|
--- |
|
license: apache-2.0 |
|
task_categories: |
|
- image-segmentation |
|
language: |
|
- en |
|
pretty_name: e |
|
--- |
|
# Noisy-Labels-Instance-Segmentation |
|
|
|
### ReadMe: |
|
Important! The original annotations should be in coco format. |
|
|
|
To run the benchmark, run the following: |
|
``` |
|
python noise_annotations.py /path/to/annotations --benchmark {easy, medium, hard} (choose the benchmark level) --seed 1 |
|
``` |
|
|
|
For example: |
|
``` |
|
python noise_annotations.py /path/to/annotations --benchmark easy --seed 1 |
|
``` |
|
|
|
|
|
To run a custom noise method, run the following: |
|
``` |
|
python noise_annotations.py /path/to/annotations --method_name method_name --corruption_values [{'rand': [scale_proportion, kernel_size(should be odd number)],'localization': [scale_proportion, std_dev], 'approximation': [scale_proportion, tolerance], 'flip_class': percent_class_noise}]}] |
|
``` |
|
|
|
For example: |
|
``` |
|
python noise_annotations.py /path/to/annotations --method_name my_noise_method --corruption_values [{'rand': [0.2, 3], 'localization': [0.2, 2], 'approximation': [0.2, 5], 'flip_class': 0.2}] |
|
``` |
|
|
|
|
|
## Citation |
|
|
|
|
|
If you use this benchmark in your research, please cite this project. |
|
|
|
|
|
``` |
|
@misc{grad2024benchmarkinglabelnoiseinstance, |
|
title={Benchmarking Label Noise in Instance Segmentation: Spatial Noise Matters}, |
|
author={Eden Grad and Moshe Kimhi and Lion Halika and Chaim Baskin}, |
|
year={2024}, |
|
eprint={2406.10891}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CV}, |
|
url={https://arxiv.org/abs/2406.10891}, |
|
} |
|
``` |
|
|
|
|
|
## License |
|
|
|
This project is released under the [Apache 2.0 license](https://github.com/eden500/Noisy-Labels-Instance-Segmentation/blob/main/LICENSE.txt). |
|
|
|
|
|
Please make sure you use it with proper licenced Datasets. |
|
|
|
We use [MS-COCO/LVIS](https://cocodataset.org/#termsofuse) and [Cityscapes](https://www.cityscapes-dataset.com/license/) |
|
|
|
|
|
 |