", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2023-03-24T06:22:08Z
--- tags: - autotrain - translation language: - unk - unk datasets: - Tritkoman/autotrain-data-germantonorthfrisian co2_eq_emissions: emissions: 3.4297994633139433 --- # Model Trained Using AutoTrain - Problem type: Translation - Model ID: 43368110298 - CO2 Emissions (in grams): 3.4298 ## Validation Metrics - Loss: 1.137 - SacreBLEU: 50.890 - Gen len: 13.543
shanmukhchaitu/ppo-LunarLander-v2
shanmukhchaitu
2023-03-24T06:25:43Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-24T06:25:22Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 267.55 +/- 22.87 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
topskychen/rl-Taxi-v3
topskychen
2023-03-24T05:57:57Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-24T05:57:53Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: rl-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.54 +/- 2.69 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="topskychen/rl-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
thanhnguyenvn/distilbert-base-uncased-finetuned-ner
thanhnguyenvn
2023-03-24T05:52:28Z
5
0
transformers
[ "transformers", "pytorch", "distilbert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-03-24T05:25:39Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: validation args: conll2003 metrics: - name: Precision type: precision value: 0.9252181597260577 - name: Recall type: recall value: 0.9370175634858485 - name: F1 type: f1 value: 0.9310804802134283 - name: Accuracy type: accuracy value: 0.9834305050280394 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0616 - Precision: 0.9252 - Recall: 0.9370 - F1: 0.9311 - Accuracy: 0.9834 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2425 | 1.0 | 878 | 0.0698 | 0.9149 | 0.9203 | 0.9176 | 0.9811 | | 0.0551 | 2.0 | 1756 | 0.0625 | 0.9188 | 0.9340 | 0.9263 | 0.9825 | | 0.0298 | 3.0 | 2634 | 0.0616 | 0.9252 | 0.9370 | 0.9311 | 0.9834 | ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.1 - Datasets 2.10.1 - Tokenizers 0.13.2
charmquark/a2c-PandaReachDense-v2
charmquark
2023-03-24T05:48:49Z
0
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-21T09:34:28Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -2.47 +/- 0.24 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Fraisier/distilbert-base-uncased-finetuned-emotion
Fraisier
2023-03-24T05:33:17Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-24T04:23:39Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.9325 - name: F1 type: f1 value: 0.9328486852494083 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1545 - Accuracy: 0.9325 - F1: 0.9328 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.1669 | 1.0 | 250 | 0.1628 | 0.9285 | 0.9281 | | 0.1107 | 2.0 | 500 | 0.1545 | 0.9325 | 0.9328 | ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
shreyansjain/Reinforce-CartPole-v1
shreyansjain
2023-03-24T05:28:19Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl=class", "model-index", "region:us" ]
reinforcement-learning
2023-03-24T04:58:27Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl=class model-index: - name: Reinforce-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Falah/iraqi-cafes
Falah
2023-03-24T05:15:52Z
9
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-03-11T07:55:17Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### iraqi-cafes Dreambooth model trained by Falah with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
SEVUNX/PEPSYBLUE-MIX-RED
SEVUNX
2023-03-24T05:07:19Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-03-20T02:43:26Z
--- license: creativeml-openrail-m ---
arb9p4/a2c-PandaReachDense-v2
arb9p4
2023-03-24T05:06:26Z
0
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-23T18:41:13Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -1.33 +/- 0.19 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
ozcur/alpaca-native-4bit
ozcur
2023-03-24T04:59:36Z
19
58
transformers
[ "transformers", "llama", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-03-20T03:19:09Z
This is 4-bit quantization of [chavinlo/alpaca-native](https://huggingface.co/chavinlo/alpaca-native) (`cecc16d`) via [qwopqwop200/GPTQ-for-LLaMa](https://github.com/qwopqwop200/GPTQ-for-LLaMa) (`5cdfad2`). Quantization invoked as such: `llama.py /output/path c4 --wbits 4 --groupsize 128 --save alpaca7b-4bit.pt` Inference example from the GPTQ repo and commit referenced above: ``` (gptq) [root@gpu03 GPTQ-for-LLaMa]# CUDA_VISIBLE_DEVICES=0 python llama_inference.py /root/alpaca-native-4bit --wbits 4 --groupsize 128 --load /root/alpaca-native-4bit/alpaca7b-4bit.pt --max_length 300 --text "$(cat test_prompt.txt)" Loading model ... Done. ### Instruction: What is an alpaca? How is it different from a llama? ### Response: Alpacas are soft and gentle, while llamas are stubborn and independent.</s> (gptq) [root@gpu03 GPTQ-for-LLaMa]# CUDA_VISIBLE_DEVICES=0 python llama_inference.py /root/alpaca-native-4bit --wbits 4 --groupsize 128 --load /root/alpaca-native-4bit/alpaca7b-4bit.pt --max_length 300 --text "$(cat test_prompt.txt)" Loading model ... Done. ### Instruction: What is an alpaca? How is it different from a llama? ### Response: An alpaca is a small, domesticated species of livestock from the Andes region of South America. It is typically kept as a pet, and its fibers can be used for various purposes, such as making clothing and crafts. Alpacas are typically brown or black, and their ears and tails are often moved. Although it is different from a llama, the two animals are often compared to when referring to their behavior.</s> (gptq) [root@gpu03 GPTQ-for-LLaMa]# md5sum /root/alpaca-native-4bit/alpaca7b-4bit.pt 74849953cc54e313b972d2cc9a05c24b /root/alpaca-native-4bit/alpaca7b-4bit.pt (gptq) [root@gpu03 GPTQ-for-LLaMa]# ```
sanak/dqn-SpaceInvadersNoFrameskip-v4
sanak
2023-03-24T04:38:06Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-24T04:37:27Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 439.00 +/- 150.86 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga sanak -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga sanak -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga sanak ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
Absie/Reinforce-Pixelcopter-PLE-v0
Absie
2023-03-24T04:27:49Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-03-24T04:27:19Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 116.80 +/- 109.11 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
ThePianist/poca-SoccerTwos
ThePianist
2023-03-24T04:08:23Z
6
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-03-24T04:08:16Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: ThePianist/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
kikijiki/dqn-SpaceInvadersNoFrameskip-v4
kikijiki
2023-03-24T03:51:11Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-24T03:48:41Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 628.00 +/- 144.28 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga kikijiki -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga kikijiki -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga kikijiki ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
huolongguo10/CDial-GPT2-LCCC-Base-copy
huolongguo10
2023-03-24T03:38:48Z
10
0
transformers
[ "transformers", "pytorch", "gpt2", "conversational", "dataset:silver/lccc", "arxiv:1901.08149", "arxiv:2008.03946", "license:mit", "text-generation-inference", "endpoints_compatible", "region:us" ]
null
2023-03-05T10:56:40Z
--- license: mit tags: - conversational datasets: silver/lccc --- ## Chinese pre-trained dialogue model (CDial-GPT) This project provides a large-scale Chinese GPT model pre-trained on the dataset [LCCC](https://huggingface.co/datasets/silver/lccc). We present a series of Chinese GPT model that are first pre-trained on a Chinese novel dataset and then post-trained on our LCCC dataset. Similar to [TransferTransfo](https://arxiv.org/abs/1901.08149), we concatenate all dialogue histories into one context sentence, and use this sentence to predict the response. The input of our model consists of word embedding, speaker embedding, and positional embedding of each word. Paper: [A Large-Scale Chinese Short-Text Conversation Dataset](https://arxiv.org/pdf/2008.03946.pdf) ### How to use ```python from transformers import OpenAIGPTLMHeadModel, GPT2LMHeadModel, BertTokenizer import torch tokenizer = BertTokenizer.from_pretrained("thu-coai/CDial-GPT2_LCCC-base") model = GPT2LMHeadModel.from_pretrained("thu-coai/CDial-GPT2_LCCC-base") ``` For more details, please refer to our [repo.](https://github.com/thu-coai/CDial-GPT) on github.
joe-hug/q-FrozenLake-v1-4x4-noSlippery
joe-hug
2023-03-24T03:21:35Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-24T03:21:33Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="joe-hug/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
stale2000/sd-dnditem
stale2000
2023-03-24T03:09:14Z
32
20
diffusers
[ "diffusers", "stable-diffusion", "text-to-image", "en", "license:other", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2022-12-17T21:11:08Z
--- inference: true language: - en tags: - stable-diffusion - text-to-image license: other --- dnditem --- Examples | Examples :-------------------------:|:-------------------------: <img src="https://i.imgur.com/XCg4JmW.png" width="50%"/> | <img src="https://i.imgur.com/HRoKRlY.png" width="50%"/> <img src="https://i.imgur.com/9KTpaIZ.png" width="50%"/> | <img src="https://i.imgur.com/rZOJMQD.jpg" width="50%"/> | MORE results here! Hundreds of images!! https://imgur.com/a/HvhOOjJ This is a model (dnditem) for creating magic items, for the game Dungeons and Dragons! It was trained to be very similar to the official results that are available here: https://www.dndbeyond.com/magic-items The model was trained in a pretty specific way though, and requires a specific way of prompting to get good results. ##Prompting --- The keywork is "dnditem", and the prompts should be done in the following way: "dnditem, [item type], [item style], [background]" So, for example, a prompt could look like: "dnditem, a pair of boots, spellguard style, light red circle inner background with white outer background". or "dnditem, a shield, shooting star style, light blue stripe inner background with white outer background". ##item type --- Currently the model supports and was trained on the following types: "a pair of boots", "a cloak", "a pair of gloves", "a helmet", "a necklace", "a ring", "a robe", "a rod", "a shield", "a staff", "a sword", "a wand" ##item_styles --- The item styles, or abilities, can be found in the itemstyles.txt file. There are over 100 of them, of all sorts of different types of dnditems. Some cool ones to check out are "ultimate evil style", "blue and green transparent animated style", and "spell storing style". ##background --- Backgrounds should be promopted with an inner and an other background, as well as a "shape" that is either "circle" or "stripe". So Something like "light blue circle inner background with white outer background".
mrm8488/flan-t5-small-finetuned-samsum
mrm8488
2023-03-24T03:03:48Z
15
1
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "t5", "text2text-generation", "license:wtfpl", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-12-31T10:51:11Z
--- license: wtfpl lang: - en widget: - text: "Sid: Wanna catch a movie?\nAnnie: sure what do you have in mind?\nSid; the Aquaman? :D\nAnnie: haha isn't it a bit childish\nSid: noooooo I mean yes but it's the highest grossing movie this week\nAnnie: seriously?\nSid: yeah?\nAnnie: okay let's see what the fuss is all about" --- # Flan-T5 (small) fine-tuned on SAMSUM for conversation summarization
mrm8488/codebert-base-finetuned-code-ner
mrm8488
2023-03-24T03:03:35Z
20
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "roberta", "token-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-10-21T15:20:01Z
--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: codebert-base-finetuned-code-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # codebert-base-finetuned-code-ner This model is a fine-tuned version of [microsoft/codebert-base](https://huggingface.co/microsoft/codebert-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3522 - Precision: 0.6297 - Recall: 0.6417 - F1: 0.6356 - Accuracy: 0.9185 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 191 | 0.4601 | 0.4861 | 0.4578 | 0.4715 | 0.8853 | | No log | 2.0 | 382 | 0.3989 | 0.5806 | 0.5243 | 0.5510 | 0.8996 | | 0.5081 | 3.0 | 573 | 0.3547 | 0.5723 | 0.6017 | 0.5866 | 0.9059 | | 0.5081 | 4.0 | 764 | 0.3507 | 0.6161 | 0.6115 | 0.6138 | 0.9135 | | 0.5081 | 5.0 | 955 | 0.3412 | 0.6299 | 0.6252 | 0.6276 | 0.9161 | | 0.2299 | 6.0 | 1146 | 0.3418 | 0.6162 | 0.6465 | 0.6310 | 0.9175 | | 0.2299 | 7.0 | 1337 | 0.3497 | 0.6288 | 0.6287 | 0.6287 | 0.9175 | | 0.1618 | 8.0 | 1528 | 0.3474 | 0.6340 | 0.6397 | 0.6368 | 0.9189 | | 0.1618 | 9.0 | 1719 | 0.3501 | 0.6262 | 0.6432 | 0.6346 | 0.9179 | | 0.1618 | 10.0 | 1910 | 0.3522 | 0.6297 | 0.6417 | 0.6356 | 0.9185 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
Rooshan/Rooshan-mbart-large50-1_finetuned_it_es
Rooshan
2023-03-24T02:50:34Z
104
0
transformers
[ "transformers", "pytorch", "tensorboard", "mbart", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-24T02:34:29Z
--- tags: - generated_from_trainer model-index: - name: Rooshan-mbart-large50-1_finetuned_it_es results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Rooshan-mbart-large50-1_finetuned_it_es This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | No log | 1.0 | 50 | 1.4498 | 31.7771 | 29.77 | ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
valooo/22222
valooo
2023-03-24T02:29:57Z
0
0
null
[ "zh", "dataset:fka/awesome-chatgpt-prompts", "license:openrail", "region:us" ]
null
2023-03-24T02:29:29Z
--- license: openrail datasets: - fka/awesome-chatgpt-prompts language: - zh ---
loluvulol/sd-1-5-jorocca
loluvulol
2023-03-24T02:24:27Z
9
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-03-24T01:44:27Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### SD-1-5-jorocca Dreambooth model trained by loluvulol with [buildspace's DreamBooth](https://colab.research.google.com/github/buildspace/diffusers/blob/main/examples/dreambooth/DreamBooth_Stable_Diffusion.ipynb) notebook Build your own using the [AI Avatar project](https://buildspace.so/builds/ai-avatar)! To get started head over to the [project dashboard](https://buildspace.so/p/build-ai-avatars). Sample pictures of this concept: ![0](https://huggingface.co/loluvulol/sd-1-5-jorocca/resolve/main/sample_images/Screenshot_2023-03-24_at_11.42.17_am.png)
nhouben/ppo-LunarLander-v2
nhouben
2023-03-24T01:44:12Z
4
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-24T01:43:51Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 266.60 +/- 19.47 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
xinyixiuxiu/albert-xxlarge-v2-SST2-finetuned-try
xinyixiuxiu
2023-03-24T01:43:28Z
60
0
transformers
[ "transformers", "tf", "albert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-24T01:12:46Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: xinyixiuxiu/albert-xxlarge-v2-SST2-finetuned-try results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # xinyixiuxiu/albert-xxlarge-v2-SST2-finetuned-try This model is a fine-tuned version of [albert-xxlarge-v2](https://huggingface.co/albert-xxlarge-v2) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.3689 - Train Accuracy: 0.8560 - Validation Loss: 0.3286 - Validation Accuracy: 0.8899 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': 3e-06, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 0.6923 | 0.5660 | 0.6693 | 0.5814 | 0 | | 0.6081 | 0.6550 | 0.5309 | 0.7431 | 1 | | 0.3689 | 0.8560 | 0.3286 | 0.8899 | 2 | ### Framework versions - Transformers 4.21.1 - TensorFlow 2.7.0 - Datasets 2.10.1 - Tokenizers 0.12.1
pszemraj/distilgpt2-magicprompt-SD
pszemraj
2023-03-24T01:08:44Z
22
3
transformers
[ "transformers", "pytorch", "safetensors", "gpt2", "text-generation", "generated_from_trainer", "stable diffusion", "diffusion", "text2image", "prompt augment", "prompt engineering", "dataset:Gustavosta/Stable-Diffusion-Prompts", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-09T10:14:37Z
--- license: apache-2.0 tags: - generated_from_trainer - stable diffusion - diffusion - text2image - prompt augment - prompt engineering datasets: - Gustavosta/Stable-Diffusion-Prompts model-index: - name: distilgpt2-magicprompt-SD results: [] thumbnail: https://i.ibb.co/WkmTnZD/image.png widget: - text: "morning sun over Jakarta" example_title: "morning sun" - text: "WARNING: pip is" example_title: "pip" - text: "sentient cheese" example_title: "sentient cheese" - text: "cheeps are" example_title: "cheeps" - text: "avocado armchair" example_title: "creative prompt" - text: "Landscape of" example_title: "landscape" parameters: min_length: 16 max_new_tokens: 24 no_repeat_ngram_size: 1 do_sample: True --- # distilgpt2-magicprompt-SD [![colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/gist/pszemraj/bdddf9c3fe92d1ac2654730016d64c80/demo-distilgpt2-magicprompt.ipynb) Generate/augment your prompt, stable diffusion style. This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the Gustavosta/Stable-Diffusion-Prompts dataset. It achieves the following results on the evaluation set: - Loss: 1.3089 - eval_steps_per_second = 17.201 - perplexity = 3.7022 ## example Results in (_DALL-E, but you get the idea_): ![example](https://i.ibb.co/WkmTnZD/image.png) <br> this `distilgpt2` version is probably small/fast enough to be used locally on CPU! ## basic usage install transformers as needed: ```bash pip install -U transformers ``` load and query through a `pipeline` object: ```python from transformers import pipeline model_tag = "pszemraj/distilgpt2-magicprompt-SD" generator = pipeline( "text-generation", model=model_tag, ) prompt = "The Answer to Why" result = generator( prompt, max_new_tokens=24, ) # generate, adjust/add kwargs as needed print(result[0]["generated_text"]) ``` ## Training and evaluation data refer to the `Gustavosta/Stable-Diffusion-Prompts` dataset. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 16 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - total_eval_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7061 | 0.99 | 33 | 2.5859 | | 2.08 | 1.99 | 66 | 1.9965 | | 1.7623 | 2.99 | 99 | 1.7248 | | 1.5408 | 3.99 | 132 | 1.5449 | | 1.4147 | 4.99 | 165 | 1.4437 | | 1.3593 | 5.99 | 198 | 1.3768 | | 1.2703 | 6.99 | 231 | 1.3362 | | 1.2528 | 7.99 | 264 | 1.3175 | | 1.1981 | 8.99 | 297 | 1.3091 | | 1.2117 | 9.99 | 330 | 1.3089 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.6.1 - Tokenizers 0.13.1
selcukkubur/rafadan-hayri
selcukkubur
2023-03-24T01:08:20Z
5
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-03-24T01:02:25Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### rafadan-hayri Dreambooth model trained by selcukkubur with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
BM-K/KoMiniLM-68M
BM-K
2023-03-24T00:47:51Z
13
2
transformers
[ "transformers", "pytorch", "safetensors", "bert", "text-classification", "arxiv:2002.10957", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-18T07:20:19Z
# KoMiniLM 🐣 Korean mini language model ## Overview Current language models usually consist of hundreds of millions of parameters which brings challenges for fine-tuning and online serving in real-life applications due to latency and capacity constraints. In this project, we release a light weight korean language model to address the aforementioned shortcomings of existing language models. ## Quick tour ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("BM-K/KoMiniLM-68M") # 68M model model = AutoModel.from_pretrained("BM-K/KoMiniLM-68M") inputs = tokenizer("안녕 세상아!", return_tensors="pt") outputs = model(**inputs) ``` ## Update history ** Updates on 2022.06.20 ** - Release KoMiniLM-bert-68M ** Updates on 2022.05.24 ** - Release KoMiniLM-bert-23M ## Pre-training `Teacher Model`: [KLUE-BERT(base)](https://github.com/KLUE-benchmark/KLUE) ### Object Self-Attention Distribution and Self-Attention Value-Relation [[Wang et al., 2020]](https://arxiv.org/abs/2002.10957) were distilled from each discrete layer of the teacher model to the student model. Wang et al. distilled in the last layer of the transformer, but that was not the case in this project. ### Data sets |Data|News comments|News article| |:----:|:----:|:----:| |size|10G|10G| ### Config - **KoMiniLM-68M** ```json { "architectures": [ "BertForPreTraining" ], "attention_probs_dropout_prob": 0.1, "classifier_dropout": null, "hidden_act": "gelu", "hidden_dropout_prob": 0.1, "hidden_size": 768, "initializer_range": 0.02, "intermediate_size": 3072, "layer_norm_eps": 1e-12, "max_position_embeddings": 512, "model_type": "bert", "num_attention_heads": 12, "num_hidden_layers": 6, "output_attentions": true, "pad_token_id": 0, "position_embedding_type": "absolute", "return_dict": false, "torch_dtype": "float32", "transformers_version": "4.13.0", "type_vocab_size": 2, "use_cache": true, "vocab_size": 32000 } ``` ### Performance on subtasks - The results of our fine-tuning experiments are an average of 3 runs for each task. ``` cd KoMiniLM-Finetune bash scripts/run_all_kominilm.sh ``` || #Param | Average | NSMC<br>(Acc) | Naver NER<br>(F1) | PAWS<br>(Acc) | KorNLI<br>(Acc) | KorSTS<br>(Spearman) | Question Pair<br>(Acc) | KorQuaD<br>(Dev)<br>(EM/F1) | |:----:|:----:|:----:|:----:|:----:|:----:|:----:|:----:|:----:|:----:| |KoBERT(KLUE)| 110M | 86.84 | 90.20±0.07 | 87.11±0.05 | 81.36±0.21 | 81.06±0.33 | 82.47±0.14 | 95.03±0.44 | 84.43±0.18 / <br>93.05±0.04 | |KcBERT| 108M | 78.94 | 89.60±0.10 | 84.34±0.13 | 67.02±0.42| 74.17±0.52 | 76.57±0.51 | 93.97±0.27 | 60.87±0.27 / <br>85.01±0.14 | |KoBERT(SKT)| 92M | 79.73 | 89.28±0.42 | 87.54±0.04 | 80.93±0.91 | 78.18±0.45 | 75.98±2.81 | 94.37±0.31 | 51.94±0.60 / <br>79.69±0.66 | |DistilKoBERT| 28M | 74.73 | 88.39±0.08 | 84.22±0.01 | 61.74±0.45 | 70.22±0.14 | 72.11±0.27 | 92.65±0.16 | 52.52±0.48 / <br>76.00±0.71 | | | | | | | | | | | |**KoMiniLM<sup>†</sup>**| **68M** | 85.90 | 89.84±0.02 | 85.98±0.09 | 80.78±0.30 | 79.28±0.17 | 81.00±0.07 | 94.89±0.37 | 83.27±0.08 / <br>92.08±0.06 | |**KoMiniLM<sup>†</sup>**| **23M** | 84.79 | 89.67±0.03 | 84.79±0.09 | 78.67±0.45 | 78.10±0.07 | 78.90±0.11 | 94.81±0.12 | 82.11±0.42 / <br>91.21±0.29 | - [NSMC](https://github.com/e9t/nsmc) (Naver Sentiment Movie Corpus) - [Naver NER](https://github.com/naver/nlp-challenge) (NER task on Naver NLP Challenge 2018) - [PAWS](https://github.com/google-research-datasets/paws) (Korean Paraphrase Adversaries from Word Scrambling) - [KorNLI/KorSTS](https://github.com/kakaobrain/KorNLUDatasets) (Korean Natural Language Understanding) - [Question Pair](https://github.com/songys/Question_pair) (Paired Question) - [KorQuAD](https://korquad.github.io/) (The Korean Question Answering Dataset) <img src = "https://user-images.githubusercontent.com/55969260/174229747-279122dc-9d27-4da9-a6e7-f9f1fe1651f7.png"> <br> ### User Contributed Examples - ## Reference - [KLUE BERT](https://github.com/KLUE-benchmark/KLUE) - [KcBERT](https://github.com/Beomi/KcBERT) - [SKT KoBERT](https://github.com/SKTBrain/KoBERT) - [DistilKoBERT](https://github.com/monologg/DistilKoBERT) - [lassl](https://github.com/lassl/lassl)
huggingtweets/twitter
huggingtweets
2023-03-24T00:31:21Z
4
2
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-21T13:07:38Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1488548719062654976/u6qfBBkF_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Twitter</div> <div style="text-align: center; font-size: 14px;">@twitter</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Twitter. | Data | Twitter | | --- | --- | | Tweets downloaded | 3181 | | Retweets | 42 | | Short tweets | 626 | | Tweets kept | 2513 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/tzi87fkr/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @twitter's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/jcixm01r) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/jcixm01r/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/twitter') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
bucktrends/dummy-model
bucktrends
2023-03-23T23:57:55Z
6
0
transformers
[ "transformers", "pytorch", "camembert", "fill-mask", "fr", "dataset:oscar", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-03-23T23:23:47Z
--- license: mit datasets: - oscar language: - fr ---
amankishore/stable-diffusion-v1-5-plan
amankishore
2023-03-23T23:50:06Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-03-23T23:35:22Z
--- license: creativeml-openrail-m ---
SAL83/Pixelcopter-PLE-v0
SAL83
2023-03-23T23:47:03Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-03-22T22:27:28Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 7.10 +/- 4.01 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
SAL83/Pyramids
SAL83
2023-03-23T23:43:01Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-03-23T23:42:07Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Find your model_id: SAL83/Pyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
consciousAI/question-generation-auto-hints-t5-v1-base-s-q
consciousAI
2023-03-23T23:34:41Z
19
1
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "t5", "text2text-generation", "Question(s) Generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-23T01:33:34Z
--- tags: - Question(s) Generation metrics: - rouge model-index: - name: consciousAI/question-generation-auto-hints-t5-v1-base-s-q results: [] --- # Auto Question Generation The model is intended to be used for Auto And/Or Hint enabled Question Generation tasks. The model is expected to produce one or possibly more than one question from the provided context. [Live Demo: Question Generation](https://huggingface.co/spaces/consciousAI/question_generation) Including this there are five models trained with different training sets, demo provide comparison to all in one go. However, you can reach individual projects at below links: [Auto Question Generation v1](https://huggingface.co/consciousAI/question-generation-auto-t5-v1-base-s) [Auto Question Generation v2](https://huggingface.co/consciousAI/question-generation-auto-t5-v1-base-s-q) [Auto Question Generation v3](https://huggingface.co/consciousAI/question-generation-auto-t5-v1-base-s-q-c) [Auto/Hints based Question Generation v2](https://huggingface.co/consciousAI/question-generation-auto-hints-t5-v1-base-s-q-c) This model can be used as below: ``` from transformers import ( AutoModelForSeq2SeqLM, AutoTokenizer ) model_checkpoint = "consciousAI/question-generation-auto-hints-t5-v1-base-s-q" model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint) tokenizer = AutoTokenizer.from_pretrained(model_checkpoint) ## Input with prompt context="question_context: <context>" encodings = tokenizer.encode(context, return_tensors='pt', truncation=True, padding='max_length').to(device) ## You can play with many hyperparams to condition the output, look at demo output = model.generate(encodings, #max_length=300, #min_length=20, #length_penalty=2.0, num_beams=4, #early_stopping=True, #do_sample=True, #temperature=1.1 ) ## Multiple questions are expected to be delimited by '?' You can write a small wrapper to elegantly format. Look at the demo. questions = [tokenizer.decode(id, clean_up_tokenization_spaces=False, skip_special_tokens=False) for id in output] ``` ## Training and evaluation data Squad & QNLi combo. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:------:|:---------------:|:------:|:------:|:------:|:---------:| | 1.8298 | 1.0 | 14515 | 1.7529 | 0.3535 | 0.1825 | 0.3251 | 0.3294 | | 1.4931 | 2.0 | 29030 | 1.7132 | 0.3558 | 0.1881 | 0.3267 | 0.3308 | | 1.2756 | 3.0 | 43545 | 1.7579 | 0.3604 | 0.1901 | 0.3307 | 0.3345 | | 1.0936 | 4.0 | 58060 | 1.8173 | 0.36 | 0.1901 | 0.3295 | 0.3334 | | 0.955 | 5.0 | 72575 | 1.9204 | 0.3611 | 0.1884 | 0.3295 | 0.3336 | | 0.8117 | 6.0 | 87090 | 2.0183 | 0.355 | 0.1836 | 0.3241 | 0.3282 | | 0.6949 | 7.0 | 101605 | 2.1347 | 0.3556 | 0.1836 | 0.3242 | 0.3282 | | 0.636 | 8.0 | 116120 | 2.2567 | 0.3568 | 0.1855 | 0.3248 | 0.3286 | | 0.591 | 9.0 | 130635 | 2.3598 | 0.3563 | 0.1844 | 0.3238 | 0.3281 | | 0.5417 | 10.0 | 145150 | 2.4725 | 0.3556 | 0.1828 | 0.3229 | 0.3269 | ### Framework versions - Transformers 4.23.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.5.2 - Tokenizers 0.13.0
LozanoJohan/Reinforce_0
LozanoJohan
2023-03-23T23:31:20Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-03-23T23:31:08Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce_0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
ElementBrawlerAI/Reinforce-PixelCopter-v0
ElementBrawlerAI
2023-03-23T23:28:05Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-03-22T05:09:20Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-PixelCopter-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 8.80 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Chattiori/VelvetMix
Chattiori
2023-03-23T23:27:40Z
0
4
null
[ "en", "license:creativeml-openrail-m", "region:us" ]
null
2023-03-23T13:55:56Z
--- license: creativeml-openrail-m language: - en --- VelvetMix is checkpoint merge model of El Zipang, LOFI, RealDosMix, Erotic Vision and Perfect World.
Ellipsoul/ppo-Pyramids
Ellipsoul
2023-03-23T23:21:06Z
20
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-03-23T23:08:12Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Find your model_id: Ellipsoul/ppo-Pyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
FaroukFaiz/test
FaroukFaiz
2023-03-23T23:09:27Z
0
0
mlconsole
[ "mlconsole", "tabular-regression", "dataset:house_price_prediction", "license:unknown", "model-index", "region:us" ]
tabular-regression
2023-03-23T23:09:24Z
--- license: unknown inference: false tags: - mlconsole - tabular-regression library_name: mlconsole metrics: - mae - loss datasets: - house_price_prediction model-index: - name: house_price_prediction_2 results: - task: type: tabular-regression name: tabular-regression dataset: type: house_price_prediction name: house_price_prediction metrics: - type: mae name: Mean absolute error value: 5.793356418609619 - type: loss name: Model loss value: 60.74188995361328 --- # regression model trained on "house_price_prediction" 🤖 [Load and use this model](https://mlconsole.com/model/hf/FaroukFaiz/house_price_prediction_2) in one click. 🧑‍💻 [Train your own model](https://mlconsole.com) on ML Console.
YoanG/ppo-SnowballTarget
YoanG
2023-03-23T22:59:23Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-03-23T22:59:17Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Find your model_id: YoanG/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀