Datasets:

Languages:
English
ArXiv:
License:
File size: 1,962 Bytes
2c9d132
 
 
 
 
 
 
 
3221cd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bca820
 
 
 
 
 
 
 
 
3221cd8
 
 
 
 
 
 
 
 
 
 
 
 
2c9d132
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
---
license: apache-2.0
task_categories:
- image-segmentation
language:
- en
pretty_name: e
---
# Noisy-Labels-Instance-Segmentation

### ReadMe:
Important! The original annotations should be in coco format.

To run the benchmark, run the following:
```
python noise_annotations.py /path/to/annotations --benchmark {easy, medium, hard} (choose the benchmark level) --seed 1
```

For example:
```
python noise_annotations.py /path/to/annotations --benchmark easy --seed 1
```


To run a custom noise method, run the following:
```
python noise_annotations.py /path/to/annotations --method_name method_name --corruption_values [{'rand': [scale_proportion, kernel_size(should be odd number)],'localization': [scale_proportion, std_dev], 'approximation': [scale_proportion, tolerance], 'flip_class': percent_class_noise}]}]
```

For example:
```
 python noise_annotations.py /path/to/annotations --method_name my_noise_method --corruption_values [{'rand': [0.2, 3], 'localization': [0.2, 2], 'approximation': [0.2, 5], 'flip_class': 0.2}]
```


## Citation


If you use this benchmark in your research, please cite this project.


```
@misc{grad2024benchmarkinglabelnoiseinstance,
      title={Benchmarking Label Noise in Instance Segmentation: Spatial Noise Matters}, 
      author={Eden Grad and Moshe Kimhi and Lion Halika and Chaim Baskin},
      year={2024},
      eprint={2406.10891},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2406.10891}, 
}
```


## License

This project is released under the [Apache 2.0 license](https://github.com/eden500/Noisy-Labels-Instance-Segmentation/blob/main/LICENSE.txt).


Please make sure you use it with proper licenced Datasets.

We use [MS-COCO/LVIS](https://cocodataset.org/#termsofuse) and [Cityscapes](https://www.cityscapes-dataset.com/license/)


![image](https://github.com/eden500/Noisy-Labels-Instance-Segmentation/assets/66938362/3e22ad79-3f12-4767-b994-2df57dd265e7)