id
int64 0
4.52k
| code
stringlengths 142
31.2k
| answer
stringclasses 7
values | prompt
stringlengths 1.64k
32.6k
| test_prompt
stringlengths 1.7k
32.7k
| token_length
int64 373
7.8k
| __index_level_0__
int64 0
4.5k
|
---|---|---|---|---|---|---|
3,927 |
import java.lang.*;
import java.util.*;
import java.io.*;
public class Main {
void solve() {
int m=ni();
long a[][]=new long[m][];
HashMap<Long,Integer> mp=new HashMap<>();
long TS=0;
long sm[]=new long[m];
for(int i=0;i<m;i++){
int sz=ni();
a[i]=new long[sz];
for(int j=0;j<sz;j++){
a[i][j]=nl();
mp.put(a[i][j],i);
sm[i]+=a[i][j];
}
TS+=sm[i];
}
if(TS%m!=0){
pw.println("No");
return;
}
TS/=m;
ArrayList<Node> ansForMask[]=new ArrayList[(1<<m)];
for(int i=0;i<(1<<m);i++) ansForMask[i]=new ArrayList<>();
ArrayList<Node> tempList=new ArrayList<>();
int vis[]=new int[m];
for(int i=0;i<m;i++){
out:for(int j=0;j<a[i].length;j++){
int mask=0;
tempList.clear();
long val=a[i][j],req=Long.MAX_VALUE;
int idx=i,idx2;
Arrays.fill(vis,0);
if(sm[i]==TS){
mask=1<<i;
if(ansForMask[mask].size()==0) ansForMask[mask].add(new Node(val,i,i));
continue;
}
while(vis[idx]==0){
req=TS-(sm[idx]-val);
if(!mp.containsKey(req)) continue out;
idx2=mp.get(req);
if(vis[idx]==1 || idx==idx2) continue out;
if(vis[idx2]==1) break;
// if(i==0 && j==1) pw.println(idx2+" "+req+" "+val);
vis[idx]=1;
mask+=(1<<idx);
tempList.add(new Node(req,idx2,idx));
idx=idx2;
val=req;
}
if(req!=a[i][j])continue out;
mask+=(1<<idx);
tempList.add(new Node(a[i][j],i,idx));
if(ansForMask[mask].size()==0){
// pw.println(Integer.toBinaryString(mask));
ansForMask[mask].addAll(tempList);
}
}
}
int dp[]=new int[1<<m];
dp[0]=1;
out: for(int mask=1;mask <(1<<m);mask++){
if(ansForMask[mask].size()!=0){
dp[mask]=1;
// pw.println(Integer.toBinaryString(mask)+" "+mask);
continue;
}
for(int s=mask;s>0;s=(s-1)&mask){
if(dp[s]==1 && dp[mask^s]==1){
dp[mask]=1;
ansForMask[mask].addAll(ansForMask[s]);
ansForMask[mask].addAll(ansForMask[mask^s]);
continue out;
}
}
}
if(dp[(1<<m)-1]==0){
pw.println("No");
return;
}
pw.println("Yes");
Pair ans[]=new Pair[m];
for(Node p : ansForMask[(1<<m)-1]){
ans[p.id1]=new Pair(p.c,p.id2);
}
for(int i=0;i<m;i++) pw.println(ans[i].c+" "+(ans[i].p+1));
}
class Pair {
long c;
int p;
public Pair(long c,int p){
this.c=c;
this.p=p;
}
}
class Node{
long c;
int id1;
int id2;
public Node(long c,int id1,int id2){
this.c=c;
this.id1=id1;
this.id2=id2;
}
}
long M = (long)1e9+7;
// END
PrintWriter pw;
StringTokenizer st;
BufferedReader br;
void run() throws Exception {
br = new BufferedReader(new InputStreamReader(System.in));
pw = new PrintWriter(System.out);
long s = System.currentTimeMillis();
solve();
pw.flush();
}
public static void main(String[] args) throws Exception {
new Main().run();
}
String ns() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
String nextLine() throws Exception {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
throw new Exception(e.toString());
}
return str;
}
int ni() {
return Integer.parseInt(ns());
}
long nl() {
return Long.parseLong(ns());
}
double nd() {
return Double.parseDouble(ns());
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.lang.*;
import java.util.*;
import java.io.*;
public class Main {
void solve() {
int m=ni();
long a[][]=new long[m][];
HashMap<Long,Integer> mp=new HashMap<>();
long TS=0;
long sm[]=new long[m];
for(int i=0;i<m;i++){
int sz=ni();
a[i]=new long[sz];
for(int j=0;j<sz;j++){
a[i][j]=nl();
mp.put(a[i][j],i);
sm[i]+=a[i][j];
}
TS+=sm[i];
}
if(TS%m!=0){
pw.println("No");
return;
}
TS/=m;
ArrayList<Node> ansForMask[]=new ArrayList[(1<<m)];
for(int i=0;i<(1<<m);i++) ansForMask[i]=new ArrayList<>();
ArrayList<Node> tempList=new ArrayList<>();
int vis[]=new int[m];
for(int i=0;i<m;i++){
out:for(int j=0;j<a[i].length;j++){
int mask=0;
tempList.clear();
long val=a[i][j],req=Long.MAX_VALUE;
int idx=i,idx2;
Arrays.fill(vis,0);
if(sm[i]==TS){
mask=1<<i;
if(ansForMask[mask].size()==0) ansForMask[mask].add(new Node(val,i,i));
continue;
}
while(vis[idx]==0){
req=TS-(sm[idx]-val);
if(!mp.containsKey(req)) continue out;
idx2=mp.get(req);
if(vis[idx]==1 || idx==idx2) continue out;
if(vis[idx2]==1) break;
// if(i==0 && j==1) pw.println(idx2+" "+req+" "+val);
vis[idx]=1;
mask+=(1<<idx);
tempList.add(new Node(req,idx2,idx));
idx=idx2;
val=req;
}
if(req!=a[i][j])continue out;
mask+=(1<<idx);
tempList.add(new Node(a[i][j],i,idx));
if(ansForMask[mask].size()==0){
// pw.println(Integer.toBinaryString(mask));
ansForMask[mask].addAll(tempList);
}
}
}
int dp[]=new int[1<<m];
dp[0]=1;
out: for(int mask=1;mask <(1<<m);mask++){
if(ansForMask[mask].size()!=0){
dp[mask]=1;
// pw.println(Integer.toBinaryString(mask)+" "+mask);
continue;
}
for(int s=mask;s>0;s=(s-1)&mask){
if(dp[s]==1 && dp[mask^s]==1){
dp[mask]=1;
ansForMask[mask].addAll(ansForMask[s]);
ansForMask[mask].addAll(ansForMask[mask^s]);
continue out;
}
}
}
if(dp[(1<<m)-1]==0){
pw.println("No");
return;
}
pw.println("Yes");
Pair ans[]=new Pair[m];
for(Node p : ansForMask[(1<<m)-1]){
ans[p.id1]=new Pair(p.c,p.id2);
}
for(int i=0;i<m;i++) pw.println(ans[i].c+" "+(ans[i].p+1));
}
class Pair {
long c;
int p;
public Pair(long c,int p){
this.c=c;
this.p=p;
}
}
class Node{
long c;
int id1;
int id2;
public Node(long c,int id1,int id2){
this.c=c;
this.id1=id1;
this.id2=id2;
}
}
long M = (long)1e9+7;
// END
PrintWriter pw;
StringTokenizer st;
BufferedReader br;
void run() throws Exception {
br = new BufferedReader(new InputStreamReader(System.in));
pw = new PrintWriter(System.out);
long s = System.currentTimeMillis();
solve();
pw.flush();
}
public static void main(String[] args) throws Exception {
new Main().run();
}
String ns() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
String nextLine() throws Exception {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
throw new Exception(e.toString());
}
return str;
}
int ni() {
return Integer.parseInt(ns());
}
long nl() {
return Long.parseLong(ns());
}
double nd() {
return Double.parseDouble(ns());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.lang.*;
import java.util.*;
import java.io.*;
public class Main {
void solve() {
int m=ni();
long a[][]=new long[m][];
HashMap<Long,Integer> mp=new HashMap<>();
long TS=0;
long sm[]=new long[m];
for(int i=0;i<m;i++){
int sz=ni();
a[i]=new long[sz];
for(int j=0;j<sz;j++){
a[i][j]=nl();
mp.put(a[i][j],i);
sm[i]+=a[i][j];
}
TS+=sm[i];
}
if(TS%m!=0){
pw.println("No");
return;
}
TS/=m;
ArrayList<Node> ansForMask[]=new ArrayList[(1<<m)];
for(int i=0;i<(1<<m);i++) ansForMask[i]=new ArrayList<>();
ArrayList<Node> tempList=new ArrayList<>();
int vis[]=new int[m];
for(int i=0;i<m;i++){
out:for(int j=0;j<a[i].length;j++){
int mask=0;
tempList.clear();
long val=a[i][j],req=Long.MAX_VALUE;
int idx=i,idx2;
Arrays.fill(vis,0);
if(sm[i]==TS){
mask=1<<i;
if(ansForMask[mask].size()==0) ansForMask[mask].add(new Node(val,i,i));
continue;
}
while(vis[idx]==0){
req=TS-(sm[idx]-val);
if(!mp.containsKey(req)) continue out;
idx2=mp.get(req);
if(vis[idx]==1 || idx==idx2) continue out;
if(vis[idx2]==1) break;
// if(i==0 && j==1) pw.println(idx2+" "+req+" "+val);
vis[idx]=1;
mask+=(1<<idx);
tempList.add(new Node(req,idx2,idx));
idx=idx2;
val=req;
}
if(req!=a[i][j])continue out;
mask+=(1<<idx);
tempList.add(new Node(a[i][j],i,idx));
if(ansForMask[mask].size()==0){
// pw.println(Integer.toBinaryString(mask));
ansForMask[mask].addAll(tempList);
}
}
}
int dp[]=new int[1<<m];
dp[0]=1;
out: for(int mask=1;mask <(1<<m);mask++){
if(ansForMask[mask].size()!=0){
dp[mask]=1;
// pw.println(Integer.toBinaryString(mask)+" "+mask);
continue;
}
for(int s=mask;s>0;s=(s-1)&mask){
if(dp[s]==1 && dp[mask^s]==1){
dp[mask]=1;
ansForMask[mask].addAll(ansForMask[s]);
ansForMask[mask].addAll(ansForMask[mask^s]);
continue out;
}
}
}
if(dp[(1<<m)-1]==0){
pw.println("No");
return;
}
pw.println("Yes");
Pair ans[]=new Pair[m];
for(Node p : ansForMask[(1<<m)-1]){
ans[p.id1]=new Pair(p.c,p.id2);
}
for(int i=0;i<m;i++) pw.println(ans[i].c+" "+(ans[i].p+1));
}
class Pair {
long c;
int p;
public Pair(long c,int p){
this.c=c;
this.p=p;
}
}
class Node{
long c;
int id1;
int id2;
public Node(long c,int id1,int id2){
this.c=c;
this.id1=id1;
this.id2=id2;
}
}
long M = (long)1e9+7;
// END
PrintWriter pw;
StringTokenizer st;
BufferedReader br;
void run() throws Exception {
br = new BufferedReader(new InputStreamReader(System.in));
pw = new PrintWriter(System.out);
long s = System.currentTimeMillis();
solve();
pw.flush();
}
public static void main(String[] args) throws Exception {
new Main().run();
}
String ns() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
String nextLine() throws Exception {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
throw new Exception(e.toString());
}
return str;
}
int ni() {
return Integer.parseInt(ns());
}
long nl() {
return Long.parseLong(ns());
}
double nd() {
return Double.parseDouble(ns());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The running time increases with the square of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^3): The running time increases with the cube of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(1): The running time does not change regardless of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,408 | 3,917 |
815 |
import java.io.*;
import java.util.*;
public class Noldbach
{
public Scanner in = new Scanner(System.in);
public PrintStream out = System.out;
public boolean[] yes;
public int n, k;
public void main()
{
n = in.nextInt();
k = in.nextInt();
genPrime();
int i;
yes = new boolean[n+1];
int x;
for(i=0;i+1<prime.length;++i)
{
x = prime[i]+prime[i+1]+1;
if(x <= n && fac[x] == x) yes[x] = true;
}
int count = 0;
for(i=0;i<yes.length;++i) if(yes[i]) ++count;
out.println((count>=k?"YES":"NO"));
}//end public void main()
//Generating Primes
public int N = 100000+100;
public int[] fac, rest;
public int[] prime;
public void genPrime()
{
ArrayList<Integer> ap = new ArrayList<Integer>();
fac = new int[N];
rest = new int[N];
int x,y;
for(x=0;x<N;++x)
{
fac[x] = x;
rest[x] = 1;
}
for(x=2;x<N;++x)
if(fac[x]==x)
{
ap.add(x);
for(y=x+x;y<N;y+=x)
if(fac[y]==y)
{
fac[y] = x;
rest[y] = y/x;
}
}
prime = new int[ap.size()];
for(int i=0;i<prime.length;++i) prime[i] = ap.get(i);
}
public static void main(String[] args)
{
(new Noldbach()).main();
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Noldbach
{
public Scanner in = new Scanner(System.in);
public PrintStream out = System.out;
public boolean[] yes;
public int n, k;
public void main()
{
n = in.nextInt();
k = in.nextInt();
genPrime();
int i;
yes = new boolean[n+1];
int x;
for(i=0;i+1<prime.length;++i)
{
x = prime[i]+prime[i+1]+1;
if(x <= n && fac[x] == x) yes[x] = true;
}
int count = 0;
for(i=0;i<yes.length;++i) if(yes[i]) ++count;
out.println((count>=k?"YES":"NO"));
}//end public void main()
//Generating Primes
public int N = 100000+100;
public int[] fac, rest;
public int[] prime;
public void genPrime()
{
ArrayList<Integer> ap = new ArrayList<Integer>();
fac = new int[N];
rest = new int[N];
int x,y;
for(x=0;x<N;++x)
{
fac[x] = x;
rest[x] = 1;
}
for(x=2;x<N;++x)
if(fac[x]==x)
{
ap.add(x);
for(y=x+x;y<N;y+=x)
if(fac[y]==y)
{
fac[y] = x;
rest[y] = y/x;
}
}
prime = new int[ap.size()];
for(int i=0;i<prime.length;++i) prime[i] = ap.get(i);
}
public static void main(String[] args)
{
(new Noldbach()).main();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Noldbach
{
public Scanner in = new Scanner(System.in);
public PrintStream out = System.out;
public boolean[] yes;
public int n, k;
public void main()
{
n = in.nextInt();
k = in.nextInt();
genPrime();
int i;
yes = new boolean[n+1];
int x;
for(i=0;i+1<prime.length;++i)
{
x = prime[i]+prime[i+1]+1;
if(x <= n && fac[x] == x) yes[x] = true;
}
int count = 0;
for(i=0;i<yes.length;++i) if(yes[i]) ++count;
out.println((count>=k?"YES":"NO"));
}//end public void main()
//Generating Primes
public int N = 100000+100;
public int[] fac, rest;
public int[] prime;
public void genPrime()
{
ArrayList<Integer> ap = new ArrayList<Integer>();
fac = new int[N];
rest = new int[N];
int x,y;
for(x=0;x<N;++x)
{
fac[x] = x;
rest[x] = 1;
}
for(x=2;x<N;++x)
if(fac[x]==x)
{
ap.add(x);
for(y=x+x;y<N;y+=x)
if(fac[y]==y)
{
fac[y] = x;
rest[y] = y/x;
}
}
prime = new int[ap.size()];
for(int i=0;i<prime.length;++i) prime[i] = ap.get(i);
}
public static void main(String[] args)
{
(new Noldbach()).main();
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 772 | 814 |
3,764 |
// Don't place your source in a package
import javax.swing.*;
import java.lang.reflect.Array;
import java.text.DecimalFormat;
import java.util.*;
import java.lang.*;
import java.io.*;
import java.math.*;
import java.util.stream.Stream;
// Please name your class Main
public class Main {
static FastScanner fs=new FastScanner();
static class FastScanner {
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st=new StringTokenizer("");
public String next() {
while (!st.hasMoreElements())
try {
st=new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
return st.nextToken();
}
int Int() {
return Integer.parseInt(next());
}
long Long() {
return Long.parseLong(next());
}
String Str(){
return next();
}
}
public static void main (String[] args) throws java.lang.Exception {
PrintWriter out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
int T=1;
for(int t=0;t<T;t++){
int n=Int(),m=Int(),k=Int();
List<int[]>g[]=new ArrayList[n*m+1];
for(int i=0;i<g.length;i++){
g[i]=new ArrayList<>();
}
for(int i=0;i<n;i++){
for(int j=0;j<m-1;j++){
int w=Int();
int u=i*m+j;
int v=i*m+(j+1);
g[u].add(new int[]{v,w});
g[v].add(new int[]{u,w});
}
}
for(int i=0;i<n-1;i++){
for(int j=0;j<m;j++){
int w=Int();
int u=i*m+j;
int v=(i+1)*m+j;
g[u].add(new int[]{v,w});
g[v].add(new int[]{u,w});
}
}
Solution sol=new Solution(out);
sol.solution(n,m,k,g);
}
out.close();
}
public static int Int(){
return fs.Int();
}
public static long Long(){
return fs.Long();
}
public static String Str(){
return fs.Str();
}
}
class Solution{
PrintWriter out;
public Solution(PrintWriter out){
this.out=out;
}
List<int[]>g[];
int n,m;
long INF=10000000000000000l;
int curr=-1,curc=-1;
long mn=Long.MAX_VALUE;
long dp[][];
public void solution(int n,int m,int k,List<int[]>g[]){
//edge : 4 directions.
this.n=n;
this.m=m;
long res[][]=new long[n][m];
if(k%2==1){
for(int i=0;i<n;i++){
Arrays.fill(res[i],-1);
}
print(res);
return;
}
this.g=g;
dp=new long[n*m+1][k/2+2];
for(int i=0;i<dp.length;i++){
Arrays.fill(dp[i],-1);
}
for(int i=0;i<n;i++){
for(int j=0;j<m;j++){
int id=i*m+j;
dfs(id,k/2);
}
}
for(int i=0;i<n;i++){
for(int j=0;j<m;j++){
int id=i*m+j;
res[i][j]=dp[id][k/2];
}
}
print(res);
}
public long dfs(int id,int cnt){
if(cnt==0){
return 0;
}
if(dp[id][cnt]!=-1)return dp[id][cnt];
int r=id/m;
int c=id%m;
long res=Long.MAX_VALUE;
for(int p[]:g[id]){
int next=p[0],w=p[1];
res=Math.min(res,w*2+dfs(next,cnt-1));
}
dp[id][cnt]=res;
return res;
}
public int dis(int x1,int y1,int x2,int y2){
return Math.abs(x1-x2)+Math.abs(y1-y2);
}
public void print(long A[][]){
for(int i=0;i<A.length;i++){
for(int j=0;j<A[0].length;j++){
out.print(A[i][j]+" ");
}
out.println();
}
}
}
class Solution1{
PrintWriter out;
public Solution1(PrintWriter out){
this.out=out;
}
public void solution(int A[]){
}
}
/*
;\
|' \
_ ; : ;
/ `-. /: : |
| ,-.`-. ,': : |
\ : `. `. ,'-. : |
\ ; ; `-.__,' `-.|
\ ; ; ::: ,::'`:. `.
\ `-. : ` :. `. \
\ \ , ; ,: (\
\ :., :. ,'o)): ` `-.
,/,' ;' ,::"'`.`---' `. `-._
,/ : ; '" `;' ,--`.
;/ :; ; ,:' ( ,:)
,.,:. ; ,:., ,-._ `. \""'/
'::' `:'` ,'( \`._____.-'"'
;, ; `. `. `._`-. \\
;:. ;: `-._`-.\ \`.
'`:. : |' `. `\ ) \
-hrr- ` ;: | `--\__,'
'` ,'
,-'
free bug dog
*/
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
// Don't place your source in a package
import javax.swing.*;
import java.lang.reflect.Array;
import java.text.DecimalFormat;
import java.util.*;
import java.lang.*;
import java.io.*;
import java.math.*;
import java.util.stream.Stream;
// Please name your class Main
public class Main {
static FastScanner fs=new FastScanner();
static class FastScanner {
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st=new StringTokenizer("");
public String next() {
while (!st.hasMoreElements())
try {
st=new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
return st.nextToken();
}
int Int() {
return Integer.parseInt(next());
}
long Long() {
return Long.parseLong(next());
}
String Str(){
return next();
}
}
public static void main (String[] args) throws java.lang.Exception {
PrintWriter out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
int T=1;
for(int t=0;t<T;t++){
int n=Int(),m=Int(),k=Int();
List<int[]>g[]=new ArrayList[n*m+1];
for(int i=0;i<g.length;i++){
g[i]=new ArrayList<>();
}
for(int i=0;i<n;i++){
for(int j=0;j<m-1;j++){
int w=Int();
int u=i*m+j;
int v=i*m+(j+1);
g[u].add(new int[]{v,w});
g[v].add(new int[]{u,w});
}
}
for(int i=0;i<n-1;i++){
for(int j=0;j<m;j++){
int w=Int();
int u=i*m+j;
int v=(i+1)*m+j;
g[u].add(new int[]{v,w});
g[v].add(new int[]{u,w});
}
}
Solution sol=new Solution(out);
sol.solution(n,m,k,g);
}
out.close();
}
public static int Int(){
return fs.Int();
}
public static long Long(){
return fs.Long();
}
public static String Str(){
return fs.Str();
}
}
class Solution{
PrintWriter out;
public Solution(PrintWriter out){
this.out=out;
}
List<int[]>g[];
int n,m;
long INF=10000000000000000l;
int curr=-1,curc=-1;
long mn=Long.MAX_VALUE;
long dp[][];
public void solution(int n,int m,int k,List<int[]>g[]){
//edge : 4 directions.
this.n=n;
this.m=m;
long res[][]=new long[n][m];
if(k%2==1){
for(int i=0;i<n;i++){
Arrays.fill(res[i],-1);
}
print(res);
return;
}
this.g=g;
dp=new long[n*m+1][k/2+2];
for(int i=0;i<dp.length;i++){
Arrays.fill(dp[i],-1);
}
for(int i=0;i<n;i++){
for(int j=0;j<m;j++){
int id=i*m+j;
dfs(id,k/2);
}
}
for(int i=0;i<n;i++){
for(int j=0;j<m;j++){
int id=i*m+j;
res[i][j]=dp[id][k/2];
}
}
print(res);
}
public long dfs(int id,int cnt){
if(cnt==0){
return 0;
}
if(dp[id][cnt]!=-1)return dp[id][cnt];
int r=id/m;
int c=id%m;
long res=Long.MAX_VALUE;
for(int p[]:g[id]){
int next=p[0],w=p[1];
res=Math.min(res,w*2+dfs(next,cnt-1));
}
dp[id][cnt]=res;
return res;
}
public int dis(int x1,int y1,int x2,int y2){
return Math.abs(x1-x2)+Math.abs(y1-y2);
}
public void print(long A[][]){
for(int i=0;i<A.length;i++){
for(int j=0;j<A[0].length;j++){
out.print(A[i][j]+" ");
}
out.println();
}
}
}
class Solution1{
PrintWriter out;
public Solution1(PrintWriter out){
this.out=out;
}
public void solution(int A[]){
}
}
/*
;\
|' \
_ ; : ;
/ `-. /: : |
| ,-.`-. ,': : |
\ : `. `. ,'-. : |
\ ; ; `-.__,' `-.|
\ ; ; ::: ,::'`:. `.
\ `-. : ` :. `. \
\ \ , ; ,: (\
\ :., :. ,'o)): ` `-.
,/,' ;' ,::"'`.`---' `. `-._
,/ : ; '" `;' ,--`.
;/ :; ; ,:' ( ,:)
,.,:. ; ,:., ,-._ `. \""'/
'::' `:'` ,'( \`._____.-'"'
;, ; `. `. `._`-. \\
;:. ;: `-._`-.\ \`.
'`:. : |' `. `\ ) \
-hrr- ` ;: | `--\__,'
'` ,'
,-'
free bug dog
*/
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
// Don't place your source in a package
import javax.swing.*;
import java.lang.reflect.Array;
import java.text.DecimalFormat;
import java.util.*;
import java.lang.*;
import java.io.*;
import java.math.*;
import java.util.stream.Stream;
// Please name your class Main
public class Main {
static FastScanner fs=new FastScanner();
static class FastScanner {
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st=new StringTokenizer("");
public String next() {
while (!st.hasMoreElements())
try {
st=new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
return st.nextToken();
}
int Int() {
return Integer.parseInt(next());
}
long Long() {
return Long.parseLong(next());
}
String Str(){
return next();
}
}
public static void main (String[] args) throws java.lang.Exception {
PrintWriter out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
int T=1;
for(int t=0;t<T;t++){
int n=Int(),m=Int(),k=Int();
List<int[]>g[]=new ArrayList[n*m+1];
for(int i=0;i<g.length;i++){
g[i]=new ArrayList<>();
}
for(int i=0;i<n;i++){
for(int j=0;j<m-1;j++){
int w=Int();
int u=i*m+j;
int v=i*m+(j+1);
g[u].add(new int[]{v,w});
g[v].add(new int[]{u,w});
}
}
for(int i=0;i<n-1;i++){
for(int j=0;j<m;j++){
int w=Int();
int u=i*m+j;
int v=(i+1)*m+j;
g[u].add(new int[]{v,w});
g[v].add(new int[]{u,w});
}
}
Solution sol=new Solution(out);
sol.solution(n,m,k,g);
}
out.close();
}
public static int Int(){
return fs.Int();
}
public static long Long(){
return fs.Long();
}
public static String Str(){
return fs.Str();
}
}
class Solution{
PrintWriter out;
public Solution(PrintWriter out){
this.out=out;
}
List<int[]>g[];
int n,m;
long INF=10000000000000000l;
int curr=-1,curc=-1;
long mn=Long.MAX_VALUE;
long dp[][];
public void solution(int n,int m,int k,List<int[]>g[]){
//edge : 4 directions.
this.n=n;
this.m=m;
long res[][]=new long[n][m];
if(k%2==1){
for(int i=0;i<n;i++){
Arrays.fill(res[i],-1);
}
print(res);
return;
}
this.g=g;
dp=new long[n*m+1][k/2+2];
for(int i=0;i<dp.length;i++){
Arrays.fill(dp[i],-1);
}
for(int i=0;i<n;i++){
for(int j=0;j<m;j++){
int id=i*m+j;
dfs(id,k/2);
}
}
for(int i=0;i<n;i++){
for(int j=0;j<m;j++){
int id=i*m+j;
res[i][j]=dp[id][k/2];
}
}
print(res);
}
public long dfs(int id,int cnt){
if(cnt==0){
return 0;
}
if(dp[id][cnt]!=-1)return dp[id][cnt];
int r=id/m;
int c=id%m;
long res=Long.MAX_VALUE;
for(int p[]:g[id]){
int next=p[0],w=p[1];
res=Math.min(res,w*2+dfs(next,cnt-1));
}
dp[id][cnt]=res;
return res;
}
public int dis(int x1,int y1,int x2,int y2){
return Math.abs(x1-x2)+Math.abs(y1-y2);
}
public void print(long A[][]){
for(int i=0;i<A.length;i++){
for(int j=0;j<A[0].length;j++){
out.print(A[i][j]+" ");
}
out.println();
}
}
}
class Solution1{
PrintWriter out;
public Solution1(PrintWriter out){
this.out=out;
}
public void solution(int A[]){
}
}
/*
;\
|' \
_ ; : ;
/ `-. /: : |
| ,-.`-. ,': : |
\ : `. `. ,'-. : |
\ ; ; `-.__,' `-.|
\ ; ; ::: ,::'`:. `.
\ `-. : ` :. `. \
\ \ , ; ,: (\
\ :., :. ,'o)): ` `-.
,/,' ;' ,::"'`.`---' `. `-._
,/ : ; '" `;' ,--`.
;/ :; ; ,:' ( ,:)
,.,:. ; ,:., ,-._ `. \""'/
'::' `:'` ,'( \`._____.-'"'
;, ; `. `. `._`-. \\
;:. ;: `-._`-.\ \`.
'`:. : |' `. `\ ) \
-hrr- ` ;: | `--\__,'
'` ,'
,-'
free bug dog
*/
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,622 | 3,756 |
3,125 |
import java.io.*;
import java.util.*;
import java.math.*;
public class Solution implements Runnable {
private BufferedReader in;
private PrintWriter out;
private StringTokenizer st;
private Random rnd;
double Vend;
private double calcFirstSegment(double a, double Vmax, double Vend, double l) {
double Vl = 0, Vr = Vmax;
for(int it = 0; it < 256; it++) {
double Vm = (Vl + Vr) / 2.0;
double tFirst = Vm / a;
double tSecond = 0;
if(Vend < Vm) tSecond = (Vm - Vend) / a;
double firstPart = a * tFirst * tFirst / 2.0;
double secondPart = Vm * tSecond - a * tSecond * tSecond / 2.0;
double res = firstPart + secondPart;
if(res < l) Vl = Vm;
else Vr = Vm;
}
this.Vend = Math.min(Vl, Vend);
double res = 0.0;
{
double Vm = Vl;
double tFirst = Vm / a;
double tSecond = 0;
if(Vend < Vm) tSecond = (Vm - Vend) / a;
//out.println(tSecond);
double firstPart = a * tFirst * tFirst / 2.0;
double secondPart = Vm * tSecond - a * tSecond * tSecond / 2.0;
double remain = l - firstPart - secondPart;
res = tFirst + tSecond + (remain / Vm);
}
return res;
}
private double calcSecondPart(double a, double Vmax, double Vstart, double l) {
double Vl = Vstart, Vr = Vmax;
//out.println(Vstart);
for(int it = 0; it < 256; it++) {
double Vm = (Vl + Vr) / 2.0;
double t = (Vm - Vstart) / a;
double s = Vstart * t + a * t * t / 2.0;
if(s < l) Vl = Vm;
else Vr = Vm;
}
double res = 0.0;
{
double Vm = (Vl + Vr) / 2.0;
double t = (Vm - Vstart) / a;
double s = Vstart * t + a * t * t / 2.0;
double remain = l - s;
res = t + (remain / Vmax);
}
return res;
}
public void solve() throws IOException {
double a = nextDouble(), v = nextDouble(), l = nextDouble(), d = nextDouble(), w = nextDouble();
double res = calcFirstSegment(a, v, w, d);
res += calcSecondPart(a, v, Vend, l - d);
out.println(res);
}
public static void main(String[] args) {
new Solution().run();
}
public void run() {
try {
//in = new BufferedReader(new FileReader("input.txt"));
//out = new PrintWriter(new FileWriter("output.txt"));
in = new BufferedReader(new InputStreamReader((System.in)));
out = new PrintWriter(System.out);
st = null;
rnd = new Random();
solve();
out.close();
} catch(IOException e) {
e.printStackTrace();
}
}
private String nextToken() throws IOException, NullPointerException {
while(st == null || !st.hasMoreTokens()) {
st = new StringTokenizer(in.readLine());
}
return st.nextToken();
}
private int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
private long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
private double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
import java.math.*;
public class Solution implements Runnable {
private BufferedReader in;
private PrintWriter out;
private StringTokenizer st;
private Random rnd;
double Vend;
private double calcFirstSegment(double a, double Vmax, double Vend, double l) {
double Vl = 0, Vr = Vmax;
for(int it = 0; it < 256; it++) {
double Vm = (Vl + Vr) / 2.0;
double tFirst = Vm / a;
double tSecond = 0;
if(Vend < Vm) tSecond = (Vm - Vend) / a;
double firstPart = a * tFirst * tFirst / 2.0;
double secondPart = Vm * tSecond - a * tSecond * tSecond / 2.0;
double res = firstPart + secondPart;
if(res < l) Vl = Vm;
else Vr = Vm;
}
this.Vend = Math.min(Vl, Vend);
double res = 0.0;
{
double Vm = Vl;
double tFirst = Vm / a;
double tSecond = 0;
if(Vend < Vm) tSecond = (Vm - Vend) / a;
//out.println(tSecond);
double firstPart = a * tFirst * tFirst / 2.0;
double secondPart = Vm * tSecond - a * tSecond * tSecond / 2.0;
double remain = l - firstPart - secondPart;
res = tFirst + tSecond + (remain / Vm);
}
return res;
}
private double calcSecondPart(double a, double Vmax, double Vstart, double l) {
double Vl = Vstart, Vr = Vmax;
//out.println(Vstart);
for(int it = 0; it < 256; it++) {
double Vm = (Vl + Vr) / 2.0;
double t = (Vm - Vstart) / a;
double s = Vstart * t + a * t * t / 2.0;
if(s < l) Vl = Vm;
else Vr = Vm;
}
double res = 0.0;
{
double Vm = (Vl + Vr) / 2.0;
double t = (Vm - Vstart) / a;
double s = Vstart * t + a * t * t / 2.0;
double remain = l - s;
res = t + (remain / Vmax);
}
return res;
}
public void solve() throws IOException {
double a = nextDouble(), v = nextDouble(), l = nextDouble(), d = nextDouble(), w = nextDouble();
double res = calcFirstSegment(a, v, w, d);
res += calcSecondPart(a, v, Vend, l - d);
out.println(res);
}
public static void main(String[] args) {
new Solution().run();
}
public void run() {
try {
//in = new BufferedReader(new FileReader("input.txt"));
//out = new PrintWriter(new FileWriter("output.txt"));
in = new BufferedReader(new InputStreamReader((System.in)));
out = new PrintWriter(System.out);
st = null;
rnd = new Random();
solve();
out.close();
} catch(IOException e) {
e.printStackTrace();
}
}
private String nextToken() throws IOException, NullPointerException {
while(st == null || !st.hasMoreTokens()) {
st = new StringTokenizer(in.readLine());
}
return st.nextToken();
}
private int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
private long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
private double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
import java.math.*;
public class Solution implements Runnable {
private BufferedReader in;
private PrintWriter out;
private StringTokenizer st;
private Random rnd;
double Vend;
private double calcFirstSegment(double a, double Vmax, double Vend, double l) {
double Vl = 0, Vr = Vmax;
for(int it = 0; it < 256; it++) {
double Vm = (Vl + Vr) / 2.0;
double tFirst = Vm / a;
double tSecond = 0;
if(Vend < Vm) tSecond = (Vm - Vend) / a;
double firstPart = a * tFirst * tFirst / 2.0;
double secondPart = Vm * tSecond - a * tSecond * tSecond / 2.0;
double res = firstPart + secondPart;
if(res < l) Vl = Vm;
else Vr = Vm;
}
this.Vend = Math.min(Vl, Vend);
double res = 0.0;
{
double Vm = Vl;
double tFirst = Vm / a;
double tSecond = 0;
if(Vend < Vm) tSecond = (Vm - Vend) / a;
//out.println(tSecond);
double firstPart = a * tFirst * tFirst / 2.0;
double secondPart = Vm * tSecond - a * tSecond * tSecond / 2.0;
double remain = l - firstPart - secondPart;
res = tFirst + tSecond + (remain / Vm);
}
return res;
}
private double calcSecondPart(double a, double Vmax, double Vstart, double l) {
double Vl = Vstart, Vr = Vmax;
//out.println(Vstart);
for(int it = 0; it < 256; it++) {
double Vm = (Vl + Vr) / 2.0;
double t = (Vm - Vstart) / a;
double s = Vstart * t + a * t * t / 2.0;
if(s < l) Vl = Vm;
else Vr = Vm;
}
double res = 0.0;
{
double Vm = (Vl + Vr) / 2.0;
double t = (Vm - Vstart) / a;
double s = Vstart * t + a * t * t / 2.0;
double remain = l - s;
res = t + (remain / Vmax);
}
return res;
}
public void solve() throws IOException {
double a = nextDouble(), v = nextDouble(), l = nextDouble(), d = nextDouble(), w = nextDouble();
double res = calcFirstSegment(a, v, w, d);
res += calcSecondPart(a, v, Vend, l - d);
out.println(res);
}
public static void main(String[] args) {
new Solution().run();
}
public void run() {
try {
//in = new BufferedReader(new FileReader("input.txt"));
//out = new PrintWriter(new FileWriter("output.txt"));
in = new BufferedReader(new InputStreamReader((System.in)));
out = new PrintWriter(System.out);
st = null;
rnd = new Random();
solve();
out.close();
} catch(IOException e) {
e.printStackTrace();
}
}
private String nextToken() throws IOException, NullPointerException {
while(st == null || !st.hasMoreTokens()) {
st = new StringTokenizer(in.readLine());
}
return st.nextToken();
}
private int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
private long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
private double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,244 | 3,119 |
3,575 |
import java.util.*;
import java.io.*;
public class C{
public static void main(String args[]) throws Exception{
Scanner in = new Scanner(new FileReader("input.txt"));
PrintWriter out = new PrintWriter(new File("output.txt"));
int N = in.nextInt();
int M = in.nextInt();
int K = in.nextInt();
int[] X = new int[K], Y = new int[K];
for (int i = 0; i < K; i++){
X[i] = in.nextInt();
Y[i] = in.nextInt();
}
int d = -1;
int a = -1; int b = -1;
for (int i = 1; i <= N; i++)
for (int j = 1; j <= M; j++){
int h = Integer.MAX_VALUE;
for (int p = 0; p < K; p++)
h = Math.min(h,Math.abs(i-X[p]) + Math.abs(j-Y[p]));
if (h > d){
d = h; a = i; b = j;
}
}
out.print(a + " " + b);
out.close();
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class C{
public static void main(String args[]) throws Exception{
Scanner in = new Scanner(new FileReader("input.txt"));
PrintWriter out = new PrintWriter(new File("output.txt"));
int N = in.nextInt();
int M = in.nextInt();
int K = in.nextInt();
int[] X = new int[K], Y = new int[K];
for (int i = 0; i < K; i++){
X[i] = in.nextInt();
Y[i] = in.nextInt();
}
int d = -1;
int a = -1; int b = -1;
for (int i = 1; i <= N; i++)
for (int j = 1; j <= M; j++){
int h = Integer.MAX_VALUE;
for (int p = 0; p < K; p++)
h = Math.min(h,Math.abs(i-X[p]) + Math.abs(j-Y[p]));
if (h > d){
d = h; a = i; b = j;
}
}
out.print(a + " " + b);
out.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(1): The running time does not change regardless of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class C{
public static void main(String args[]) throws Exception{
Scanner in = new Scanner(new FileReader("input.txt"));
PrintWriter out = new PrintWriter(new File("output.txt"));
int N = in.nextInt();
int M = in.nextInt();
int K = in.nextInt();
int[] X = new int[K], Y = new int[K];
for (int i = 0; i < K; i++){
X[i] = in.nextInt();
Y[i] = in.nextInt();
}
int d = -1;
int a = -1; int b = -1;
for (int i = 1; i <= N; i++)
for (int j = 1; j <= M; j++){
int h = Integer.MAX_VALUE;
for (int p = 0; p < K; p++)
h = Math.min(h,Math.abs(i-X[p]) + Math.abs(j-Y[p]));
if (h > d){
d = h; a = i; b = j;
}
}
out.print(a + " " + b);
out.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 585 | 3,567 |
2,481 |
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.HashMap;
import java.util.InputMismatchException;
import java.io.IOException;
import java.util.ArrayList;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author beginner1010
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskF2 solver = new TaskF2();
solver.solve(1, in, out);
out.close();
}
static class TaskF2 {
public void solve(int testNumber, InputReader in, PrintWriter out) {
int n = in.nextInt();
int[] a = new int[n];
for (int i = 0; i < n; i++) {
a[i] = in.nextInt();
}
HashMap<Long, ArrayList<Interval>> map = new HashMap<>();
for (int i = 0; i < n; i++) {
long sum = 0;
for (int j = i; j < n; j++) {
sum += a[j];
if (map.containsKey(sum) == false) {
map.put(sum, new ArrayList<>());
}
ArrayList<Interval> arr = map.get(sum);
if (arr.isEmpty() || arr.get(arr.size() - 1).r < i) {
arr.add(new Interval(i, j));
} else if (arr.get(arr.size() - 1).r >= j) {
arr.set(arr.size() - 1, new Interval(i, j));
}
}
}
ArrayList<Interval> best = new ArrayList<>();
for (ArrayList<Interval> arr : map.values()) {
if (best.size() < arr.size()) {
best = arr;
}
}
out.println(best.size());
for (Interval i : best) {
out.println((i.l + 1) + " " + (i.r + 1));
}
}
class Interval {
int l;
int r;
Interval(int l, int r) {
this.l = l;
this.r = r;
}
}
}
static class InputReader {
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private InputStream stream;
public InputReader(InputStream stream) {
this.stream = stream;
}
private boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
private int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int nextInt() {
int c = read();
while (isWhitespace(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isWhitespace(c));
return res * sgn;
}
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.HashMap;
import java.util.InputMismatchException;
import java.io.IOException;
import java.util.ArrayList;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author beginner1010
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskF2 solver = new TaskF2();
solver.solve(1, in, out);
out.close();
}
static class TaskF2 {
public void solve(int testNumber, InputReader in, PrintWriter out) {
int n = in.nextInt();
int[] a = new int[n];
for (int i = 0; i < n; i++) {
a[i] = in.nextInt();
}
HashMap<Long, ArrayList<Interval>> map = new HashMap<>();
for (int i = 0; i < n; i++) {
long sum = 0;
for (int j = i; j < n; j++) {
sum += a[j];
if (map.containsKey(sum) == false) {
map.put(sum, new ArrayList<>());
}
ArrayList<Interval> arr = map.get(sum);
if (arr.isEmpty() || arr.get(arr.size() - 1).r < i) {
arr.add(new Interval(i, j));
} else if (arr.get(arr.size() - 1).r >= j) {
arr.set(arr.size() - 1, new Interval(i, j));
}
}
}
ArrayList<Interval> best = new ArrayList<>();
for (ArrayList<Interval> arr : map.values()) {
if (best.size() < arr.size()) {
best = arr;
}
}
out.println(best.size());
for (Interval i : best) {
out.println((i.l + 1) + " " + (i.r + 1));
}
}
class Interval {
int l;
int r;
Interval(int l, int r) {
this.l = l;
this.r = r;
}
}
}
static class InputReader {
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private InputStream stream;
public InputReader(InputStream stream) {
this.stream = stream;
}
private boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
private int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int nextInt() {
int c = read();
while (isWhitespace(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isWhitespace(c));
return res * sgn;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.HashMap;
import java.util.InputMismatchException;
import java.io.IOException;
import java.util.ArrayList;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author beginner1010
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskF2 solver = new TaskF2();
solver.solve(1, in, out);
out.close();
}
static class TaskF2 {
public void solve(int testNumber, InputReader in, PrintWriter out) {
int n = in.nextInt();
int[] a = new int[n];
for (int i = 0; i < n; i++) {
a[i] = in.nextInt();
}
HashMap<Long, ArrayList<Interval>> map = new HashMap<>();
for (int i = 0; i < n; i++) {
long sum = 0;
for (int j = i; j < n; j++) {
sum += a[j];
if (map.containsKey(sum) == false) {
map.put(sum, new ArrayList<>());
}
ArrayList<Interval> arr = map.get(sum);
if (arr.isEmpty() || arr.get(arr.size() - 1).r < i) {
arr.add(new Interval(i, j));
} else if (arr.get(arr.size() - 1).r >= j) {
arr.set(arr.size() - 1, new Interval(i, j));
}
}
}
ArrayList<Interval> best = new ArrayList<>();
for (ArrayList<Interval> arr : map.values()) {
if (best.size() < arr.size()) {
best = arr;
}
}
out.println(best.size());
for (Interval i : best) {
out.println((i.l + 1) + " " + (i.r + 1));
}
}
class Interval {
int l;
int r;
Interval(int l, int r) {
this.l = l;
this.r = r;
}
}
}
static class InputReader {
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private InputStream stream;
public InputReader(InputStream stream) {
this.stream = stream;
}
private boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
private int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int nextInt() {
int c = read();
while (isWhitespace(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isWhitespace(c));
return res * sgn;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,158 | 2,476 |
4,436 |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.Arrays;
import java.util.StringTokenizer;
/**
* Author -
* User: kansal
* Date: 9/3/11
* Time: 5:28 PM
*/
public class CF85E {
public static void main(String[] args) {
reader = new BufferedReader(new InputStreamReader(System.in));
int height = nextInt(), width = nextInt();
if (width > height) {
int t = width;
width = height;
height = t;
}
final int INF = height * width + 10;
int[][][] dp = new int[height + 1][1 << width][1 << width];
for (int[][] ints : dp) {
for (int[] anInt : ints) {
Arrays.fill(anInt, INF);
}
}
dp[0][0][0] = 0;
for(int r = 0; r < height; ++r) {
for(int uncovered = 0; uncovered < (1 << width); ++uncovered) {
for(int mask = 0; mask < (1 << width); ++mask) {
if (dp[r][uncovered][mask] == INF) {
continue;
}
for(int curMask = uncovered; curMask < (1 << width); curMask = (curMask + 1) | uncovered) {
int curUncovered = (1 << width) - 1;
for(int i = 0; i < width; ++i) {
if (hasBit(mask, i) || hasBit(curMask, i)) {
curUncovered &= ~(1 << i);
}
if (i > 0 && hasBit(curMask, i-1)) {
curUncovered &= ~(1 << i);
}
if (i < width-1 && hasBit(curMask, i+1)) {
curUncovered &= ~(1 << i);
}
}
dp[r+1][curUncovered][curMask] = Math.min(dp[r+1][curUncovered][curMask], dp[r][uncovered][mask] + Integer.bitCount(curMask));
}
}
}
}
int res = INF;
for(int x: dp[height][0]) res = Math.min(res, x);
System.out.println(height * width - res);
}
private static boolean hasBit(int mask, int bit) {
return (((mask >> bit) & 1) == 1);
}
public static BufferedReader reader;
public static StringTokenizer tokenizer = null;
static String nextToken() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
static public int nextInt() {
return Integer.parseInt(nextToken());
}
static public long nextLong() {
return Long.parseLong(nextToken());
}
static public String next() {
return nextToken();
}
static public String nextLine() {
try {
return reader.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return null;
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.Arrays;
import java.util.StringTokenizer;
/**
* Author -
* User: kansal
* Date: 9/3/11
* Time: 5:28 PM
*/
public class CF85E {
public static void main(String[] args) {
reader = new BufferedReader(new InputStreamReader(System.in));
int height = nextInt(), width = nextInt();
if (width > height) {
int t = width;
width = height;
height = t;
}
final int INF = height * width + 10;
int[][][] dp = new int[height + 1][1 << width][1 << width];
for (int[][] ints : dp) {
for (int[] anInt : ints) {
Arrays.fill(anInt, INF);
}
}
dp[0][0][0] = 0;
for(int r = 0; r < height; ++r) {
for(int uncovered = 0; uncovered < (1 << width); ++uncovered) {
for(int mask = 0; mask < (1 << width); ++mask) {
if (dp[r][uncovered][mask] == INF) {
continue;
}
for(int curMask = uncovered; curMask < (1 << width); curMask = (curMask + 1) | uncovered) {
int curUncovered = (1 << width) - 1;
for(int i = 0; i < width; ++i) {
if (hasBit(mask, i) || hasBit(curMask, i)) {
curUncovered &= ~(1 << i);
}
if (i > 0 && hasBit(curMask, i-1)) {
curUncovered &= ~(1 << i);
}
if (i < width-1 && hasBit(curMask, i+1)) {
curUncovered &= ~(1 << i);
}
}
dp[r+1][curUncovered][curMask] = Math.min(dp[r+1][curUncovered][curMask], dp[r][uncovered][mask] + Integer.bitCount(curMask));
}
}
}
}
int res = INF;
for(int x: dp[height][0]) res = Math.min(res, x);
System.out.println(height * width - res);
}
private static boolean hasBit(int mask, int bit) {
return (((mask >> bit) & 1) == 1);
}
public static BufferedReader reader;
public static StringTokenizer tokenizer = null;
static String nextToken() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
static public int nextInt() {
return Integer.parseInt(nextToken());
}
static public long nextLong() {
return Long.parseLong(nextToken());
}
static public String next() {
return nextToken();
}
static public String nextLine() {
try {
return reader.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return null;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The running time increases with the square of the input size n.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.Arrays;
import java.util.StringTokenizer;
/**
* Author -
* User: kansal
* Date: 9/3/11
* Time: 5:28 PM
*/
public class CF85E {
public static void main(String[] args) {
reader = new BufferedReader(new InputStreamReader(System.in));
int height = nextInt(), width = nextInt();
if (width > height) {
int t = width;
width = height;
height = t;
}
final int INF = height * width + 10;
int[][][] dp = new int[height + 1][1 << width][1 << width];
for (int[][] ints : dp) {
for (int[] anInt : ints) {
Arrays.fill(anInt, INF);
}
}
dp[0][0][0] = 0;
for(int r = 0; r < height; ++r) {
for(int uncovered = 0; uncovered < (1 << width); ++uncovered) {
for(int mask = 0; mask < (1 << width); ++mask) {
if (dp[r][uncovered][mask] == INF) {
continue;
}
for(int curMask = uncovered; curMask < (1 << width); curMask = (curMask + 1) | uncovered) {
int curUncovered = (1 << width) - 1;
for(int i = 0; i < width; ++i) {
if (hasBit(mask, i) || hasBit(curMask, i)) {
curUncovered &= ~(1 << i);
}
if (i > 0 && hasBit(curMask, i-1)) {
curUncovered &= ~(1 << i);
}
if (i < width-1 && hasBit(curMask, i+1)) {
curUncovered &= ~(1 << i);
}
}
dp[r+1][curUncovered][curMask] = Math.min(dp[r+1][curUncovered][curMask], dp[r][uncovered][mask] + Integer.bitCount(curMask));
}
}
}
}
int res = INF;
for(int x: dp[height][0]) res = Math.min(res, x);
System.out.println(height * width - res);
}
private static boolean hasBit(int mask, int bit) {
return (((mask >> bit) & 1) == 1);
}
public static BufferedReader reader;
public static StringTokenizer tokenizer = null;
static String nextToken() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
static public int nextInt() {
return Integer.parseInt(nextToken());
}
static public long nextLong() {
return Long.parseLong(nextToken());
}
static public String next() {
return nextToken();
}
static public String nextLine() {
try {
return reader.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return null;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The running time grows linearly with the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,038 | 4,425 |
377 |
import java.util.InputMismatchException;
import java.math.BigInteger;
import java.io.*;
import java.util.*;
/**
* Generated by Contest helper plug-in
* Actual solution is at the bottom
*/
public class Main {
public static void main(String[] args) {
InputReader in = new StreamInputReader(System.in);
PrintWriter out = new PrintWriter(System.out);
run(in, out);
}
public static void run(InputReader in, PrintWriter out) {
Solver solver = new Task();
solver.solve(1, in, out);
Exit.exit(in, out);
}
}
abstract class InputReader {
private boolean finished = false;
public abstract int read();
public long readLong() {
return new BigInteger(readString()).longValue();
}
public int readInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public String readString() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuffer res = new StringBuffer();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
private boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public void setFinished(boolean finished) {
this.finished = finished;
}
public abstract void close();
}
class StreamInputReader extends InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar, numChars;
public StreamInputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public void close() {
try {
stream.close();
} catch (IOException ignored) {
}
}
}
class Exit {
private Exit() {
}
public static void exit(InputReader in, PrintWriter out) {
in.setFinished(true);
in.close();
out.close();
}
}
interface Solver {
public void solve(int testNumber, InputReader in, PrintWriter out);
}
class Task implements Solver {
public void solve(int testNumber, InputReader in, PrintWriter out) {
int n = in.readInt();
int a = in.readInt();
int b = in.readInt();
if (a==b) {
b = 0;
}
boolean[] where = new boolean[n];
HashSet<Integer> set = new HashSet<Integer>();
HashMap<Integer,Integer> indexmap = new HashMap<Integer,Integer>();
for (int i = 0; i<n; i++) {
int x = in.readInt();
indexmap.put(x, i);
set.add(x);
}
while (set.size() > 0) {
int size = set.size();
HashSet<Integer> todo = new HashSet<Integer>();
HashSet<Integer> used = new HashSet<Integer>();
for (int x : set) {
if (used.contains(x))
continue;
int ax = a-x;
int bx = b-x;
if ((set.contains(ax) && !used.contains(ax)) && (set.contains(bx) && !used.contains(bx))) {
todo.add(x);
} else if (set.contains(ax) && !used.contains(ax)) {
used.add(x);
used.add(ax);
todo.remove(ax);
//chain
bx = b-ax;
while (set.contains(bx) && !used.contains(bx)) {
x = bx;
ax = a-x;
if (!set.contains(ax) || used.contains(ax)) {
System.out.println("NO");
return;
}
todo.remove(x);
todo.remove(ax);
used.add(x);
used.add(ax);
bx = b-ax;
}
} else if (set.contains(bx) && !used.contains(bx)) {
used.add(x);
used.add(bx);
todo.remove(bx);
where[indexmap.get(bx)] = true;
where[indexmap.get(x)] = true;
//chain
ax = a-bx;
while (set.contains(ax) && !used.contains(ax)) {
x = ax;
bx = b-x;
if (!set.contains(bx) || used.contains(bx)) {
System.out.println("NO");
return;
}
todo.remove(x);
todo.remove(bx);
used.add(x);
used.add(bx);
where[indexmap.get(bx)] = true;
where[indexmap.get(x)] = true;
ax = a-bx;
}
} else {
System.out.println("NO");
return;
}
}
set = todo;
if (set.size() == size) {
System.out.println("Set size constant!!");
break;
}
}
System.out.println("YES");
for (int i = 0; i<n; i++)
if (where[i])
System.out.print("1 ");
else
System.out.print("0 ");
}
}
class num {
}
///
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.InputMismatchException;
import java.math.BigInteger;
import java.io.*;
import java.util.*;
/**
* Generated by Contest helper plug-in
* Actual solution is at the bottom
*/
public class Main {
public static void main(String[] args) {
InputReader in = new StreamInputReader(System.in);
PrintWriter out = new PrintWriter(System.out);
run(in, out);
}
public static void run(InputReader in, PrintWriter out) {
Solver solver = new Task();
solver.solve(1, in, out);
Exit.exit(in, out);
}
}
abstract class InputReader {
private boolean finished = false;
public abstract int read();
public long readLong() {
return new BigInteger(readString()).longValue();
}
public int readInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public String readString() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuffer res = new StringBuffer();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
private boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public void setFinished(boolean finished) {
this.finished = finished;
}
public abstract void close();
}
class StreamInputReader extends InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar, numChars;
public StreamInputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public void close() {
try {
stream.close();
} catch (IOException ignored) {
}
}
}
class Exit {
private Exit() {
}
public static void exit(InputReader in, PrintWriter out) {
in.setFinished(true);
in.close();
out.close();
}
}
interface Solver {
public void solve(int testNumber, InputReader in, PrintWriter out);
}
class Task implements Solver {
public void solve(int testNumber, InputReader in, PrintWriter out) {
int n = in.readInt();
int a = in.readInt();
int b = in.readInt();
if (a==b) {
b = 0;
}
boolean[] where = new boolean[n];
HashSet<Integer> set = new HashSet<Integer>();
HashMap<Integer,Integer> indexmap = new HashMap<Integer,Integer>();
for (int i = 0; i<n; i++) {
int x = in.readInt();
indexmap.put(x, i);
set.add(x);
}
while (set.size() > 0) {
int size = set.size();
HashSet<Integer> todo = new HashSet<Integer>();
HashSet<Integer> used = new HashSet<Integer>();
for (int x : set) {
if (used.contains(x))
continue;
int ax = a-x;
int bx = b-x;
if ((set.contains(ax) && !used.contains(ax)) && (set.contains(bx) && !used.contains(bx))) {
todo.add(x);
} else if (set.contains(ax) && !used.contains(ax)) {
used.add(x);
used.add(ax);
todo.remove(ax);
//chain
bx = b-ax;
while (set.contains(bx) && !used.contains(bx)) {
x = bx;
ax = a-x;
if (!set.contains(ax) || used.contains(ax)) {
System.out.println("NO");
return;
}
todo.remove(x);
todo.remove(ax);
used.add(x);
used.add(ax);
bx = b-ax;
}
} else if (set.contains(bx) && !used.contains(bx)) {
used.add(x);
used.add(bx);
todo.remove(bx);
where[indexmap.get(bx)] = true;
where[indexmap.get(x)] = true;
//chain
ax = a-bx;
while (set.contains(ax) && !used.contains(ax)) {
x = ax;
bx = b-x;
if (!set.contains(bx) || used.contains(bx)) {
System.out.println("NO");
return;
}
todo.remove(x);
todo.remove(bx);
used.add(x);
used.add(bx);
where[indexmap.get(bx)] = true;
where[indexmap.get(x)] = true;
ax = a-bx;
}
} else {
System.out.println("NO");
return;
}
}
set = todo;
if (set.size() == size) {
System.out.println("Set size constant!!");
break;
}
}
System.out.println("YES");
for (int i = 0; i<n; i++)
if (where[i])
System.out.print("1 ");
else
System.out.print("0 ");
}
}
class num {
}
///
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.InputMismatchException;
import java.math.BigInteger;
import java.io.*;
import java.util.*;
/**
* Generated by Contest helper plug-in
* Actual solution is at the bottom
*/
public class Main {
public static void main(String[] args) {
InputReader in = new StreamInputReader(System.in);
PrintWriter out = new PrintWriter(System.out);
run(in, out);
}
public static void run(InputReader in, PrintWriter out) {
Solver solver = new Task();
solver.solve(1, in, out);
Exit.exit(in, out);
}
}
abstract class InputReader {
private boolean finished = false;
public abstract int read();
public long readLong() {
return new BigInteger(readString()).longValue();
}
public int readInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public String readString() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuffer res = new StringBuffer();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
private boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public void setFinished(boolean finished) {
this.finished = finished;
}
public abstract void close();
}
class StreamInputReader extends InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar, numChars;
public StreamInputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public void close() {
try {
stream.close();
} catch (IOException ignored) {
}
}
}
class Exit {
private Exit() {
}
public static void exit(InputReader in, PrintWriter out) {
in.setFinished(true);
in.close();
out.close();
}
}
interface Solver {
public void solve(int testNumber, InputReader in, PrintWriter out);
}
class Task implements Solver {
public void solve(int testNumber, InputReader in, PrintWriter out) {
int n = in.readInt();
int a = in.readInt();
int b = in.readInt();
if (a==b) {
b = 0;
}
boolean[] where = new boolean[n];
HashSet<Integer> set = new HashSet<Integer>();
HashMap<Integer,Integer> indexmap = new HashMap<Integer,Integer>();
for (int i = 0; i<n; i++) {
int x = in.readInt();
indexmap.put(x, i);
set.add(x);
}
while (set.size() > 0) {
int size = set.size();
HashSet<Integer> todo = new HashSet<Integer>();
HashSet<Integer> used = new HashSet<Integer>();
for (int x : set) {
if (used.contains(x))
continue;
int ax = a-x;
int bx = b-x;
if ((set.contains(ax) && !used.contains(ax)) && (set.contains(bx) && !used.contains(bx))) {
todo.add(x);
} else if (set.contains(ax) && !used.contains(ax)) {
used.add(x);
used.add(ax);
todo.remove(ax);
//chain
bx = b-ax;
while (set.contains(bx) && !used.contains(bx)) {
x = bx;
ax = a-x;
if (!set.contains(ax) || used.contains(ax)) {
System.out.println("NO");
return;
}
todo.remove(x);
todo.remove(ax);
used.add(x);
used.add(ax);
bx = b-ax;
}
} else if (set.contains(bx) && !used.contains(bx)) {
used.add(x);
used.add(bx);
todo.remove(bx);
where[indexmap.get(bx)] = true;
where[indexmap.get(x)] = true;
//chain
ax = a-bx;
while (set.contains(ax) && !used.contains(ax)) {
x = ax;
bx = b-x;
if (!set.contains(bx) || used.contains(bx)) {
System.out.println("NO");
return;
}
todo.remove(x);
todo.remove(bx);
used.add(x);
used.add(bx);
where[indexmap.get(bx)] = true;
where[indexmap.get(x)] = true;
ax = a-bx;
}
} else {
System.out.println("NO");
return;
}
}
set = todo;
if (set.size() == size) {
System.out.println("Set size constant!!");
break;
}
}
System.out.println("YES");
for (int i = 0; i<n; i++)
if (where[i])
System.out.print("1 ");
else
System.out.print("0 ");
}
}
class num {
}
///
</CODE>
<EVALUATION_RUBRIC>
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,659 | 376 |
2,733 |
import java.util.*;
public class maximus {
static long GCD(long a,long b){
if(b==0)return a;
return GCD(b,a%b);
}
public static void main(String [] args){
Scanner in=new Scanner(System.in);
long n=in.nextInt();
if(n<=2){
System.out.print(n);
return;
}
if(n%2==1){
System.out.print((n*(n-1)*(n-2)));
return;
}
if(n%2==0 && n<=6){
System.out.print(n*(n-1)*(n-2)/2);
return;
}
long temp=(n*(n-1)*(n-3))/GCD(n,n-3);
System.out.print(Math.max((n-1)*(n-2)*(n-3),temp));
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
public class maximus {
static long GCD(long a,long b){
if(b==0)return a;
return GCD(b,a%b);
}
public static void main(String [] args){
Scanner in=new Scanner(System.in);
long n=in.nextInt();
if(n<=2){
System.out.print(n);
return;
}
if(n%2==1){
System.out.print((n*(n-1)*(n-2)));
return;
}
if(n%2==0 && n<=6){
System.out.print(n*(n-1)*(n-2)/2);
return;
}
long temp=(n*(n-1)*(n-3))/GCD(n,n-3);
System.out.print(Math.max((n-1)*(n-2)*(n-3),temp));
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
public class maximus {
static long GCD(long a,long b){
if(b==0)return a;
return GCD(b,a%b);
}
public static void main(String [] args){
Scanner in=new Scanner(System.in);
long n=in.nextInt();
if(n<=2){
System.out.print(n);
return;
}
if(n%2==1){
System.out.print((n*(n-1)*(n-2)));
return;
}
if(n%2==0 && n<=6){
System.out.print(n*(n-1)*(n-2)/2);
return;
}
long temp=(n*(n-1)*(n-3))/GCD(n,n-3);
System.out.print(Math.max((n-1)*(n-2)*(n-3),temp));
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 534 | 2,727 |
4,072 |
import java.io.*;
import java.util.*;
public class Main {
BufferedReader in = null;
PrintWriter out = null;
int dist(int x1, int y1, int x2, int y2) {
int dx = Math.abs(x1 - x2);
int dy = Math.abs(y1 - y2);
return dx * dx + dy * dy;
}
boolean testBit(int use, int p) {
return ((use >> p) & 1) == 1;
}
int rec(int use, int a[][], int dp[], int next[]) {
if (dp[use] != -1) {
return dp[use];
}
if (use == 0) {
return dp[use] = 0;
}
int n = a.length;
int ix = -1;
for (int i = 0; i < n; ++i) {
if (testBit(use, i)) {
if (ix == -1) {
ix = i;
break;
}
/*
int t = rec(use ^ (1 << i), a, dp);
t += a[i][i];
r = Math.min(r, t);*/
}
}
int r = rec(use ^ (1 << ix), a, dp, next) + a[ix][ix];
next[use] = use ^ (1 << ix);
for (int i = ix + 1; i < n; ++i) {
if (!testBit(use, i)) {
continue;
}
int t = rec(use ^ (1 << ix) ^ (1 << i), a, dp, next);
t += a[ix][i];
if (t < r) {
r = t;
next[use] = use ^ (1 << ix) ^ (1 << i);
}
}
return dp[use] = r;
}
void print(int use1, int use2, int n) {
for (int i = 0; i < n; ++i) {
if (testBit(use1, i) ^ testBit(use2, i)) {
int x = i + 1;
out.print(x + " ");
}
}
}
void solve() throws IOException {
in = new BufferedReader(new InputStreamReader(System.in));
//in = new BufferedReader(new FileReader("input.txt"));
out = new PrintWriter(System.out);
StringTokenizer st;
st = new StringTokenizer(in.readLine());
int sx = Integer.valueOf(st.nextToken());
int sy = Integer.valueOf(st.nextToken());
st = new StringTokenizer(in.readLine());
int n = Integer.valueOf(st.nextToken());
int x[] = new int[n];
int y[] = new int[n];
for (int i = 0; i < n; ++i) {
st = new StringTokenizer(in.readLine());
x[i] = Integer.valueOf(st.nextToken());
y[i] = Integer.valueOf(st.nextToken());
}
int a[][] = new int[n][n];
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
a[i][j] = dist(x[i], y[i], sx, sy) + dist(x[j], y[j], sx, sy) + dist(x[i], y[i], x[j], y[j]);
}
}
int dp[] = new int[1 << n];
Arrays.fill(dp, -1);
int next[] = new int[1 << n];
int ans = rec((1 << n) - 1, a, dp, next);
out.println(ans);
int use = (1 << n) - 1;
while (true) {
int nuse = next[use];
out.print("0 ");
print(use, nuse, n);
if (nuse == 0) break;
use = nuse;
}
out.println("0");
in.close();
out.close();
}
public static void main(String[] args) throws IOException {
new Main().solve();
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Main {
BufferedReader in = null;
PrintWriter out = null;
int dist(int x1, int y1, int x2, int y2) {
int dx = Math.abs(x1 - x2);
int dy = Math.abs(y1 - y2);
return dx * dx + dy * dy;
}
boolean testBit(int use, int p) {
return ((use >> p) & 1) == 1;
}
int rec(int use, int a[][], int dp[], int next[]) {
if (dp[use] != -1) {
return dp[use];
}
if (use == 0) {
return dp[use] = 0;
}
int n = a.length;
int ix = -1;
for (int i = 0; i < n; ++i) {
if (testBit(use, i)) {
if (ix == -1) {
ix = i;
break;
}
/*
int t = rec(use ^ (1 << i), a, dp);
t += a[i][i];
r = Math.min(r, t);*/
}
}
int r = rec(use ^ (1 << ix), a, dp, next) + a[ix][ix];
next[use] = use ^ (1 << ix);
for (int i = ix + 1; i < n; ++i) {
if (!testBit(use, i)) {
continue;
}
int t = rec(use ^ (1 << ix) ^ (1 << i), a, dp, next);
t += a[ix][i];
if (t < r) {
r = t;
next[use] = use ^ (1 << ix) ^ (1 << i);
}
}
return dp[use] = r;
}
void print(int use1, int use2, int n) {
for (int i = 0; i < n; ++i) {
if (testBit(use1, i) ^ testBit(use2, i)) {
int x = i + 1;
out.print(x + " ");
}
}
}
void solve() throws IOException {
in = new BufferedReader(new InputStreamReader(System.in));
//in = new BufferedReader(new FileReader("input.txt"));
out = new PrintWriter(System.out);
StringTokenizer st;
st = new StringTokenizer(in.readLine());
int sx = Integer.valueOf(st.nextToken());
int sy = Integer.valueOf(st.nextToken());
st = new StringTokenizer(in.readLine());
int n = Integer.valueOf(st.nextToken());
int x[] = new int[n];
int y[] = new int[n];
for (int i = 0; i < n; ++i) {
st = new StringTokenizer(in.readLine());
x[i] = Integer.valueOf(st.nextToken());
y[i] = Integer.valueOf(st.nextToken());
}
int a[][] = new int[n][n];
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
a[i][j] = dist(x[i], y[i], sx, sy) + dist(x[j], y[j], sx, sy) + dist(x[i], y[i], x[j], y[j]);
}
}
int dp[] = new int[1 << n];
Arrays.fill(dp, -1);
int next[] = new int[1 << n];
int ans = rec((1 << n) - 1, a, dp, next);
out.println(ans);
int use = (1 << n) - 1;
while (true) {
int nuse = next[use];
out.print("0 ");
print(use, nuse, n);
if (nuse == 0) break;
use = nuse;
}
out.println("0");
in.close();
out.close();
}
public static void main(String[] args) throws IOException {
new Main().solve();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(1): The time complexity is constant to the input size n.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Main {
BufferedReader in = null;
PrintWriter out = null;
int dist(int x1, int y1, int x2, int y2) {
int dx = Math.abs(x1 - x2);
int dy = Math.abs(y1 - y2);
return dx * dx + dy * dy;
}
boolean testBit(int use, int p) {
return ((use >> p) & 1) == 1;
}
int rec(int use, int a[][], int dp[], int next[]) {
if (dp[use] != -1) {
return dp[use];
}
if (use == 0) {
return dp[use] = 0;
}
int n = a.length;
int ix = -1;
for (int i = 0; i < n; ++i) {
if (testBit(use, i)) {
if (ix == -1) {
ix = i;
break;
}
/*
int t = rec(use ^ (1 << i), a, dp);
t += a[i][i];
r = Math.min(r, t);*/
}
}
int r = rec(use ^ (1 << ix), a, dp, next) + a[ix][ix];
next[use] = use ^ (1 << ix);
for (int i = ix + 1; i < n; ++i) {
if (!testBit(use, i)) {
continue;
}
int t = rec(use ^ (1 << ix) ^ (1 << i), a, dp, next);
t += a[ix][i];
if (t < r) {
r = t;
next[use] = use ^ (1 << ix) ^ (1 << i);
}
}
return dp[use] = r;
}
void print(int use1, int use2, int n) {
for (int i = 0; i < n; ++i) {
if (testBit(use1, i) ^ testBit(use2, i)) {
int x = i + 1;
out.print(x + " ");
}
}
}
void solve() throws IOException {
in = new BufferedReader(new InputStreamReader(System.in));
//in = new BufferedReader(new FileReader("input.txt"));
out = new PrintWriter(System.out);
StringTokenizer st;
st = new StringTokenizer(in.readLine());
int sx = Integer.valueOf(st.nextToken());
int sy = Integer.valueOf(st.nextToken());
st = new StringTokenizer(in.readLine());
int n = Integer.valueOf(st.nextToken());
int x[] = new int[n];
int y[] = new int[n];
for (int i = 0; i < n; ++i) {
st = new StringTokenizer(in.readLine());
x[i] = Integer.valueOf(st.nextToken());
y[i] = Integer.valueOf(st.nextToken());
}
int a[][] = new int[n][n];
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
a[i][j] = dist(x[i], y[i], sx, sy) + dist(x[j], y[j], sx, sy) + dist(x[i], y[i], x[j], y[j]);
}
}
int dp[] = new int[1 << n];
Arrays.fill(dp, -1);
int next[] = new int[1 << n];
int ans = rec((1 << n) - 1, a, dp, next);
out.println(ans);
int use = (1 << n) - 1;
while (true) {
int nuse = next[use];
out.print("0 ");
print(use, nuse, n);
if (nuse == 0) break;
use = nuse;
}
out.println("0");
in.close();
out.close();
}
public static void main(String[] args) throws IOException {
new Main().solve();
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,220 | 4,061 |
2,142 |
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.TreeSet;
import java.io.BufferedOutputStream;
import java.util.StringTokenizer;
import java.io.BufferedReader;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author Aeroui
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
Kattio in = new Kattio(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskC solver = new TaskC();
solver.solve(1, in, out);
out.close();
}
static class TaskC {
public void solve(int testNumber, Kattio in, PrintWriter out) {
int n = in.nextInt();
int r = in.nextInt();
double[] xs = new double[n];
double[] ys = new double[n];
TreeSet<TaskC.Pair> set = new TreeSet<>();
for (int i = 0; i < n; ++i) {
xs[i] = in.nextDouble();
ys[i] = (double) Integer.MIN_VALUE;
if (i == 0) { // the first one
out.printf("%f", (double) r);
ys[i] = (double) r;
set.add(new TaskC.Pair(xs[i], ys[i]));
} else {
for (TaskC.Pair p : set) {
double maximum = p.x;
double diffX = (xs[i] - maximum) * (xs[i] - maximum);
if (diffX <= r * r * 4.0) {
ys[i] = Math.max(ys[i], p.y + Math.sqrt(r * r * 4.0 - diffX));
continue;
}
}
if (ys[i] < 0)
ys[i] = (double) r;
set.add(new TaskC.Pair(xs[i], ys[i]));
out.printf(" %f", ys[i]);
}
}
}
private static class Pair implements Comparable<TaskC.Pair> {
double x;
double y;
public Pair(double x, double y) {
this.x = x;
this.y = y;
}
public int compareTo(TaskC.Pair p) {
if (this.y - p.y < 0)
return 1;
return -1;
}
}
}
static class Kattio extends PrintWriter {
private BufferedReader r;
private String line;
private StringTokenizer st;
private String token;
public Kattio(InputStream i) {
super(new BufferedOutputStream(System.out));
r = new BufferedReader(new InputStreamReader(i));
}
public Kattio(InputStream i, OutputStream o) {
super(new BufferedOutputStream(o));
r = new BufferedReader(new InputStreamReader(i));
}
public int nextInt() {
return Integer.parseInt(nextToken());
}
public double nextDouble() {
return Double.parseDouble(nextToken());
}
private String peekToken() {
if (token == null)
try {
while (st == null || !st.hasMoreTokens()) {
line = r.readLine();
if (line == null) return null;
st = new StringTokenizer(line);
}
token = st.nextToken();
} catch (IOException e) {
}
return token;
}
private String nextToken() {
String ans = peekToken();
token = null;
return ans;
}
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.TreeSet;
import java.io.BufferedOutputStream;
import java.util.StringTokenizer;
import java.io.BufferedReader;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author Aeroui
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
Kattio in = new Kattio(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskC solver = new TaskC();
solver.solve(1, in, out);
out.close();
}
static class TaskC {
public void solve(int testNumber, Kattio in, PrintWriter out) {
int n = in.nextInt();
int r = in.nextInt();
double[] xs = new double[n];
double[] ys = new double[n];
TreeSet<TaskC.Pair> set = new TreeSet<>();
for (int i = 0; i < n; ++i) {
xs[i] = in.nextDouble();
ys[i] = (double) Integer.MIN_VALUE;
if (i == 0) { // the first one
out.printf("%f", (double) r);
ys[i] = (double) r;
set.add(new TaskC.Pair(xs[i], ys[i]));
} else {
for (TaskC.Pair p : set) {
double maximum = p.x;
double diffX = (xs[i] - maximum) * (xs[i] - maximum);
if (diffX <= r * r * 4.0) {
ys[i] = Math.max(ys[i], p.y + Math.sqrt(r * r * 4.0 - diffX));
continue;
}
}
if (ys[i] < 0)
ys[i] = (double) r;
set.add(new TaskC.Pair(xs[i], ys[i]));
out.printf(" %f", ys[i]);
}
}
}
private static class Pair implements Comparable<TaskC.Pair> {
double x;
double y;
public Pair(double x, double y) {
this.x = x;
this.y = y;
}
public int compareTo(TaskC.Pair p) {
if (this.y - p.y < 0)
return 1;
return -1;
}
}
}
static class Kattio extends PrintWriter {
private BufferedReader r;
private String line;
private StringTokenizer st;
private String token;
public Kattio(InputStream i) {
super(new BufferedOutputStream(System.out));
r = new BufferedReader(new InputStreamReader(i));
}
public Kattio(InputStream i, OutputStream o) {
super(new BufferedOutputStream(o));
r = new BufferedReader(new InputStreamReader(i));
}
public int nextInt() {
return Integer.parseInt(nextToken());
}
public double nextDouble() {
return Double.parseDouble(nextToken());
}
private String peekToken() {
if (token == null)
try {
while (st == null || !st.hasMoreTokens()) {
line = r.readLine();
if (line == null) return null;
st = new StringTokenizer(line);
}
token = st.nextToken();
} catch (IOException e) {
}
return token;
}
private String nextToken() {
String ans = peekToken();
token = null;
return ans;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The execution time is unaffected by the size of the input n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.TreeSet;
import java.io.BufferedOutputStream;
import java.util.StringTokenizer;
import java.io.BufferedReader;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author Aeroui
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
Kattio in = new Kattio(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskC solver = new TaskC();
solver.solve(1, in, out);
out.close();
}
static class TaskC {
public void solve(int testNumber, Kattio in, PrintWriter out) {
int n = in.nextInt();
int r = in.nextInt();
double[] xs = new double[n];
double[] ys = new double[n];
TreeSet<TaskC.Pair> set = new TreeSet<>();
for (int i = 0; i < n; ++i) {
xs[i] = in.nextDouble();
ys[i] = (double) Integer.MIN_VALUE;
if (i == 0) { // the first one
out.printf("%f", (double) r);
ys[i] = (double) r;
set.add(new TaskC.Pair(xs[i], ys[i]));
} else {
for (TaskC.Pair p : set) {
double maximum = p.x;
double diffX = (xs[i] - maximum) * (xs[i] - maximum);
if (diffX <= r * r * 4.0) {
ys[i] = Math.max(ys[i], p.y + Math.sqrt(r * r * 4.0 - diffX));
continue;
}
}
if (ys[i] < 0)
ys[i] = (double) r;
set.add(new TaskC.Pair(xs[i], ys[i]));
out.printf(" %f", ys[i]);
}
}
}
private static class Pair implements Comparable<TaskC.Pair> {
double x;
double y;
public Pair(double x, double y) {
this.x = x;
this.y = y;
}
public int compareTo(TaskC.Pair p) {
if (this.y - p.y < 0)
return 1;
return -1;
}
}
}
static class Kattio extends PrintWriter {
private BufferedReader r;
private String line;
private StringTokenizer st;
private String token;
public Kattio(InputStream i) {
super(new BufferedOutputStream(System.out));
r = new BufferedReader(new InputStreamReader(i));
}
public Kattio(InputStream i, OutputStream o) {
super(new BufferedOutputStream(o));
r = new BufferedReader(new InputStreamReader(i));
}
public int nextInt() {
return Integer.parseInt(nextToken());
}
public double nextDouble() {
return Double.parseDouble(nextToken());
}
private String peekToken() {
if (token == null)
try {
while (st == null || !st.hasMoreTokens()) {
line = r.readLine();
if (line == null) return null;
st = new StringTokenizer(line);
}
token = st.nextToken();
} catch (IOException e) {
}
return token;
}
private String nextToken() {
String ans = peekToken();
token = null;
return ans;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(1): The execution time is unaffected by the size of the input n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,118 | 2,138 |
761 |
//package baobab;
import java.io.*;
import java.util.*;
public class C {
public static void main(String[] args) {
CIO io = new CIO();
try {
Csolver solver = new Csolver(io);
solver.solve();
} finally {
io.close();
}
}
}
class Csolver {
CIO io;
public Csolver(CIO io) {
this.io = io;
}
public void solve() {
int n = io.nextInt();
String input = io.next();
int[] count = new int[1000];
int pokemonsInRange = 0;
int answer = Integer.MAX_VALUE;
int a = 0;
int b = 0;
for (; b < n ; b++) {
char end = input.charAt(b);
if (count[end] == 0) {
pokemonsInRange++;
answer = Integer.MAX_VALUE;
}
count[end]++;
while (count[input.charAt(a)] > 1) {
count[input.charAt(a)]--;
a++;
}
answer = Math.min(answer, b-a+1);
}
io.println(answer);
}
private static class Pair implements Comparable<Pair> {
int id;
long val;
public Pair(long val, int id) {
this.val = val;
this.id = id;
}
@Override
public int compareTo(Pair o) {
if (this.val < o.val) return -1;
if (this.val > o.val) return 1;
return this.id - o.id;
}
}
private List<Integer>[] toGraph(CIO io, int n) {
List<Integer>[] g = new ArrayList[n+1];
for (int i=1; i<=n; i++) g[i] = new ArrayList<>();
for (int i=1; i<=n-1; i++) {
int a = io.nextInt();
int b = io.nextInt();
g[a].add(b);
g[b].add(a);
}
return g;
}
}
class CIO extends PrintWriter {
private InputStreamReader r;
private static final int BUFSIZE = 1 << 15;
private char[] buf;
private int bufc;
private int bufi;
private StringBuilder sb;
public CIO() {
super(new BufferedOutputStream(System.out));
r = new InputStreamReader(System.in);
buf = new char[BUFSIZE];
bufc = 0;
bufi = 0;
sb = new StringBuilder();
}
private void fillBuf() throws IOException {
bufi = 0;
bufc = 0;
while(bufc == 0) {
bufc = r.read(buf, 0, BUFSIZE);
if(bufc == -1) {
bufc = 0;
return;
}
}
}
private boolean pumpBuf() throws IOException {
if(bufi == bufc) {
fillBuf();
}
return bufc != 0;
}
private boolean isDelimiter(char c) {
return c == ' ' || c == '\t' || c == '\n' || c == '\r' || c == '\f';
}
private void eatDelimiters() throws IOException {
while(true) {
if(bufi == bufc) {
fillBuf();
if(bufc == 0) throw new RuntimeException("IO: Out of input.");
}
if(!isDelimiter(buf[bufi])) break;
++bufi;
}
}
public String next() {
try {
sb.setLength(0);
eatDelimiters();
int start = bufi;
while(true) {
if(bufi == bufc) {
sb.append(buf, start, bufi - start);
fillBuf();
start = 0;
if(bufc == 0) break;
}
if(isDelimiter(buf[bufi])) break;
++bufi;
}
sb.append(buf, start, bufi - start);
return sb.toString();
} catch(IOException e) {
throw new RuntimeException("IO.next: Caught IOException.");
}
}
public int nextInt() {
try {
int ret = 0;
eatDelimiters();
boolean positive = true;
if(buf[bufi] == '-') {
++bufi;
if(!pumpBuf()) throw new RuntimeException("IO.nextInt: Invalid int.");
positive = false;
}
boolean first = true;
while(true) {
if(!pumpBuf()) break;
if(isDelimiter(buf[bufi])) {
if(first) throw new RuntimeException("IO.nextInt: Invalid int.");
break;
}
first = false;
if(buf[bufi] >= '0' && buf[bufi] <= '9') {
if(ret < -214748364) throw new RuntimeException("IO.nextInt: Invalid int.");
ret *= 10;
ret -= (int)(buf[bufi] - '0');
if(ret > 0) throw new RuntimeException("IO.nextInt: Invalid int.");
} else {
throw new RuntimeException("IO.nextInt: Invalid int.");
}
++bufi;
}
if(positive) {
if(ret == -2147483648) throw new RuntimeException("IO.nextInt: Invalid int.");
ret = -ret;
}
return ret;
} catch(IOException e) {
throw new RuntimeException("IO.nextInt: Caught IOException.");
}
}
public long nextLong() {
try {
long ret = 0;
eatDelimiters();
boolean positive = true;
if(buf[bufi] == '-') {
++bufi;
if(!pumpBuf()) throw new RuntimeException("IO.nextLong: Invalid long.");
positive = false;
}
boolean first = true;
while(true) {
if(!pumpBuf()) break;
if(isDelimiter(buf[bufi])) {
if(first) throw new RuntimeException("IO.nextLong: Invalid long.");
break;
}
first = false;
if(buf[bufi] >= '0' && buf[bufi] <= '9') {
if(ret < -922337203685477580L) throw new RuntimeException("IO.nextLong: Invalid long.");
ret *= 10;
ret -= (long)(buf[bufi] - '0');
if(ret > 0) throw new RuntimeException("IO.nextLong: Invalid long.");
} else {
throw new RuntimeException("IO.nextLong: Invalid long.");
}
++bufi;
}
if(positive) {
if(ret == -9223372036854775808L) throw new RuntimeException("IO.nextLong: Invalid long.");
ret = -ret;
}
return ret;
} catch(IOException e) {
throw new RuntimeException("IO.nextLong: Caught IOException.");
}
}
public double nextDouble() {
return Double.parseDouble(next());
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
//package baobab;
import java.io.*;
import java.util.*;
public class C {
public static void main(String[] args) {
CIO io = new CIO();
try {
Csolver solver = new Csolver(io);
solver.solve();
} finally {
io.close();
}
}
}
class Csolver {
CIO io;
public Csolver(CIO io) {
this.io = io;
}
public void solve() {
int n = io.nextInt();
String input = io.next();
int[] count = new int[1000];
int pokemonsInRange = 0;
int answer = Integer.MAX_VALUE;
int a = 0;
int b = 0;
for (; b < n ; b++) {
char end = input.charAt(b);
if (count[end] == 0) {
pokemonsInRange++;
answer = Integer.MAX_VALUE;
}
count[end]++;
while (count[input.charAt(a)] > 1) {
count[input.charAt(a)]--;
a++;
}
answer = Math.min(answer, b-a+1);
}
io.println(answer);
}
private static class Pair implements Comparable<Pair> {
int id;
long val;
public Pair(long val, int id) {
this.val = val;
this.id = id;
}
@Override
public int compareTo(Pair o) {
if (this.val < o.val) return -1;
if (this.val > o.val) return 1;
return this.id - o.id;
}
}
private List<Integer>[] toGraph(CIO io, int n) {
List<Integer>[] g = new ArrayList[n+1];
for (int i=1; i<=n; i++) g[i] = new ArrayList<>();
for (int i=1; i<=n-1; i++) {
int a = io.nextInt();
int b = io.nextInt();
g[a].add(b);
g[b].add(a);
}
return g;
}
}
class CIO extends PrintWriter {
private InputStreamReader r;
private static final int BUFSIZE = 1 << 15;
private char[] buf;
private int bufc;
private int bufi;
private StringBuilder sb;
public CIO() {
super(new BufferedOutputStream(System.out));
r = new InputStreamReader(System.in);
buf = new char[BUFSIZE];
bufc = 0;
bufi = 0;
sb = new StringBuilder();
}
private void fillBuf() throws IOException {
bufi = 0;
bufc = 0;
while(bufc == 0) {
bufc = r.read(buf, 0, BUFSIZE);
if(bufc == -1) {
bufc = 0;
return;
}
}
}
private boolean pumpBuf() throws IOException {
if(bufi == bufc) {
fillBuf();
}
return bufc != 0;
}
private boolean isDelimiter(char c) {
return c == ' ' || c == '\t' || c == '\n' || c == '\r' || c == '\f';
}
private void eatDelimiters() throws IOException {
while(true) {
if(bufi == bufc) {
fillBuf();
if(bufc == 0) throw new RuntimeException("IO: Out of input.");
}
if(!isDelimiter(buf[bufi])) break;
++bufi;
}
}
public String next() {
try {
sb.setLength(0);
eatDelimiters();
int start = bufi;
while(true) {
if(bufi == bufc) {
sb.append(buf, start, bufi - start);
fillBuf();
start = 0;
if(bufc == 0) break;
}
if(isDelimiter(buf[bufi])) break;
++bufi;
}
sb.append(buf, start, bufi - start);
return sb.toString();
} catch(IOException e) {
throw new RuntimeException("IO.next: Caught IOException.");
}
}
public int nextInt() {
try {
int ret = 0;
eatDelimiters();
boolean positive = true;
if(buf[bufi] == '-') {
++bufi;
if(!pumpBuf()) throw new RuntimeException("IO.nextInt: Invalid int.");
positive = false;
}
boolean first = true;
while(true) {
if(!pumpBuf()) break;
if(isDelimiter(buf[bufi])) {
if(first) throw new RuntimeException("IO.nextInt: Invalid int.");
break;
}
first = false;
if(buf[bufi] >= '0' && buf[bufi] <= '9') {
if(ret < -214748364) throw new RuntimeException("IO.nextInt: Invalid int.");
ret *= 10;
ret -= (int)(buf[bufi] - '0');
if(ret > 0) throw new RuntimeException("IO.nextInt: Invalid int.");
} else {
throw new RuntimeException("IO.nextInt: Invalid int.");
}
++bufi;
}
if(positive) {
if(ret == -2147483648) throw new RuntimeException("IO.nextInt: Invalid int.");
ret = -ret;
}
return ret;
} catch(IOException e) {
throw new RuntimeException("IO.nextInt: Caught IOException.");
}
}
public long nextLong() {
try {
long ret = 0;
eatDelimiters();
boolean positive = true;
if(buf[bufi] == '-') {
++bufi;
if(!pumpBuf()) throw new RuntimeException("IO.nextLong: Invalid long.");
positive = false;
}
boolean first = true;
while(true) {
if(!pumpBuf()) break;
if(isDelimiter(buf[bufi])) {
if(first) throw new RuntimeException("IO.nextLong: Invalid long.");
break;
}
first = false;
if(buf[bufi] >= '0' && buf[bufi] <= '9') {
if(ret < -922337203685477580L) throw new RuntimeException("IO.nextLong: Invalid long.");
ret *= 10;
ret -= (long)(buf[bufi] - '0');
if(ret > 0) throw new RuntimeException("IO.nextLong: Invalid long.");
} else {
throw new RuntimeException("IO.nextLong: Invalid long.");
}
++bufi;
}
if(positive) {
if(ret == -9223372036854775808L) throw new RuntimeException("IO.nextLong: Invalid long.");
ret = -ret;
}
return ret;
} catch(IOException e) {
throw new RuntimeException("IO.nextLong: Caught IOException.");
}
}
public double nextDouble() {
return Double.parseDouble(next());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The running time increases with the square of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
//package baobab;
import java.io.*;
import java.util.*;
public class C {
public static void main(String[] args) {
CIO io = new CIO();
try {
Csolver solver = new Csolver(io);
solver.solve();
} finally {
io.close();
}
}
}
class Csolver {
CIO io;
public Csolver(CIO io) {
this.io = io;
}
public void solve() {
int n = io.nextInt();
String input = io.next();
int[] count = new int[1000];
int pokemonsInRange = 0;
int answer = Integer.MAX_VALUE;
int a = 0;
int b = 0;
for (; b < n ; b++) {
char end = input.charAt(b);
if (count[end] == 0) {
pokemonsInRange++;
answer = Integer.MAX_VALUE;
}
count[end]++;
while (count[input.charAt(a)] > 1) {
count[input.charAt(a)]--;
a++;
}
answer = Math.min(answer, b-a+1);
}
io.println(answer);
}
private static class Pair implements Comparable<Pair> {
int id;
long val;
public Pair(long val, int id) {
this.val = val;
this.id = id;
}
@Override
public int compareTo(Pair o) {
if (this.val < o.val) return -1;
if (this.val > o.val) return 1;
return this.id - o.id;
}
}
private List<Integer>[] toGraph(CIO io, int n) {
List<Integer>[] g = new ArrayList[n+1];
for (int i=1; i<=n; i++) g[i] = new ArrayList<>();
for (int i=1; i<=n-1; i++) {
int a = io.nextInt();
int b = io.nextInt();
g[a].add(b);
g[b].add(a);
}
return g;
}
}
class CIO extends PrintWriter {
private InputStreamReader r;
private static final int BUFSIZE = 1 << 15;
private char[] buf;
private int bufc;
private int bufi;
private StringBuilder sb;
public CIO() {
super(new BufferedOutputStream(System.out));
r = new InputStreamReader(System.in);
buf = new char[BUFSIZE];
bufc = 0;
bufi = 0;
sb = new StringBuilder();
}
private void fillBuf() throws IOException {
bufi = 0;
bufc = 0;
while(bufc == 0) {
bufc = r.read(buf, 0, BUFSIZE);
if(bufc == -1) {
bufc = 0;
return;
}
}
}
private boolean pumpBuf() throws IOException {
if(bufi == bufc) {
fillBuf();
}
return bufc != 0;
}
private boolean isDelimiter(char c) {
return c == ' ' || c == '\t' || c == '\n' || c == '\r' || c == '\f';
}
private void eatDelimiters() throws IOException {
while(true) {
if(bufi == bufc) {
fillBuf();
if(bufc == 0) throw new RuntimeException("IO: Out of input.");
}
if(!isDelimiter(buf[bufi])) break;
++bufi;
}
}
public String next() {
try {
sb.setLength(0);
eatDelimiters();
int start = bufi;
while(true) {
if(bufi == bufc) {
sb.append(buf, start, bufi - start);
fillBuf();
start = 0;
if(bufc == 0) break;
}
if(isDelimiter(buf[bufi])) break;
++bufi;
}
sb.append(buf, start, bufi - start);
return sb.toString();
} catch(IOException e) {
throw new RuntimeException("IO.next: Caught IOException.");
}
}
public int nextInt() {
try {
int ret = 0;
eatDelimiters();
boolean positive = true;
if(buf[bufi] == '-') {
++bufi;
if(!pumpBuf()) throw new RuntimeException("IO.nextInt: Invalid int.");
positive = false;
}
boolean first = true;
while(true) {
if(!pumpBuf()) break;
if(isDelimiter(buf[bufi])) {
if(first) throw new RuntimeException("IO.nextInt: Invalid int.");
break;
}
first = false;
if(buf[bufi] >= '0' && buf[bufi] <= '9') {
if(ret < -214748364) throw new RuntimeException("IO.nextInt: Invalid int.");
ret *= 10;
ret -= (int)(buf[bufi] - '0');
if(ret > 0) throw new RuntimeException("IO.nextInt: Invalid int.");
} else {
throw new RuntimeException("IO.nextInt: Invalid int.");
}
++bufi;
}
if(positive) {
if(ret == -2147483648) throw new RuntimeException("IO.nextInt: Invalid int.");
ret = -ret;
}
return ret;
} catch(IOException e) {
throw new RuntimeException("IO.nextInt: Caught IOException.");
}
}
public long nextLong() {
try {
long ret = 0;
eatDelimiters();
boolean positive = true;
if(buf[bufi] == '-') {
++bufi;
if(!pumpBuf()) throw new RuntimeException("IO.nextLong: Invalid long.");
positive = false;
}
boolean first = true;
while(true) {
if(!pumpBuf()) break;
if(isDelimiter(buf[bufi])) {
if(first) throw new RuntimeException("IO.nextLong: Invalid long.");
break;
}
first = false;
if(buf[bufi] >= '0' && buf[bufi] <= '9') {
if(ret < -922337203685477580L) throw new RuntimeException("IO.nextLong: Invalid long.");
ret *= 10;
ret -= (long)(buf[bufi] - '0');
if(ret > 0) throw new RuntimeException("IO.nextLong: Invalid long.");
} else {
throw new RuntimeException("IO.nextLong: Invalid long.");
}
++bufi;
}
if(positive) {
if(ret == -9223372036854775808L) throw new RuntimeException("IO.nextLong: Invalid long.");
ret = -ret;
}
return ret;
} catch(IOException e) {
throw new RuntimeException("IO.nextLong: Caught IOException.");
}
}
public double nextDouble() {
return Double.parseDouble(next());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,864 | 760 |
561 |
import java.util.*;
import java.lang.*;
import java.io.*;
public class Main
{
PrintWriter out = new PrintWriter(System.out);
BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer tok = new StringTokenizer("");
String next() throws IOException {
if (!tok.hasMoreTokens()) { tok = new StringTokenizer(in.readLine()); }
return tok.nextToken();
}
int ni() throws IOException { return Integer.parseInt(next()); }
long nl() throws IOException { return Long.parseLong(next()); }
long mod=1000000007;
void solve() throws IOException {
for (int tc=ni();tc>0;tc--) {
long n=ni();
long q=1;
long p=1;
boolean f=false;
while (true) {
if (p*2==n || p*4==n) { f=true; break; }
q++;
p=q*q;
if (p>n) break;
}
if (f) out.println("YES");
else out.println("NO");
}
out.flush();
}
int gcd(int a,int b) { return(b==0?a:gcd(b,a%b)); }
long gcd(long a,long b) { return(b==0?a:gcd(b,a%b)); }
long mp(long a,long p) { long r=1; while(p>0) { if ((p&1)==1) r=(r*a)%mod; p>>=1; a=(a*a)%mod; } return r; }
public static void main(String[] args) throws IOException {
new Main().solve();
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
import java.lang.*;
import java.io.*;
public class Main
{
PrintWriter out = new PrintWriter(System.out);
BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer tok = new StringTokenizer("");
String next() throws IOException {
if (!tok.hasMoreTokens()) { tok = new StringTokenizer(in.readLine()); }
return tok.nextToken();
}
int ni() throws IOException { return Integer.parseInt(next()); }
long nl() throws IOException { return Long.parseLong(next()); }
long mod=1000000007;
void solve() throws IOException {
for (int tc=ni();tc>0;tc--) {
long n=ni();
long q=1;
long p=1;
boolean f=false;
while (true) {
if (p*2==n || p*4==n) { f=true; break; }
q++;
p=q*q;
if (p>n) break;
}
if (f) out.println("YES");
else out.println("NO");
}
out.flush();
}
int gcd(int a,int b) { return(b==0?a:gcd(b,a%b)); }
long gcd(long a,long b) { return(b==0?a:gcd(b,a%b)); }
long mp(long a,long p) { long r=1; while(p>0) { if ((p&1)==1) r=(r*a)%mod; p>>=1; a=(a*a)%mod; } return r; }
public static void main(String[] args) throws IOException {
new Main().solve();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(1): The time complexity is constant to the input size n.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.lang.*;
import java.io.*;
public class Main
{
PrintWriter out = new PrintWriter(System.out);
BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer tok = new StringTokenizer("");
String next() throws IOException {
if (!tok.hasMoreTokens()) { tok = new StringTokenizer(in.readLine()); }
return tok.nextToken();
}
int ni() throws IOException { return Integer.parseInt(next()); }
long nl() throws IOException { return Long.parseLong(next()); }
long mod=1000000007;
void solve() throws IOException {
for (int tc=ni();tc>0;tc--) {
long n=ni();
long q=1;
long p=1;
boolean f=false;
while (true) {
if (p*2==n || p*4==n) { f=true; break; }
q++;
p=q*q;
if (p>n) break;
}
if (f) out.println("YES");
else out.println("NO");
}
out.flush();
}
int gcd(int a,int b) { return(b==0?a:gcd(b,a%b)); }
long gcd(long a,long b) { return(b==0?a:gcd(b,a%b)); }
long mp(long a,long p) { long r=1; while(p>0) { if ((p&1)==1) r=(r*a)%mod; p>>=1; a=(a*a)%mod; } return r; }
public static void main(String[] args) throws IOException {
new Main().solve();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 680 | 560 |
2,432 |
import java.util.*;
import java.io.*;
import java.util.Queue;
import java.util.LinkedList;
import java.math.*;
public class Sample implements Runnable
{
public static void solve()
{
int n=i();
int[] a=new int[n];
for(int i=0;i<n;i++)a[i]=i();
int temp=0;
for(int i=0;i<n;i++)
{
for(int j=i+1;j<n;j++)
{
if(a[j]<a[i])temp++;
}
}
boolean even=(temp%2==0)?true:false;
int m=i();
while(m-->0)
{
int l=i(); int r=i();
long tt=(long)(Math.floor(r-l+1)/2);
if(tt%2==1)
{
if(even)
{
out.println("odd");
even=false;
}
else
{
out.println("even");
even=true;
}
}else
{
if(even)
{
out.println("even");
}
else
{
out.println("odd");
}
}
}
}
public void run()
{
solve();
out.close();
}
public static void main(String[] args) throws IOException
{
new Thread(null, new Sample(), "whatever", 1<<26).start();
}
abstract static class Pair implements Comparable<Pair>
{
long a;
int b;
Pair(){}
Pair(long a,int b)
{
this.a=a;
this.b=b;
}
public int compareTo(Pair x)
{
return Long.compare(x.a,this.a);
}
}
////////////////////////////////////////////////////// Merge Sort ////////////////////////////////////////////////////////////////////////
static class Merge
{
public static void sort(long inputArr[])
{
int length = inputArr.length;
doMergeSort(inputArr,0, length - 1);
}
private static void doMergeSort(long[] arr,int lowerIndex, int higherIndex)
{
if (lowerIndex < higherIndex) {
int middle = lowerIndex + (higherIndex - lowerIndex) / 2;
doMergeSort(arr,lowerIndex, middle);
doMergeSort(arr,middle + 1, higherIndex);
mergeParts(arr,lowerIndex, middle, higherIndex);
}
}
private static void mergeParts(long[]array,int lowerIndex, int middle, int higherIndex)
{
long[] temp=new long[higherIndex-lowerIndex+1];
for (int i = lowerIndex; i <= higherIndex; i++)
{
temp[i-lowerIndex] = array[i];
}
int i = lowerIndex;
int j = middle + 1;
int k = lowerIndex;
while (i <= middle && j <= higherIndex)
{
if (temp[i-lowerIndex] < temp[j-lowerIndex])
{
array[k] = temp[i-lowerIndex];
i++;
} else {
array[k] = temp[j-lowerIndex];
j++;
}
k++;
}
while (i <= middle)
{
array[k] = temp[i-lowerIndex];
k++;
i++;
}
while(j<=higherIndex)
{
array[k]=temp[j-lowerIndex];
k++;
j++;
}
}
}
/////////////////////////////////////////////////////////// Methods ////////////////////////////////////////////////////////////////////////
static boolean isPal(String s)
{
for(int i=0, j=s.length()-1;i<=j;i++,j--)
{
if(s.charAt(i)!=s.charAt(j)) return false;
}
return true;
}
static String rev(String s)
{
StringBuilder sb=new StringBuilder(s);
sb.reverse();
return sb.toString();
}
static int gcd(int a,int b){return (a==0)?b:gcd(b%a,a);}
static long gcdExtended(long a,long b,long[] x)
{
if(a==0){
x[0]=0;
x[1]=1;
return b;
}
long[] y=new long[2];
long gcd=gcdExtended(b%a, a, y);
x[0]=y[1]-(b/a)*y[0];
x[1]=y[0];
return gcd;
}
boolean findSum(int set[], int n, long sum)
{
if (sum == 0)
return true;
if (n == 0 && sum != 0)
return false;
if (set[n-1] > sum)
return findSum(set, n-1, sum);
return findSum(set, n-1, sum) ||findSum(set, n-1, sum-set[n-1]);
}
public static long modPow(long base, long exp, long mod)
{
base = base % mod;
long result = 1;
while (exp > 0)
{
if (exp % 2 == 1)
{
result = (result * base) % mod;
}
base = (base * base) % mod;
exp = exp >> 1;
}
return result;
}
static long[] fac;
static long[] inv;
static long mod=(long)1e9+7;
public static void cal()
{
fac = new long[1000005];
inv = new long[1000005];
fac[0] = 1;
inv[0] = 1;
for (int i = 1; i <= 1000000; i++)
{
fac[i] = (fac[i - 1] * i) % mod;
inv[i] = (inv[i - 1] * modPow(i, mod - 2, mod)) % mod;
}
}
public static long ncr(int n, int r)
{
return (((fac[n] * inv[r]) % mod) * inv[n - r]) % mod;
}
////////////////////////////////////////// Input Reader ////////////////////////////////////////////////////////////////////////////////////////////////////
static InputReader sc = new InputReader(System.in);
static PrintWriter out= new PrintWriter(System.out);
static class InputReader {
private final InputStream stream;
private final byte[] buf = new byte[8192];
private int curChar, snumChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int snext()
{
if (snumChars == -1)
throw new InputMismatchException();
if (curChar >= snumChars) {
curChar = 0;
try {
snumChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (snumChars <= 0)
return -1;
}
return buf[curChar++];
}
public int nextInt()
{
int c = snext();
while (isSpaceChar(c))
{
c = snext();
}
int sgn = 1;
if (c == '-')
{
sgn = -1;
c = snext();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = snext();
} while (!isSpaceChar(c));
return res * sgn;
}
public long nextLong()
{
int c = snext();
while (isSpaceChar(c))
{
c = snext();
}
int sgn = 1;
if (c == '-')
{
sgn = -1;
c = snext();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = snext();
} while (!isSpaceChar(c));
return res * sgn;
}
public int[] nextIntArray(int n)
{
int a[] = new int[n];
for (int i = 0; i < n; i++)
{
a[i] = nextInt();
}
return a;
}
public long[] nextLongArray(int n)
{
long a[] = new long[n];
for (int i = 0; i < n; i++)
{
a[i] = nextLong();
}
return a;
}
public String nextLine()
{
int c = snext();
while (isSpaceChar(c))
c = snext();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = snext();
} while (!isEndOfLine(c));
return res.toString();
}
public boolean isSpaceChar(int c)
{
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
private boolean isEndOfLine(int c)
{
return c == '\n' || c == '\r' || c == -1;
}
public interface SpaceCharFilter
{
public boolean isSpaceChar(int ch);
}
}
static int i()
{
return sc.nextInt();
}
static long l(){
return sc.nextLong();
}
static int[] iarr(int n)
{
return sc.nextIntArray(n);
}
static long[] larr(int n)
{
return sc.nextLongArray(n);
}
static String s(){
return sc.nextLine();
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
import java.util.Queue;
import java.util.LinkedList;
import java.math.*;
public class Sample implements Runnable
{
public static void solve()
{
int n=i();
int[] a=new int[n];
for(int i=0;i<n;i++)a[i]=i();
int temp=0;
for(int i=0;i<n;i++)
{
for(int j=i+1;j<n;j++)
{
if(a[j]<a[i])temp++;
}
}
boolean even=(temp%2==0)?true:false;
int m=i();
while(m-->0)
{
int l=i(); int r=i();
long tt=(long)(Math.floor(r-l+1)/2);
if(tt%2==1)
{
if(even)
{
out.println("odd");
even=false;
}
else
{
out.println("even");
even=true;
}
}else
{
if(even)
{
out.println("even");
}
else
{
out.println("odd");
}
}
}
}
public void run()
{
solve();
out.close();
}
public static void main(String[] args) throws IOException
{
new Thread(null, new Sample(), "whatever", 1<<26).start();
}
abstract static class Pair implements Comparable<Pair>
{
long a;
int b;
Pair(){}
Pair(long a,int b)
{
this.a=a;
this.b=b;
}
public int compareTo(Pair x)
{
return Long.compare(x.a,this.a);
}
}
////////////////////////////////////////////////////// Merge Sort ////////////////////////////////////////////////////////////////////////
static class Merge
{
public static void sort(long inputArr[])
{
int length = inputArr.length;
doMergeSort(inputArr,0, length - 1);
}
private static void doMergeSort(long[] arr,int lowerIndex, int higherIndex)
{
if (lowerIndex < higherIndex) {
int middle = lowerIndex + (higherIndex - lowerIndex) / 2;
doMergeSort(arr,lowerIndex, middle);
doMergeSort(arr,middle + 1, higherIndex);
mergeParts(arr,lowerIndex, middle, higherIndex);
}
}
private static void mergeParts(long[]array,int lowerIndex, int middle, int higherIndex)
{
long[] temp=new long[higherIndex-lowerIndex+1];
for (int i = lowerIndex; i <= higherIndex; i++)
{
temp[i-lowerIndex] = array[i];
}
int i = lowerIndex;
int j = middle + 1;
int k = lowerIndex;
while (i <= middle && j <= higherIndex)
{
if (temp[i-lowerIndex] < temp[j-lowerIndex])
{
array[k] = temp[i-lowerIndex];
i++;
} else {
array[k] = temp[j-lowerIndex];
j++;
}
k++;
}
while (i <= middle)
{
array[k] = temp[i-lowerIndex];
k++;
i++;
}
while(j<=higherIndex)
{
array[k]=temp[j-lowerIndex];
k++;
j++;
}
}
}
/////////////////////////////////////////////////////////// Methods ////////////////////////////////////////////////////////////////////////
static boolean isPal(String s)
{
for(int i=0, j=s.length()-1;i<=j;i++,j--)
{
if(s.charAt(i)!=s.charAt(j)) return false;
}
return true;
}
static String rev(String s)
{
StringBuilder sb=new StringBuilder(s);
sb.reverse();
return sb.toString();
}
static int gcd(int a,int b){return (a==0)?b:gcd(b%a,a);}
static long gcdExtended(long a,long b,long[] x)
{
if(a==0){
x[0]=0;
x[1]=1;
return b;
}
long[] y=new long[2];
long gcd=gcdExtended(b%a, a, y);
x[0]=y[1]-(b/a)*y[0];
x[1]=y[0];
return gcd;
}
boolean findSum(int set[], int n, long sum)
{
if (sum == 0)
return true;
if (n == 0 && sum != 0)
return false;
if (set[n-1] > sum)
return findSum(set, n-1, sum);
return findSum(set, n-1, sum) ||findSum(set, n-1, sum-set[n-1]);
}
public static long modPow(long base, long exp, long mod)
{
base = base % mod;
long result = 1;
while (exp > 0)
{
if (exp % 2 == 1)
{
result = (result * base) % mod;
}
base = (base * base) % mod;
exp = exp >> 1;
}
return result;
}
static long[] fac;
static long[] inv;
static long mod=(long)1e9+7;
public static void cal()
{
fac = new long[1000005];
inv = new long[1000005];
fac[0] = 1;
inv[0] = 1;
for (int i = 1; i <= 1000000; i++)
{
fac[i] = (fac[i - 1] * i) % mod;
inv[i] = (inv[i - 1] * modPow(i, mod - 2, mod)) % mod;
}
}
public static long ncr(int n, int r)
{
return (((fac[n] * inv[r]) % mod) * inv[n - r]) % mod;
}
////////////////////////////////////////// Input Reader ////////////////////////////////////////////////////////////////////////////////////////////////////
static InputReader sc = new InputReader(System.in);
static PrintWriter out= new PrintWriter(System.out);
static class InputReader {
private final InputStream stream;
private final byte[] buf = new byte[8192];
private int curChar, snumChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int snext()
{
if (snumChars == -1)
throw new InputMismatchException();
if (curChar >= snumChars) {
curChar = 0;
try {
snumChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (snumChars <= 0)
return -1;
}
return buf[curChar++];
}
public int nextInt()
{
int c = snext();
while (isSpaceChar(c))
{
c = snext();
}
int sgn = 1;
if (c == '-')
{
sgn = -1;
c = snext();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = snext();
} while (!isSpaceChar(c));
return res * sgn;
}
public long nextLong()
{
int c = snext();
while (isSpaceChar(c))
{
c = snext();
}
int sgn = 1;
if (c == '-')
{
sgn = -1;
c = snext();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = snext();
} while (!isSpaceChar(c));
return res * sgn;
}
public int[] nextIntArray(int n)
{
int a[] = new int[n];
for (int i = 0; i < n; i++)
{
a[i] = nextInt();
}
return a;
}
public long[] nextLongArray(int n)
{
long a[] = new long[n];
for (int i = 0; i < n; i++)
{
a[i] = nextLong();
}
return a;
}
public String nextLine()
{
int c = snext();
while (isSpaceChar(c))
c = snext();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = snext();
} while (!isEndOfLine(c));
return res.toString();
}
public boolean isSpaceChar(int c)
{
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
private boolean isEndOfLine(int c)
{
return c == '\n' || c == '\r' || c == -1;
}
public interface SpaceCharFilter
{
public boolean isSpaceChar(int ch);
}
}
static int i()
{
return sc.nextInt();
}
static long l(){
return sc.nextLong();
}
static int[] iarr(int n)
{
return sc.nextIntArray(n);
}
static long[] larr(int n)
{
return sc.nextLongArray(n);
}
static String s(){
return sc.nextLine();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
import java.util.Queue;
import java.util.LinkedList;
import java.math.*;
public class Sample implements Runnable
{
public static void solve()
{
int n=i();
int[] a=new int[n];
for(int i=0;i<n;i++)a[i]=i();
int temp=0;
for(int i=0;i<n;i++)
{
for(int j=i+1;j<n;j++)
{
if(a[j]<a[i])temp++;
}
}
boolean even=(temp%2==0)?true:false;
int m=i();
while(m-->0)
{
int l=i(); int r=i();
long tt=(long)(Math.floor(r-l+1)/2);
if(tt%2==1)
{
if(even)
{
out.println("odd");
even=false;
}
else
{
out.println("even");
even=true;
}
}else
{
if(even)
{
out.println("even");
}
else
{
out.println("odd");
}
}
}
}
public void run()
{
solve();
out.close();
}
public static void main(String[] args) throws IOException
{
new Thread(null, new Sample(), "whatever", 1<<26).start();
}
abstract static class Pair implements Comparable<Pair>
{
long a;
int b;
Pair(){}
Pair(long a,int b)
{
this.a=a;
this.b=b;
}
public int compareTo(Pair x)
{
return Long.compare(x.a,this.a);
}
}
////////////////////////////////////////////////////// Merge Sort ////////////////////////////////////////////////////////////////////////
static class Merge
{
public static void sort(long inputArr[])
{
int length = inputArr.length;
doMergeSort(inputArr,0, length - 1);
}
private static void doMergeSort(long[] arr,int lowerIndex, int higherIndex)
{
if (lowerIndex < higherIndex) {
int middle = lowerIndex + (higherIndex - lowerIndex) / 2;
doMergeSort(arr,lowerIndex, middle);
doMergeSort(arr,middle + 1, higherIndex);
mergeParts(arr,lowerIndex, middle, higherIndex);
}
}
private static void mergeParts(long[]array,int lowerIndex, int middle, int higherIndex)
{
long[] temp=new long[higherIndex-lowerIndex+1];
for (int i = lowerIndex; i <= higherIndex; i++)
{
temp[i-lowerIndex] = array[i];
}
int i = lowerIndex;
int j = middle + 1;
int k = lowerIndex;
while (i <= middle && j <= higherIndex)
{
if (temp[i-lowerIndex] < temp[j-lowerIndex])
{
array[k] = temp[i-lowerIndex];
i++;
} else {
array[k] = temp[j-lowerIndex];
j++;
}
k++;
}
while (i <= middle)
{
array[k] = temp[i-lowerIndex];
k++;
i++;
}
while(j<=higherIndex)
{
array[k]=temp[j-lowerIndex];
k++;
j++;
}
}
}
/////////////////////////////////////////////////////////// Methods ////////////////////////////////////////////////////////////////////////
static boolean isPal(String s)
{
for(int i=0, j=s.length()-1;i<=j;i++,j--)
{
if(s.charAt(i)!=s.charAt(j)) return false;
}
return true;
}
static String rev(String s)
{
StringBuilder sb=new StringBuilder(s);
sb.reverse();
return sb.toString();
}
static int gcd(int a,int b){return (a==0)?b:gcd(b%a,a);}
static long gcdExtended(long a,long b,long[] x)
{
if(a==0){
x[0]=0;
x[1]=1;
return b;
}
long[] y=new long[2];
long gcd=gcdExtended(b%a, a, y);
x[0]=y[1]-(b/a)*y[0];
x[1]=y[0];
return gcd;
}
boolean findSum(int set[], int n, long sum)
{
if (sum == 0)
return true;
if (n == 0 && sum != 0)
return false;
if (set[n-1] > sum)
return findSum(set, n-1, sum);
return findSum(set, n-1, sum) ||findSum(set, n-1, sum-set[n-1]);
}
public static long modPow(long base, long exp, long mod)
{
base = base % mod;
long result = 1;
while (exp > 0)
{
if (exp % 2 == 1)
{
result = (result * base) % mod;
}
base = (base * base) % mod;
exp = exp >> 1;
}
return result;
}
static long[] fac;
static long[] inv;
static long mod=(long)1e9+7;
public static void cal()
{
fac = new long[1000005];
inv = new long[1000005];
fac[0] = 1;
inv[0] = 1;
for (int i = 1; i <= 1000000; i++)
{
fac[i] = (fac[i - 1] * i) % mod;
inv[i] = (inv[i - 1] * modPow(i, mod - 2, mod)) % mod;
}
}
public static long ncr(int n, int r)
{
return (((fac[n] * inv[r]) % mod) * inv[n - r]) % mod;
}
////////////////////////////////////////// Input Reader ////////////////////////////////////////////////////////////////////////////////////////////////////
static InputReader sc = new InputReader(System.in);
static PrintWriter out= new PrintWriter(System.out);
static class InputReader {
private final InputStream stream;
private final byte[] buf = new byte[8192];
private int curChar, snumChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int snext()
{
if (snumChars == -1)
throw new InputMismatchException();
if (curChar >= snumChars) {
curChar = 0;
try {
snumChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (snumChars <= 0)
return -1;
}
return buf[curChar++];
}
public int nextInt()
{
int c = snext();
while (isSpaceChar(c))
{
c = snext();
}
int sgn = 1;
if (c == '-')
{
sgn = -1;
c = snext();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = snext();
} while (!isSpaceChar(c));
return res * sgn;
}
public long nextLong()
{
int c = snext();
while (isSpaceChar(c))
{
c = snext();
}
int sgn = 1;
if (c == '-')
{
sgn = -1;
c = snext();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = snext();
} while (!isSpaceChar(c));
return res * sgn;
}
public int[] nextIntArray(int n)
{
int a[] = new int[n];
for (int i = 0; i < n; i++)
{
a[i] = nextInt();
}
return a;
}
public long[] nextLongArray(int n)
{
long a[] = new long[n];
for (int i = 0; i < n; i++)
{
a[i] = nextLong();
}
return a;
}
public String nextLine()
{
int c = snext();
while (isSpaceChar(c))
c = snext();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = snext();
} while (!isEndOfLine(c));
return res.toString();
}
public boolean isSpaceChar(int c)
{
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
private boolean isEndOfLine(int c)
{
return c == '\n' || c == '\r' || c == -1;
}
public interface SpaceCharFilter
{
public boolean isSpaceChar(int ch);
}
}
static int i()
{
return sc.nextInt();
}
static long l(){
return sc.nextLong();
}
static int[] iarr(int n)
{
return sc.nextIntArray(n);
}
static long[] larr(int n)
{
return sc.nextLongArray(n);
}
static String s(){
return sc.nextLine();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 2,559 | 2,427 |
586 |
import java.util.*;
import java.io.*;
public class A6
{
public static void main(String[] args)
{
Scanner in = new Scanner(System.in);
int n = in.nextInt();
int d = in.nextInt();
int ans=2;
int[] a = new int[n];
for(int i=0;i<n;i++)
a[i] = in.nextInt();
for(int i=1;i<n;i++)
{
if(a[i]-a[i-1]>2*d)
{
ans += 2;
}
else if(a[i]-a[i-1]==2*d)
ans += 1;
}
System.out.println(ans);
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class A6
{
public static void main(String[] args)
{
Scanner in = new Scanner(System.in);
int n = in.nextInt();
int d = in.nextInt();
int ans=2;
int[] a = new int[n];
for(int i=0;i<n;i++)
a[i] = in.nextInt();
for(int i=1;i<n;i++)
{
if(a[i]-a[i-1]>2*d)
{
ans += 2;
}
else if(a[i]-a[i-1]==2*d)
ans += 1;
}
System.out.println(ans);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class A6
{
public static void main(String[] args)
{
Scanner in = new Scanner(System.in);
int n = in.nextInt();
int d = in.nextInt();
int ans=2;
int[] a = new int[n];
for(int i=0;i<n;i++)
a[i] = in.nextInt();
for(int i=1;i<n;i++)
{
if(a[i]-a[i-1]>2*d)
{
ans += 2;
}
else if(a[i]-a[i-1]==2*d)
ans += 1;
}
System.out.println(ans);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n^2): The running time increases with the square of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 487 | 585 |
2,822 |
import java.util.Scanner;
public class subtractions {
public static void main(String[] args) {
Scanner sc=new Scanner(System.in);
int n=sc.nextInt();
while(n-->0){
int a=sc.nextInt();
int b=sc.nextInt();
int c=0;
while(a!=0 && b!=0){
if(a>b){
int t=a;
a=b;
b=t;
}
c+=b/a;
b=b%a;
}
System.out.println(c);
}
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.Scanner;
public class subtractions {
public static void main(String[] args) {
Scanner sc=new Scanner(System.in);
int n=sc.nextInt();
while(n-->0){
int a=sc.nextInt();
int b=sc.nextInt();
int c=0;
while(a!=0 && b!=0){
if(a>b){
int t=a;
a=b;
b=t;
}
c+=b/a;
b=b%a;
}
System.out.println(c);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.Scanner;
public class subtractions {
public static void main(String[] args) {
Scanner sc=new Scanner(System.in);
int n=sc.nextInt();
while(n-->0){
int a=sc.nextInt();
int b=sc.nextInt();
int c=0;
while(a!=0 && b!=0){
if(a>b){
int t=a;
a=b;
b=t;
}
c+=b/a;
b=b%a;
}
System.out.println(c);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 467 | 2,816 |
631 |
import java.util.Scanner;
public class R025A {
int n;
int[] nums;
public R025A() {
Scanner scanner = new Scanner(System.in);
n = scanner.nextInt();
nums = new int[n];
for(int i=0; i<n; i++) {
nums[i] = scanner.nextInt();
}
}
private void process() {
int[] c = new int[2];
int[] r = new int[2];
for(int i=0; i<n; i++) {
c[nums[i] % 2]++;
if(r[nums[i] %2] == 0) {
r[nums[i] % 2] = i+1;
}
}
System.out.println(r[c[0]==1 ? 0 : 1]);
}
public static void main(String[] args) {
new R025A().process();
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.Scanner;
public class R025A {
int n;
int[] nums;
public R025A() {
Scanner scanner = new Scanner(System.in);
n = scanner.nextInt();
nums = new int[n];
for(int i=0; i<n; i++) {
nums[i] = scanner.nextInt();
}
}
private void process() {
int[] c = new int[2];
int[] r = new int[2];
for(int i=0; i<n; i++) {
c[nums[i] % 2]++;
if(r[nums[i] %2] == 0) {
r[nums[i] % 2] = i+1;
}
}
System.out.println(r[c[0]==1 ? 0 : 1]);
}
public static void main(String[] args) {
new R025A().process();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class R025A {
int n;
int[] nums;
public R025A() {
Scanner scanner = new Scanner(System.in);
n = scanner.nextInt();
nums = new int[n];
for(int i=0; i<n; i++) {
nums[i] = scanner.nextInt();
}
}
private void process() {
int[] c = new int[2];
int[] r = new int[2];
for(int i=0; i<n; i++) {
c[nums[i] % 2]++;
if(r[nums[i] %2] == 0) {
r[nums[i] % 2] = i+1;
}
}
System.out.println(r[c[0]==1 ? 0 : 1]);
}
public static void main(String[] args) {
new R025A().process();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 554 | 630 |
592 |
import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.util.StringTokenizer;
public class A {
static StringTokenizer st;
static BufferedReader br;
static PrintWriter pw;
public static void main(String[] args) throws IOException {
br = new BufferedReader(new InputStreamReader(System.in));
pw = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
int n = nextInt();
int d = nextInt();
int[]x = new int[n];
for (int i = 0; i < n; i++) {
x[i] = nextInt();
}
int ans = 2;
for (int i = 1; i < n; i++) {
if (x[i]-x[i-1]==2*d)
ans++;
else if (x[i]-x[i-1] > 2*d)
ans += 2;
}
System.out.println(ans);
pw.close();
}
private static int nextInt() throws IOException {
return Integer.parseInt(next());
}
private static long nextLong() throws IOException {
return Long.parseLong(next());
}
private static double nextDouble() throws IOException {
return Double.parseDouble(next());
}
private static String next() throws IOException {
while (st==null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.util.StringTokenizer;
public class A {
static StringTokenizer st;
static BufferedReader br;
static PrintWriter pw;
public static void main(String[] args) throws IOException {
br = new BufferedReader(new InputStreamReader(System.in));
pw = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
int n = nextInt();
int d = nextInt();
int[]x = new int[n];
for (int i = 0; i < n; i++) {
x[i] = nextInt();
}
int ans = 2;
for (int i = 1; i < n; i++) {
if (x[i]-x[i-1]==2*d)
ans++;
else if (x[i]-x[i-1] > 2*d)
ans += 2;
}
System.out.println(ans);
pw.close();
}
private static int nextInt() throws IOException {
return Integer.parseInt(next());
}
private static long nextLong() throws IOException {
return Long.parseLong(next());
}
private static double nextDouble() throws IOException {
return Double.parseDouble(next());
}
private static String next() throws IOException {
while (st==null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.util.StringTokenizer;
public class A {
static StringTokenizer st;
static BufferedReader br;
static PrintWriter pw;
public static void main(String[] args) throws IOException {
br = new BufferedReader(new InputStreamReader(System.in));
pw = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
int n = nextInt();
int d = nextInt();
int[]x = new int[n];
for (int i = 0; i < n; i++) {
x[i] = nextInt();
}
int ans = 2;
for (int i = 1; i < n; i++) {
if (x[i]-x[i-1]==2*d)
ans++;
else if (x[i]-x[i-1] > 2*d)
ans += 2;
}
System.out.println(ans);
pw.close();
}
private static int nextInt() throws IOException {
return Integer.parseInt(next());
}
private static long nextLong() throws IOException {
return Long.parseLong(next());
}
private static double nextDouble() throws IOException {
return Double.parseDouble(next());
}
private static String next() throws IOException {
while (st==null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 654 | 591 |
3,552 |
import java.util.LinkedList;
import java.io.FileInputStream;
import java.util.Arrays;
import java.util.ArrayList;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.BufferedReader;
import java.util.Collection;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.util.Queue;
import java.io.IOException;
import java.io.FileOutputStream;
import java.util.StringTokenizer;
/**
* Built using CHelper plug-in
* Actual solution is at the top
* @author nasko
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream;
try {
inputStream = new FileInputStream("input.txt");
} catch (IOException e) {
throw new RuntimeException(e);
}
OutputStream outputStream;
try {
outputStream = new FileOutputStream("output.txt");
} catch (IOException e) {
throw new RuntimeException(e);
}
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskC solver = new TaskC();
solver.solve(1, in, out);
out.close();
}
}
class TaskC {
public void solve(int testNumber, InputReader in, PrintWriter out) {
int N = in.nextInt();
int M = in.nextInt();
int K = in.nextInt();
int[][] dist = new int[N+1][M+1];
for(int[] ini : dist) Arrays.fill(ini,1 << 30);
int best = 0;
ArrayList<Integer> result = new ArrayList<Integer>();
Queue<Integer> q = new LinkedList<Integer>();
for(int k = 0; k < K; ++k) {
int x = in.nextInt();
int y = in.nextInt();
dist[x][y] = 0;
q.offer(x);
q.offer(y);
}
int[] dx = new int[] { 1,-1,0,0 };
int[] dy = new int[] {0,0,1,-1};
while(!q.isEmpty()) {
int a = q.poll();
int b = q.poll();
for(int r = 0; r < 4; ++r) {
int x = a + dx[r];
int y = b + dy[r];
if(x >= 1 && x <= N && y >=1 && y <= M && dist[x][y] > dist[a][b] + 1) {
dist[x][y] = dist[a][b] + 1;
q.offer(x);
q.offer(y);
}
}
}
for(int i = 1; i <= N; ++i)
for(int j = 1; j <= M; ++j) best = Math.max(best,dist[i][j]);
for(int a = 1; a <= N; ++a)
for(int b = 1; b <= M; ++b) if(dist[a][b] == best) {
result.add(a);
result.add(b);
}
if(result.size() > 0) {
out.print(result.get(0) + " " + result.get(1));
}
out.println();
}
}
class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream));
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.LinkedList;
import java.io.FileInputStream;
import java.util.Arrays;
import java.util.ArrayList;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.BufferedReader;
import java.util.Collection;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.util.Queue;
import java.io.IOException;
import java.io.FileOutputStream;
import java.util.StringTokenizer;
/**
* Built using CHelper plug-in
* Actual solution is at the top
* @author nasko
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream;
try {
inputStream = new FileInputStream("input.txt");
} catch (IOException e) {
throw new RuntimeException(e);
}
OutputStream outputStream;
try {
outputStream = new FileOutputStream("output.txt");
} catch (IOException e) {
throw new RuntimeException(e);
}
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskC solver = new TaskC();
solver.solve(1, in, out);
out.close();
}
}
class TaskC {
public void solve(int testNumber, InputReader in, PrintWriter out) {
int N = in.nextInt();
int M = in.nextInt();
int K = in.nextInt();
int[][] dist = new int[N+1][M+1];
for(int[] ini : dist) Arrays.fill(ini,1 << 30);
int best = 0;
ArrayList<Integer> result = new ArrayList<Integer>();
Queue<Integer> q = new LinkedList<Integer>();
for(int k = 0; k < K; ++k) {
int x = in.nextInt();
int y = in.nextInt();
dist[x][y] = 0;
q.offer(x);
q.offer(y);
}
int[] dx = new int[] { 1,-1,0,0 };
int[] dy = new int[] {0,0,1,-1};
while(!q.isEmpty()) {
int a = q.poll();
int b = q.poll();
for(int r = 0; r < 4; ++r) {
int x = a + dx[r];
int y = b + dy[r];
if(x >= 1 && x <= N && y >=1 && y <= M && dist[x][y] > dist[a][b] + 1) {
dist[x][y] = dist[a][b] + 1;
q.offer(x);
q.offer(y);
}
}
}
for(int i = 1; i <= N; ++i)
for(int j = 1; j <= M; ++j) best = Math.max(best,dist[i][j]);
for(int a = 1; a <= N; ++a)
for(int b = 1; b <= M; ++b) if(dist[a][b] == best) {
result.add(a);
result.add(b);
}
if(result.size() > 0) {
out.print(result.get(0) + " " + result.get(1));
}
out.println();
}
}
class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream));
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.LinkedList;
import java.io.FileInputStream;
import java.util.Arrays;
import java.util.ArrayList;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.BufferedReader;
import java.util.Collection;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.util.Queue;
import java.io.IOException;
import java.io.FileOutputStream;
import java.util.StringTokenizer;
/**
* Built using CHelper plug-in
* Actual solution is at the top
* @author nasko
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream;
try {
inputStream = new FileInputStream("input.txt");
} catch (IOException e) {
throw new RuntimeException(e);
}
OutputStream outputStream;
try {
outputStream = new FileOutputStream("output.txt");
} catch (IOException e) {
throw new RuntimeException(e);
}
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskC solver = new TaskC();
solver.solve(1, in, out);
out.close();
}
}
class TaskC {
public void solve(int testNumber, InputReader in, PrintWriter out) {
int N = in.nextInt();
int M = in.nextInt();
int K = in.nextInt();
int[][] dist = new int[N+1][M+1];
for(int[] ini : dist) Arrays.fill(ini,1 << 30);
int best = 0;
ArrayList<Integer> result = new ArrayList<Integer>();
Queue<Integer> q = new LinkedList<Integer>();
for(int k = 0; k < K; ++k) {
int x = in.nextInt();
int y = in.nextInt();
dist[x][y] = 0;
q.offer(x);
q.offer(y);
}
int[] dx = new int[] { 1,-1,0,0 };
int[] dy = new int[] {0,0,1,-1};
while(!q.isEmpty()) {
int a = q.poll();
int b = q.poll();
for(int r = 0; r < 4; ++r) {
int x = a + dx[r];
int y = b + dy[r];
if(x >= 1 && x <= N && y >=1 && y <= M && dist[x][y] > dist[a][b] + 1) {
dist[x][y] = dist[a][b] + 1;
q.offer(x);
q.offer(y);
}
}
}
for(int i = 1; i <= N; ++i)
for(int j = 1; j <= M; ++j) best = Math.max(best,dist[i][j]);
for(int a = 1; a <= N; ++a)
for(int b = 1; b <= M; ++b) if(dist[a][b] == best) {
result.add(a);
result.add(b);
}
if(result.size() > 0) {
out.print(result.get(0) + " " + result.get(1));
}
out.println();
}
}
class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream));
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The running time grows linearly with the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,128 | 3,545 |
1,109 |
import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
public class Div1_503B {
public static void main(String[] args) throws IOException {
BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));
PrintWriter printer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
int N = Integer.parseInt(reader.readLine());
printer.println("? 1");
printer.flush();
int v1 = Integer.parseInt(reader.readLine());
printer.println("? " + (1 + N / 2));
printer.flush();
int v2 = Integer.parseInt(reader.readLine());
if ((v1 + v2) % 2 != 0) {
printer.println("! -1");
printer.close();
return;
}
if (v1 == v2) {
printer.println("! 1");
printer.close();
return;
}
boolean less = v1 < v2;
int low = 1;
int high = (1 + N / 2);
while (low != high) {
int mid = (low + high) >> 1;
printer.println("? " + mid);
printer.flush();
int r1 = Integer.parseInt(reader.readLine());
int q2 = (mid + N / 2);
if (q2 > N) {
q2 -= N;
}
printer.println("? " + q2);
printer.flush();
int r2 = Integer.parseInt(reader.readLine());
if (r1 == r2) {
printer.println("! " + mid);
printer.close();
return;
}
if (r1 < r2 == less) {
low = mid + 1;
} else {
high = mid - 1;
}
}
printer.println("! " + low);
printer.close();
return;
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
public class Div1_503B {
public static void main(String[] args) throws IOException {
BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));
PrintWriter printer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
int N = Integer.parseInt(reader.readLine());
printer.println("? 1");
printer.flush();
int v1 = Integer.parseInt(reader.readLine());
printer.println("? " + (1 + N / 2));
printer.flush();
int v2 = Integer.parseInt(reader.readLine());
if ((v1 + v2) % 2 != 0) {
printer.println("! -1");
printer.close();
return;
}
if (v1 == v2) {
printer.println("! 1");
printer.close();
return;
}
boolean less = v1 < v2;
int low = 1;
int high = (1 + N / 2);
while (low != high) {
int mid = (low + high) >> 1;
printer.println("? " + mid);
printer.flush();
int r1 = Integer.parseInt(reader.readLine());
int q2 = (mid + N / 2);
if (q2 > N) {
q2 -= N;
}
printer.println("? " + q2);
printer.flush();
int r2 = Integer.parseInt(reader.readLine());
if (r1 == r2) {
printer.println("! " + mid);
printer.close();
return;
}
if (r1 < r2 == less) {
low = mid + 1;
} else {
high = mid - 1;
}
}
printer.println("! " + low);
printer.close();
return;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
public class Div1_503B {
public static void main(String[] args) throws IOException {
BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));
PrintWriter printer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
int N = Integer.parseInt(reader.readLine());
printer.println("? 1");
printer.flush();
int v1 = Integer.parseInt(reader.readLine());
printer.println("? " + (1 + N / 2));
printer.flush();
int v2 = Integer.parseInt(reader.readLine());
if ((v1 + v2) % 2 != 0) {
printer.println("! -1");
printer.close();
return;
}
if (v1 == v2) {
printer.println("! 1");
printer.close();
return;
}
boolean less = v1 < v2;
int low = 1;
int high = (1 + N / 2);
while (low != high) {
int mid = (low + high) >> 1;
printer.println("? " + mid);
printer.flush();
int r1 = Integer.parseInt(reader.readLine());
int q2 = (mid + N / 2);
if (q2 > N) {
q2 -= N;
}
printer.println("? " + q2);
printer.flush();
int r2 = Integer.parseInt(reader.readLine());
if (r1 == r2) {
printer.println("! " + mid);
printer.close();
return;
}
if (r1 < r2 == less) {
low = mid + 1;
} else {
high = mid - 1;
}
}
printer.println("! " + low);
printer.close();
return;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 759 | 1,108 |
2,406 |
/*
* Author Ayub Subhaniya
* Institute DA-IICT
*/
import java.io.*;
import java.math.*;
import java.util.*;
public class A
{
InputStream in;
PrintWriter out;
void solve()
{
int n=ni();
int a[]=na(n);
int INV=0;
for (int i=0;i<n;i++)
for (int j=i+1;j<n;j++)
if (a[i]>a[j])
INV++;
boolean even=INV%2==0;
int q=ni();
while (q-->0)
{
int l=ni();
int r=ni();
int len=r-l+1;
len=(len-1)*(len)/2;
if (len%2==1)
even=!even;
if (even)
out.println("even");
else
out.println("odd");
}
}
int MAX = (int)1e5;
long factorial[];
void findfactorial()
{
factorial = new long[MAX + 1];
factorial[0] = 1;
for (int i = 1; i < MAX + 1; i++)
{
factorial[i] = mul(i,factorial[i - 1]);
}
}
long mod=(long)1e9+7;
long add(long a,long b)
{
long x=(a+b);
while(x>=mod) x-=mod;
return x;
}
long sub(long a,long b)
{
long x=(a-b);
while(x<0) x+=mod;
return x;
}
long mul(long a,long b)
{
a%=mod;
b%=mod;
long x=(a*b);
return x%mod;
}
int max(int a,int b)
{
if(a>b)
return a;
else
return b;
}
int min(int a,int b)
{
if(a>b)
return b;
else
return a;
}
long max(long a,long b)
{
if(a>b)
return a;
else
return b;
}
long min(long a,long b)
{
if(a>b)
return b;
else
return a;
}
void run() throws Exception
{
String INPUT = "C:/Users/ayubs/Desktop/input.txt";
in = oj ? System.in : new FileInputStream(INPUT);
out = new PrintWriter(System.out);
long s = System.currentTimeMillis();
solve();
out.flush();
tr(System.currentTimeMillis() - s + "ms");
}
public static void main(String[] args) throws Exception
{
new A().run();
}
private byte[] inbuf = new byte[1024];
public int lenbuf = 0, ptrbuf = 0;
private int readByte()
{
if (lenbuf == -1)
throw new InputMismatchException();
if (ptrbuf >= lenbuf)
{
ptrbuf = 0;
try
{
lenbuf = in.read(inbuf);
}
catch (IOException e)
{
throw new InputMismatchException();
}
if (lenbuf <= 0)
return -1;
}
return inbuf[ptrbuf++];
}
private boolean inSpaceChar(int c)
{
return !(c >= 33 && c <= 126);
}
private int skip()
{
int b;
while ((b = readByte()) != -1 && inSpaceChar(b))
;
return b;
}
private double nd()
{
return Double.parseDouble(ns());
}
private char nc()
{
return (char) skip();
}
private String ns()
{
int b = skip();
StringBuilder sb = new StringBuilder();
while (!(inSpaceChar(b)))
{ // when nextLine, (inSpaceChar(b) && b != ' ')
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
private char[] ns(int n)
{
char[] buf = new char[n];
int b = skip(), p = 0;
while (p < n && !(inSpaceChar(b)))
{
buf[p++] = (char) b;
b = readByte();
}
return n == p ? buf : Arrays.copyOf(buf, p);
}
private char[][] nm(int n, int m)
{
char[][] map = new char[n][];
for (int i = 0; i < n; i++)
map[i] = ns(m);
return map;
}
private int[] na(int n)
{
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = ni();
return a;
}
private int ni()
{
int num = 0, b;
boolean minus = false;
while ((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'))
;
if (b == '-')
{
minus = true;
b = readByte();
}
while (true)
{
if (b >= '0' && b <= '9')
{
num = num * 10 + (b - '0');
}
else
{
return minus ? -num : num;
}
b = readByte();
}
}
private long nl()
{
long num = 0;
int b;
boolean minus = false;
while ((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'))
;
if (b == '-')
{
minus = true;
b = readByte();
}
while (true)
{
if (b >= '0' && b <= '9')
{
num = num * 10 + (b - '0');
}
else
{
return minus ? -num : num;
}
b = readByte();
}
}
private boolean oj = System.getProperty("ONLINE_JUDGE") != null;
private void tr(Object... o)
{
if (!oj)
System.out.println(Arrays.deepToString(o));
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
/*
* Author Ayub Subhaniya
* Institute DA-IICT
*/
import java.io.*;
import java.math.*;
import java.util.*;
public class A
{
InputStream in;
PrintWriter out;
void solve()
{
int n=ni();
int a[]=na(n);
int INV=0;
for (int i=0;i<n;i++)
for (int j=i+1;j<n;j++)
if (a[i]>a[j])
INV++;
boolean even=INV%2==0;
int q=ni();
while (q-->0)
{
int l=ni();
int r=ni();
int len=r-l+1;
len=(len-1)*(len)/2;
if (len%2==1)
even=!even;
if (even)
out.println("even");
else
out.println("odd");
}
}
int MAX = (int)1e5;
long factorial[];
void findfactorial()
{
factorial = new long[MAX + 1];
factorial[0] = 1;
for (int i = 1; i < MAX + 1; i++)
{
factorial[i] = mul(i,factorial[i - 1]);
}
}
long mod=(long)1e9+7;
long add(long a,long b)
{
long x=(a+b);
while(x>=mod) x-=mod;
return x;
}
long sub(long a,long b)
{
long x=(a-b);
while(x<0) x+=mod;
return x;
}
long mul(long a,long b)
{
a%=mod;
b%=mod;
long x=(a*b);
return x%mod;
}
int max(int a,int b)
{
if(a>b)
return a;
else
return b;
}
int min(int a,int b)
{
if(a>b)
return b;
else
return a;
}
long max(long a,long b)
{
if(a>b)
return a;
else
return b;
}
long min(long a,long b)
{
if(a>b)
return b;
else
return a;
}
void run() throws Exception
{
String INPUT = "C:/Users/ayubs/Desktop/input.txt";
in = oj ? System.in : new FileInputStream(INPUT);
out = new PrintWriter(System.out);
long s = System.currentTimeMillis();
solve();
out.flush();
tr(System.currentTimeMillis() - s + "ms");
}
public static void main(String[] args) throws Exception
{
new A().run();
}
private byte[] inbuf = new byte[1024];
public int lenbuf = 0, ptrbuf = 0;
private int readByte()
{
if (lenbuf == -1)
throw new InputMismatchException();
if (ptrbuf >= lenbuf)
{
ptrbuf = 0;
try
{
lenbuf = in.read(inbuf);
}
catch (IOException e)
{
throw new InputMismatchException();
}
if (lenbuf <= 0)
return -1;
}
return inbuf[ptrbuf++];
}
private boolean inSpaceChar(int c)
{
return !(c >= 33 && c <= 126);
}
private int skip()
{
int b;
while ((b = readByte()) != -1 && inSpaceChar(b))
;
return b;
}
private double nd()
{
return Double.parseDouble(ns());
}
private char nc()
{
return (char) skip();
}
private String ns()
{
int b = skip();
StringBuilder sb = new StringBuilder();
while (!(inSpaceChar(b)))
{ // when nextLine, (inSpaceChar(b) && b != ' ')
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
private char[] ns(int n)
{
char[] buf = new char[n];
int b = skip(), p = 0;
while (p < n && !(inSpaceChar(b)))
{
buf[p++] = (char) b;
b = readByte();
}
return n == p ? buf : Arrays.copyOf(buf, p);
}
private char[][] nm(int n, int m)
{
char[][] map = new char[n][];
for (int i = 0; i < n; i++)
map[i] = ns(m);
return map;
}
private int[] na(int n)
{
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = ni();
return a;
}
private int ni()
{
int num = 0, b;
boolean minus = false;
while ((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'))
;
if (b == '-')
{
minus = true;
b = readByte();
}
while (true)
{
if (b >= '0' && b <= '9')
{
num = num * 10 + (b - '0');
}
else
{
return minus ? -num : num;
}
b = readByte();
}
}
private long nl()
{
long num = 0;
int b;
boolean minus = false;
while ((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'))
;
if (b == '-')
{
minus = true;
b = readByte();
}
while (true)
{
if (b >= '0' && b <= '9')
{
num = num * 10 + (b - '0');
}
else
{
return minus ? -num : num;
}
b = readByte();
}
}
private boolean oj = System.getProperty("ONLINE_JUDGE") != null;
private void tr(Object... o)
{
if (!oj)
System.out.println(Arrays.deepToString(o));
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
/*
* Author Ayub Subhaniya
* Institute DA-IICT
*/
import java.io.*;
import java.math.*;
import java.util.*;
public class A
{
InputStream in;
PrintWriter out;
void solve()
{
int n=ni();
int a[]=na(n);
int INV=0;
for (int i=0;i<n;i++)
for (int j=i+1;j<n;j++)
if (a[i]>a[j])
INV++;
boolean even=INV%2==0;
int q=ni();
while (q-->0)
{
int l=ni();
int r=ni();
int len=r-l+1;
len=(len-1)*(len)/2;
if (len%2==1)
even=!even;
if (even)
out.println("even");
else
out.println("odd");
}
}
int MAX = (int)1e5;
long factorial[];
void findfactorial()
{
factorial = new long[MAX + 1];
factorial[0] = 1;
for (int i = 1; i < MAX + 1; i++)
{
factorial[i] = mul(i,factorial[i - 1]);
}
}
long mod=(long)1e9+7;
long add(long a,long b)
{
long x=(a+b);
while(x>=mod) x-=mod;
return x;
}
long sub(long a,long b)
{
long x=(a-b);
while(x<0) x+=mod;
return x;
}
long mul(long a,long b)
{
a%=mod;
b%=mod;
long x=(a*b);
return x%mod;
}
int max(int a,int b)
{
if(a>b)
return a;
else
return b;
}
int min(int a,int b)
{
if(a>b)
return b;
else
return a;
}
long max(long a,long b)
{
if(a>b)
return a;
else
return b;
}
long min(long a,long b)
{
if(a>b)
return b;
else
return a;
}
void run() throws Exception
{
String INPUT = "C:/Users/ayubs/Desktop/input.txt";
in = oj ? System.in : new FileInputStream(INPUT);
out = new PrintWriter(System.out);
long s = System.currentTimeMillis();
solve();
out.flush();
tr(System.currentTimeMillis() - s + "ms");
}
public static void main(String[] args) throws Exception
{
new A().run();
}
private byte[] inbuf = new byte[1024];
public int lenbuf = 0, ptrbuf = 0;
private int readByte()
{
if (lenbuf == -1)
throw new InputMismatchException();
if (ptrbuf >= lenbuf)
{
ptrbuf = 0;
try
{
lenbuf = in.read(inbuf);
}
catch (IOException e)
{
throw new InputMismatchException();
}
if (lenbuf <= 0)
return -1;
}
return inbuf[ptrbuf++];
}
private boolean inSpaceChar(int c)
{
return !(c >= 33 && c <= 126);
}
private int skip()
{
int b;
while ((b = readByte()) != -1 && inSpaceChar(b))
;
return b;
}
private double nd()
{
return Double.parseDouble(ns());
}
private char nc()
{
return (char) skip();
}
private String ns()
{
int b = skip();
StringBuilder sb = new StringBuilder();
while (!(inSpaceChar(b)))
{ // when nextLine, (inSpaceChar(b) && b != ' ')
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
private char[] ns(int n)
{
char[] buf = new char[n];
int b = skip(), p = 0;
while (p < n && !(inSpaceChar(b)))
{
buf[p++] = (char) b;
b = readByte();
}
return n == p ? buf : Arrays.copyOf(buf, p);
}
private char[][] nm(int n, int m)
{
char[][] map = new char[n][];
for (int i = 0; i < n; i++)
map[i] = ns(m);
return map;
}
private int[] na(int n)
{
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = ni();
return a;
}
private int ni()
{
int num = 0, b;
boolean minus = false;
while ((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'))
;
if (b == '-')
{
minus = true;
b = readByte();
}
while (true)
{
if (b >= '0' && b <= '9')
{
num = num * 10 + (b - '0');
}
else
{
return minus ? -num : num;
}
b = readByte();
}
}
private long nl()
{
long num = 0;
int b;
boolean minus = false;
while ((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'))
;
if (b == '-')
{
minus = true;
b = readByte();
}
while (true)
{
if (b >= '0' && b <= '9')
{
num = num * 10 + (b - '0');
}
else
{
return minus ? -num : num;
}
b = readByte();
}
}
private boolean oj = System.getProperty("ONLINE_JUDGE") != null;
private void tr(Object... o)
{
if (!oj)
System.out.println(Arrays.deepToString(o));
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The execution time is unaffected by the size of the input n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,820 | 2,401 |
3,785 |
import java.io.*;
import java.util.*;
public class Main {
public static void main(String args[])
{
FastReader input=new FastReader();
PrintWriter out=new PrintWriter(System.out);
int T=1;
while(T-->0)
{
int n=input.nextInt();
int m=input.nextInt();
int k=input.nextInt();
int arr1[][]=new int[n+1][m];
for(int i=1;i<=n;i++)
{
for(int j=1;j<m;j++)
{
arr1[i][j]=input.nextInt();
}
}
int arr2[][]=new int[n][m+1];
for(int i=1;i<n;i++)
{
for(int j=1;j<=m;j++)
{
arr2[i][j]=input.nextInt();
}
}
if(k%2==0)
{
int dp[][][]=new int[n+1][m+1][k+1];
for(int l=2;l<=k;l+=2)
{
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
int min=Integer.MAX_VALUE;
if(j+1<=m)
{
min=Math.min(min,dp[i][j+1][l-2]+2*arr1[i][j]);
}
if(i+1<=n)
{
min=Math.min(min,dp[i+1][j][l-2]+2*arr2[i][j]);
}
if(j-1>=1)
{
min=Math.min(min,dp[i][j-1][l-2]+2*arr1[i][j-1]);
}
if(i-1>=1)
{
min=Math.min(min,dp[i-1][j][l-2]+2*arr2[i-1][j]);
}
dp[i][j][l]=min;
}
}
}
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
out.print(dp[i][j][k]+" ");
}
out.println();
}
}
else
{
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
out.print(-1+" ");
}
out.println();
}
}
}
out.close();
}
static class FastReader
{
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(new InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements())
{
try
{
st = new StringTokenizer(br.readLine());
}
catch (IOException e)
{
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt()
{
return Integer.parseInt(next());
}
long nextLong()
{
return Long.parseLong(next());
}
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str="";
try
{
str=br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return str;
}
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Main {
public static void main(String args[])
{
FastReader input=new FastReader();
PrintWriter out=new PrintWriter(System.out);
int T=1;
while(T-->0)
{
int n=input.nextInt();
int m=input.nextInt();
int k=input.nextInt();
int arr1[][]=new int[n+1][m];
for(int i=1;i<=n;i++)
{
for(int j=1;j<m;j++)
{
arr1[i][j]=input.nextInt();
}
}
int arr2[][]=new int[n][m+1];
for(int i=1;i<n;i++)
{
for(int j=1;j<=m;j++)
{
arr2[i][j]=input.nextInt();
}
}
if(k%2==0)
{
int dp[][][]=new int[n+1][m+1][k+1];
for(int l=2;l<=k;l+=2)
{
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
int min=Integer.MAX_VALUE;
if(j+1<=m)
{
min=Math.min(min,dp[i][j+1][l-2]+2*arr1[i][j]);
}
if(i+1<=n)
{
min=Math.min(min,dp[i+1][j][l-2]+2*arr2[i][j]);
}
if(j-1>=1)
{
min=Math.min(min,dp[i][j-1][l-2]+2*arr1[i][j-1]);
}
if(i-1>=1)
{
min=Math.min(min,dp[i-1][j][l-2]+2*arr2[i-1][j]);
}
dp[i][j][l]=min;
}
}
}
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
out.print(dp[i][j][k]+" ");
}
out.println();
}
}
else
{
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
out.print(-1+" ");
}
out.println();
}
}
}
out.close();
}
static class FastReader
{
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(new InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements())
{
try
{
st = new StringTokenizer(br.readLine());
}
catch (IOException e)
{
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt()
{
return Integer.parseInt(next());
}
long nextLong()
{
return Long.parseLong(next());
}
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str="";
try
{
str=br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return str;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Main {
public static void main(String args[])
{
FastReader input=new FastReader();
PrintWriter out=new PrintWriter(System.out);
int T=1;
while(T-->0)
{
int n=input.nextInt();
int m=input.nextInt();
int k=input.nextInt();
int arr1[][]=new int[n+1][m];
for(int i=1;i<=n;i++)
{
for(int j=1;j<m;j++)
{
arr1[i][j]=input.nextInt();
}
}
int arr2[][]=new int[n][m+1];
for(int i=1;i<n;i++)
{
for(int j=1;j<=m;j++)
{
arr2[i][j]=input.nextInt();
}
}
if(k%2==0)
{
int dp[][][]=new int[n+1][m+1][k+1];
for(int l=2;l<=k;l+=2)
{
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
int min=Integer.MAX_VALUE;
if(j+1<=m)
{
min=Math.min(min,dp[i][j+1][l-2]+2*arr1[i][j]);
}
if(i+1<=n)
{
min=Math.min(min,dp[i+1][j][l-2]+2*arr2[i][j]);
}
if(j-1>=1)
{
min=Math.min(min,dp[i][j-1][l-2]+2*arr1[i][j-1]);
}
if(i-1>=1)
{
min=Math.min(min,dp[i-1][j][l-2]+2*arr2[i-1][j]);
}
dp[i][j][l]=min;
}
}
}
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
out.print(dp[i][j][k]+" ");
}
out.println();
}
}
else
{
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
out.print(-1+" ");
}
out.println();
}
}
}
out.close();
}
static class FastReader
{
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(new InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements())
{
try
{
st = new StringTokenizer(br.readLine());
}
catch (IOException e)
{
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt()
{
return Integer.parseInt(next());
}
long nextLong()
{
return Long.parseLong(next());
}
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str="";
try
{
str=br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return str;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,038 | 3,777 |
398 |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.*;
public class B {
BufferedReader reader;
StringTokenizer tokenizer;
PrintWriter out;
public void solve() throws IOException {
int N = nextInt();
int A = nextInt();
int B = nextInt();
int[] nsA = new int[N];
int[] nsB = new int[N];
char[] ans = new char[N];
Arrays.fill(nsA, -1);
Arrays.fill(nsB, -1);
Arrays.fill(ans, 'C');
HashMap<Integer, Integer> map = new HashMap<Integer, Integer>();
int[] P = new int[N];
for (int i = 0; i < N; i++) {
P[i] = nextInt();
map.put(P[i], i);
}
// if A == B
if (A == B) {
for (int i = 0; i < N; i++) {
if (!map.containsKey(A - P[i])) {
out.println("NO"); return;
}
}
out.println("YES");
for (int i = 0; i < N; i++) {
out.print(0 + " ");
}
out.println();
return;
}
for (int i = 0; i < N; i++) {
int oppA = A - P[i];
int oppB = B - P[i];
if (map.containsKey(oppA)) {
nsA[i] = map.get(oppA);
}
if (map.containsKey(oppB)) {
nsB[i] = map.get(oppB);
}
}
for (int i = 0; i < N; i++) {
if (nsA[i] == -1 && nsB[i] == -1) {
out.println("NO");
return;
}
}
for (int i = 0; i < N; i++) {
if (ans[i] != 'C') continue;
if (nsA[i] == -1) {
if (!go(i, 'B', ans, nsA, nsB) ){
out.println("NO"); return;
}
} else if (nsB[i] == -1) {
if (!go(i, 'A', ans, nsA, nsB) ){
out.println("NO"); return;
}
}
}
for (int i = 0; i < N; i++) {
if (ans[i] != 'C') continue;
if (nsA[i] == i || nsB[i] == i) {
if (nsA[i] == i) {
if (!go(i, 'B', ans, nsA, nsB) ){
out.println("NO"); return;
}
} else {
if (!go(i, 'A', ans, nsA, nsB) ){
out.println("NO"); return;
}
}
}
}
for (int i = 0; i < N; i++) {
if (ans[i] != 'C') continue;
if (!go(i, 'A', ans, nsA, nsB) ){
out.println("NO"); return;
}
}
for (int i = 0; i < N; i++) {
if (ans[i] == 'C') {
out.println("NO");
return;
}
}
out.println("YES");
for (int i = 0; i < N; i++) {
out.print(ans[i] == 'A'? 0: 1);
out.print(" ");
}
out.println();
}
public boolean go(int cur, char link, char[] ans, int[] nsA, int[] nsB) {
while (ans[cur] == 'C') {
int next = link == 'A'? nsA[cur]: nsB[cur];
if (next == -1) return false;
if (ans[next] != 'C') return false;
ans[cur] = link;
ans[next] = link;
int nextNext = link == 'A'? nsB[next]: nsA[next];
cur = nextNext;
if (cur == -1) return true;
}
return true;
}
/**
* @param args
*/
public static void main(String[] args) {
new B().run();
}
public void run() {
try {
reader = new BufferedReader(new InputStreamReader(System.in));
tokenizer = null;
out = new PrintWriter(System.out);
solve();
reader.close();
out.close();
} catch (Exception e) {
e.printStackTrace();
System.exit(1);
}
}
int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
String nextToken() throws IOException {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
tokenizer = new StringTokenizer(reader.readLine());
}
return tokenizer.nextToken();
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.*;
public class B {
BufferedReader reader;
StringTokenizer tokenizer;
PrintWriter out;
public void solve() throws IOException {
int N = nextInt();
int A = nextInt();
int B = nextInt();
int[] nsA = new int[N];
int[] nsB = new int[N];
char[] ans = new char[N];
Arrays.fill(nsA, -1);
Arrays.fill(nsB, -1);
Arrays.fill(ans, 'C');
HashMap<Integer, Integer> map = new HashMap<Integer, Integer>();
int[] P = new int[N];
for (int i = 0; i < N; i++) {
P[i] = nextInt();
map.put(P[i], i);
}
// if A == B
if (A == B) {
for (int i = 0; i < N; i++) {
if (!map.containsKey(A - P[i])) {
out.println("NO"); return;
}
}
out.println("YES");
for (int i = 0; i < N; i++) {
out.print(0 + " ");
}
out.println();
return;
}
for (int i = 0; i < N; i++) {
int oppA = A - P[i];
int oppB = B - P[i];
if (map.containsKey(oppA)) {
nsA[i] = map.get(oppA);
}
if (map.containsKey(oppB)) {
nsB[i] = map.get(oppB);
}
}
for (int i = 0; i < N; i++) {
if (nsA[i] == -1 && nsB[i] == -1) {
out.println("NO");
return;
}
}
for (int i = 0; i < N; i++) {
if (ans[i] != 'C') continue;
if (nsA[i] == -1) {
if (!go(i, 'B', ans, nsA, nsB) ){
out.println("NO"); return;
}
} else if (nsB[i] == -1) {
if (!go(i, 'A', ans, nsA, nsB) ){
out.println("NO"); return;
}
}
}
for (int i = 0; i < N; i++) {
if (ans[i] != 'C') continue;
if (nsA[i] == i || nsB[i] == i) {
if (nsA[i] == i) {
if (!go(i, 'B', ans, nsA, nsB) ){
out.println("NO"); return;
}
} else {
if (!go(i, 'A', ans, nsA, nsB) ){
out.println("NO"); return;
}
}
}
}
for (int i = 0; i < N; i++) {
if (ans[i] != 'C') continue;
if (!go(i, 'A', ans, nsA, nsB) ){
out.println("NO"); return;
}
}
for (int i = 0; i < N; i++) {
if (ans[i] == 'C') {
out.println("NO");
return;
}
}
out.println("YES");
for (int i = 0; i < N; i++) {
out.print(ans[i] == 'A'? 0: 1);
out.print(" ");
}
out.println();
}
public boolean go(int cur, char link, char[] ans, int[] nsA, int[] nsB) {
while (ans[cur] == 'C') {
int next = link == 'A'? nsA[cur]: nsB[cur];
if (next == -1) return false;
if (ans[next] != 'C') return false;
ans[cur] = link;
ans[next] = link;
int nextNext = link == 'A'? nsB[next]: nsA[next];
cur = nextNext;
if (cur == -1) return true;
}
return true;
}
/**
* @param args
*/
public static void main(String[] args) {
new B().run();
}
public void run() {
try {
reader = new BufferedReader(new InputStreamReader(System.in));
tokenizer = null;
out = new PrintWriter(System.out);
solve();
reader.close();
out.close();
} catch (Exception e) {
e.printStackTrace();
System.exit(1);
}
}
int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
String nextToken() throws IOException {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
tokenizer = new StringTokenizer(reader.readLine());
}
return tokenizer.nextToken();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(1): The time complexity is constant to the input size n.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.*;
public class B {
BufferedReader reader;
StringTokenizer tokenizer;
PrintWriter out;
public void solve() throws IOException {
int N = nextInt();
int A = nextInt();
int B = nextInt();
int[] nsA = new int[N];
int[] nsB = new int[N];
char[] ans = new char[N];
Arrays.fill(nsA, -1);
Arrays.fill(nsB, -1);
Arrays.fill(ans, 'C');
HashMap<Integer, Integer> map = new HashMap<Integer, Integer>();
int[] P = new int[N];
for (int i = 0; i < N; i++) {
P[i] = nextInt();
map.put(P[i], i);
}
// if A == B
if (A == B) {
for (int i = 0; i < N; i++) {
if (!map.containsKey(A - P[i])) {
out.println("NO"); return;
}
}
out.println("YES");
for (int i = 0; i < N; i++) {
out.print(0 + " ");
}
out.println();
return;
}
for (int i = 0; i < N; i++) {
int oppA = A - P[i];
int oppB = B - P[i];
if (map.containsKey(oppA)) {
nsA[i] = map.get(oppA);
}
if (map.containsKey(oppB)) {
nsB[i] = map.get(oppB);
}
}
for (int i = 0; i < N; i++) {
if (nsA[i] == -1 && nsB[i] == -1) {
out.println("NO");
return;
}
}
for (int i = 0; i < N; i++) {
if (ans[i] != 'C') continue;
if (nsA[i] == -1) {
if (!go(i, 'B', ans, nsA, nsB) ){
out.println("NO"); return;
}
} else if (nsB[i] == -1) {
if (!go(i, 'A', ans, nsA, nsB) ){
out.println("NO"); return;
}
}
}
for (int i = 0; i < N; i++) {
if (ans[i] != 'C') continue;
if (nsA[i] == i || nsB[i] == i) {
if (nsA[i] == i) {
if (!go(i, 'B', ans, nsA, nsB) ){
out.println("NO"); return;
}
} else {
if (!go(i, 'A', ans, nsA, nsB) ){
out.println("NO"); return;
}
}
}
}
for (int i = 0; i < N; i++) {
if (ans[i] != 'C') continue;
if (!go(i, 'A', ans, nsA, nsB) ){
out.println("NO"); return;
}
}
for (int i = 0; i < N; i++) {
if (ans[i] == 'C') {
out.println("NO");
return;
}
}
out.println("YES");
for (int i = 0; i < N; i++) {
out.print(ans[i] == 'A'? 0: 1);
out.print(" ");
}
out.println();
}
public boolean go(int cur, char link, char[] ans, int[] nsA, int[] nsB) {
while (ans[cur] == 'C') {
int next = link == 'A'? nsA[cur]: nsB[cur];
if (next == -1) return false;
if (ans[next] != 'C') return false;
ans[cur] = link;
ans[next] = link;
int nextNext = link == 'A'? nsB[next]: nsA[next];
cur = nextNext;
if (cur == -1) return true;
}
return true;
}
/**
* @param args
*/
public static void main(String[] args) {
new B().run();
}
public void run() {
try {
reader = new BufferedReader(new InputStreamReader(System.in));
tokenizer = null;
out = new PrintWriter(System.out);
solve();
reader.close();
out.close();
} catch (Exception e) {
e.printStackTrace();
System.exit(1);
}
}
int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
String nextToken() throws IOException {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
tokenizer = new StringTokenizer(reader.readLine());
}
return tokenizer.nextToken();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,445 | 397 |
1,665 |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.Arrays;
import java.util.HashSet;
import java.util.Set;
public class ProblemA {
public static void main(String[] args) throws IOException {
BufferedReader s = new BufferedReader(new InputStreamReader(System.in));
String[] data = s.readLine().split(" ");
int n = Integer.valueOf(data[0]);
int a = Integer.valueOf(data[1]);
int b = Integer.valueOf(data[2]);
long[] h = new long[n];
String[] line = s.readLine().split(" ");
for (int i = 0 ; i < n ; i++) {
h[i] = Integer.valueOf(line[i]);
}
Arrays.sort(h);
System.out.println(h[b] - h[b-1]);
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.Arrays;
import java.util.HashSet;
import java.util.Set;
public class ProblemA {
public static void main(String[] args) throws IOException {
BufferedReader s = new BufferedReader(new InputStreamReader(System.in));
String[] data = s.readLine().split(" ");
int n = Integer.valueOf(data[0]);
int a = Integer.valueOf(data[1]);
int b = Integer.valueOf(data[2]);
long[] h = new long[n];
String[] line = s.readLine().split(" ");
for (int i = 0 ; i < n ; i++) {
h[i] = Integer.valueOf(line[i]);
}
Arrays.sort(h);
System.out.println(h[b] - h[b-1]);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.Arrays;
import java.util.HashSet;
import java.util.Set;
public class ProblemA {
public static void main(String[] args) throws IOException {
BufferedReader s = new BufferedReader(new InputStreamReader(System.in));
String[] data = s.readLine().split(" ");
int n = Integer.valueOf(data[0]);
int a = Integer.valueOf(data[1]);
int b = Integer.valueOf(data[2]);
long[] h = new long[n];
String[] line = s.readLine().split(" ");
for (int i = 0 ; i < n ; i++) {
h[i] = Integer.valueOf(line[i]);
}
Arrays.sort(h);
System.out.println(h[b] - h[b-1]);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 523 | 1,662 |
4,238 |
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.io.FilterInputStream;
import java.io.BufferedInputStream;
import java.util.Random;
import java.util.Comparator;
import java.io.InputStream;
/**
* @author khokharnikunj8
*/
public class Main {
public static void main(String[] args) {
new Thread(null, new Runnable() {
public void run() {
new Main().solve();
}
}, "1", 1 << 26).start();
}
void solve() {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
ScanReader in = new ScanReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
E2RotateColumnsHardVersion solver = new E2RotateColumnsHardVersion();
int testCount = in.scanInt();
for (int i = 1; i <= testCount; i++)
solver.solve(i, in, out);
out.close();
}
static class E2RotateColumnsHardVersion {
int[][] dp;
int[] cur;
public void solve(int testNumber, ScanReader in, PrintWriter out) {
int n = in.scanInt();
int m = in.scanInt();
int[][] ar = new int[n][m];
int[][] max = new int[m][2];
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) ar[i][j] = in.scanInt();
}
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
max[i][0] = Math.max(max[i][0], ar[j][i]);
}
max[i][1] = i;
}
CodeHash.shuffle(max);
Arrays.sort(max, new Comparator<int[]>() {
public int compare(int[] o1, int[] o2) {
return -o1[0] + o2[0];
}
});
dp = new int[2][1 << n];
cur = new int[1 << n];
for (int i = 0; i < Math.min(m, n); i++) {
Arrays.fill(cur, 0);
Arrays.fill(dp[i & 1], 0);
for (int j = 0; j < 1 << n; j++) {
for (int k = 0; k < n; k++) {
int sum = 0;
for (int l = 0; l < n; l++) {
if ((j & (1 << l)) != 0) {
sum += (ar[(k + l) % n][max[i][1]]);
}
}
cur[j] = Math.max(cur[j], sum);
}
}
for (int j = 0; j < (1 << n); j++) {
for (int k = j; ; k = (k - 1) & j) {
dp[i & 1][j] = Math.max(dp[i & 1][j], dp[(i - 1) & 1][k] + cur[j ^ k]);
if (k == 0) break;
}
}
}
out.println(dp[Math.min(n, m) & 1 ^ 1][(1 << n) - 1]);
}
}
static class CodeHash {
public static void shuffle(int[][] ar) {
Random rd = new Random(new Random().nextInt());
for (int i = 0; i < ar.length; i++) {
int index = rd.nextInt(ar.length);
int[] temp = ar[i];
ar[i] = ar[index];
ar[index] = temp;
}
}
}
static class ScanReader {
private byte[] buf = new byte[4 * 1024];
private int index;
private BufferedInputStream in;
private int total;
public ScanReader(InputStream inputStream) {
in = new BufferedInputStream(inputStream);
}
private int scan() {
if (index >= total) {
index = 0;
try {
total = in.read(buf);
} catch (Exception e) {
e.printStackTrace();
}
if (total <= 0) return -1;
}
return buf[index++];
}
public int scanInt() {
int integer = 0;
int n = scan();
while (isWhiteSpace(n)) n = scan();
int neg = 1;
if (n == '-') {
neg = -1;
n = scan();
}
while (!isWhiteSpace(n)) {
if (n >= '0' && n <= '9') {
integer *= 10;
integer += n - '0';
n = scan();
}
}
return neg * integer;
}
private boolean isWhiteSpace(int n) {
if (n == ' ' || n == '\n' || n == '\r' || n == '\t' || n == -1) return true;
else return false;
}
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.io.FilterInputStream;
import java.io.BufferedInputStream;
import java.util.Random;
import java.util.Comparator;
import java.io.InputStream;
/**
* @author khokharnikunj8
*/
public class Main {
public static void main(String[] args) {
new Thread(null, new Runnable() {
public void run() {
new Main().solve();
}
}, "1", 1 << 26).start();
}
void solve() {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
ScanReader in = new ScanReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
E2RotateColumnsHardVersion solver = new E2RotateColumnsHardVersion();
int testCount = in.scanInt();
for (int i = 1; i <= testCount; i++)
solver.solve(i, in, out);
out.close();
}
static class E2RotateColumnsHardVersion {
int[][] dp;
int[] cur;
public void solve(int testNumber, ScanReader in, PrintWriter out) {
int n = in.scanInt();
int m = in.scanInt();
int[][] ar = new int[n][m];
int[][] max = new int[m][2];
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) ar[i][j] = in.scanInt();
}
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
max[i][0] = Math.max(max[i][0], ar[j][i]);
}
max[i][1] = i;
}
CodeHash.shuffle(max);
Arrays.sort(max, new Comparator<int[]>() {
public int compare(int[] o1, int[] o2) {
return -o1[0] + o2[0];
}
});
dp = new int[2][1 << n];
cur = new int[1 << n];
for (int i = 0; i < Math.min(m, n); i++) {
Arrays.fill(cur, 0);
Arrays.fill(dp[i & 1], 0);
for (int j = 0; j < 1 << n; j++) {
for (int k = 0; k < n; k++) {
int sum = 0;
for (int l = 0; l < n; l++) {
if ((j & (1 << l)) != 0) {
sum += (ar[(k + l) % n][max[i][1]]);
}
}
cur[j] = Math.max(cur[j], sum);
}
}
for (int j = 0; j < (1 << n); j++) {
for (int k = j; ; k = (k - 1) & j) {
dp[i & 1][j] = Math.max(dp[i & 1][j], dp[(i - 1) & 1][k] + cur[j ^ k]);
if (k == 0) break;
}
}
}
out.println(dp[Math.min(n, m) & 1 ^ 1][(1 << n) - 1]);
}
}
static class CodeHash {
public static void shuffle(int[][] ar) {
Random rd = new Random(new Random().nextInt());
for (int i = 0; i < ar.length; i++) {
int index = rd.nextInt(ar.length);
int[] temp = ar[i];
ar[i] = ar[index];
ar[index] = temp;
}
}
}
static class ScanReader {
private byte[] buf = new byte[4 * 1024];
private int index;
private BufferedInputStream in;
private int total;
public ScanReader(InputStream inputStream) {
in = new BufferedInputStream(inputStream);
}
private int scan() {
if (index >= total) {
index = 0;
try {
total = in.read(buf);
} catch (Exception e) {
e.printStackTrace();
}
if (total <= 0) return -1;
}
return buf[index++];
}
public int scanInt() {
int integer = 0;
int n = scan();
while (isWhiteSpace(n)) n = scan();
int neg = 1;
if (n == '-') {
neg = -1;
n = scan();
}
while (!isWhiteSpace(n)) {
if (n >= '0' && n <= '9') {
integer *= 10;
integer += n - '0';
n = scan();
}
}
return neg * integer;
}
private boolean isWhiteSpace(int n) {
if (n == ' ' || n == '\n' || n == '\r' || n == '\t' || n == -1) return true;
else return false;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.io.FilterInputStream;
import java.io.BufferedInputStream;
import java.util.Random;
import java.util.Comparator;
import java.io.InputStream;
/**
* @author khokharnikunj8
*/
public class Main {
public static void main(String[] args) {
new Thread(null, new Runnable() {
public void run() {
new Main().solve();
}
}, "1", 1 << 26).start();
}
void solve() {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
ScanReader in = new ScanReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
E2RotateColumnsHardVersion solver = new E2RotateColumnsHardVersion();
int testCount = in.scanInt();
for (int i = 1; i <= testCount; i++)
solver.solve(i, in, out);
out.close();
}
static class E2RotateColumnsHardVersion {
int[][] dp;
int[] cur;
public void solve(int testNumber, ScanReader in, PrintWriter out) {
int n = in.scanInt();
int m = in.scanInt();
int[][] ar = new int[n][m];
int[][] max = new int[m][2];
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) ar[i][j] = in.scanInt();
}
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
max[i][0] = Math.max(max[i][0], ar[j][i]);
}
max[i][1] = i;
}
CodeHash.shuffle(max);
Arrays.sort(max, new Comparator<int[]>() {
public int compare(int[] o1, int[] o2) {
return -o1[0] + o2[0];
}
});
dp = new int[2][1 << n];
cur = new int[1 << n];
for (int i = 0; i < Math.min(m, n); i++) {
Arrays.fill(cur, 0);
Arrays.fill(dp[i & 1], 0);
for (int j = 0; j < 1 << n; j++) {
for (int k = 0; k < n; k++) {
int sum = 0;
for (int l = 0; l < n; l++) {
if ((j & (1 << l)) != 0) {
sum += (ar[(k + l) % n][max[i][1]]);
}
}
cur[j] = Math.max(cur[j], sum);
}
}
for (int j = 0; j < (1 << n); j++) {
for (int k = j; ; k = (k - 1) & j) {
dp[i & 1][j] = Math.max(dp[i & 1][j], dp[(i - 1) & 1][k] + cur[j ^ k]);
if (k == 0) break;
}
}
}
out.println(dp[Math.min(n, m) & 1 ^ 1][(1 << n) - 1]);
}
}
static class CodeHash {
public static void shuffle(int[][] ar) {
Random rd = new Random(new Random().nextInt());
for (int i = 0; i < ar.length; i++) {
int index = rd.nextInt(ar.length);
int[] temp = ar[i];
ar[i] = ar[index];
ar[index] = temp;
}
}
}
static class ScanReader {
private byte[] buf = new byte[4 * 1024];
private int index;
private BufferedInputStream in;
private int total;
public ScanReader(InputStream inputStream) {
in = new BufferedInputStream(inputStream);
}
private int scan() {
if (index >= total) {
index = 0;
try {
total = in.read(buf);
} catch (Exception e) {
e.printStackTrace();
}
if (total <= 0) return -1;
}
return buf[index++];
}
public int scanInt() {
int integer = 0;
int n = scan();
while (isWhiteSpace(n)) n = scan();
int neg = 1;
if (n == '-') {
neg = -1;
n = scan();
}
while (!isWhiteSpace(n)) {
if (n >= '0' && n <= '9') {
integer *= 10;
integer += n - '0';
n = scan();
}
}
return neg * integer;
}
private boolean isWhiteSpace(int n) {
if (n == ' ' || n == '\n' || n == '\r' || n == '\t' || n == -1) return true;
else return false;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(1): The time complexity is constant to the input size n.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,462 | 4,227 |
2,836 |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.io.StreamTokenizer;
import java.math.BigInteger;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.HashMap;
import java.util.LinkedList;
import java.util.Scanner;
import java.util.TreeSet;
/**
*
* @author таня
*/
public class KF {
/**
* @param args the command line arguments
*/
public static void main(String[] args) throws IOException {
B jk = new B();
}
}
class B {
PrintWriter out = new PrintWriter(System.out);
Scanner in = new Scanner(System.in);
long l = in.nextLong();
long r=in.nextLong();
B(){
if(Math.abs(r-l)>=2){
if(l%2==0){
out.print(l+" "+(l+1)+" "+(l+2));
}
else{
if(Math.abs(r-l)==2){
out.print("-1");
}else{
out.print((l+1)+" "+(l+2)+" "+(l+3));
}
}
}else{
out.print("-1");
}
out.flush();
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.io.StreamTokenizer;
import java.math.BigInteger;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.HashMap;
import java.util.LinkedList;
import java.util.Scanner;
import java.util.TreeSet;
/**
*
* @author таня
*/
public class KF {
/**
* @param args the command line arguments
*/
public static void main(String[] args) throws IOException {
B jk = new B();
}
}
class B {
PrintWriter out = new PrintWriter(System.out);
Scanner in = new Scanner(System.in);
long l = in.nextLong();
long r=in.nextLong();
B(){
if(Math.abs(r-l)>=2){
if(l%2==0){
out.print(l+" "+(l+1)+" "+(l+2));
}
else{
if(Math.abs(r-l)==2){
out.print("-1");
}else{
out.print((l+1)+" "+(l+2)+" "+(l+3));
}
}
}else{
out.print("-1");
}
out.flush();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.io.StreamTokenizer;
import java.math.BigInteger;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.HashMap;
import java.util.LinkedList;
import java.util.Scanner;
import java.util.TreeSet;
/**
*
* @author таня
*/
public class KF {
/**
* @param args the command line arguments
*/
public static void main(String[] args) throws IOException {
B jk = new B();
}
}
class B {
PrintWriter out = new PrintWriter(System.out);
Scanner in = new Scanner(System.in);
long l = in.nextLong();
long r=in.nextLong();
B(){
if(Math.abs(r-l)>=2){
if(l%2==0){
out.print(l+" "+(l+1)+" "+(l+2));
}
else{
if(Math.abs(r-l)==2){
out.print("-1");
}else{
out.print((l+1)+" "+(l+2)+" "+(l+3));
}
}
}else{
out.print("-1");
}
out.flush();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(1): The time complexity is constant to the input size n.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 578 | 2,830 |
3,968 |
import java.util.*;
import java.lang.*;
import java.math.*;
import java.io.*;
import static java.lang.Math.*;
import static java.util.Arrays.*;
import static java.util.Collections.*;
// Petya and Spiders
// 2012/08/16
public class P111C{
Scanner sc=new Scanner(System.in);
int INF=1<<28;
double EPS=1e-9;
int h, w;
void run(){
h=sc.nextInt();
w=sc.nextInt();
solve();
}
void solve(){
n=w*h;
g=new long[n];
int[] dx={0, 0, -1, 1};
int[] dy={-1, 1, 0, 0};
for(int y=0; y<h; y++){
for(int x=0; x<w; x++){
for(int k=0; k<4; k++){
int x2=x+dx[k];
int y2=y+dy[k];
if(x2>=0&&x2<w&&y2>=0&&y2<h){
g[y*w+x]|=1L<<(y2*w+x2);
}
}
}
}
mds=(1L<<n)-1;
mds(0, 0, 0);
println((n-Long.bitCount(mds))+"");
}
int n;
long[] g;
long mds;
void mds(long choosed, long removed, long covered){
if(Long.bitCount(choosed)>=Long.bitCount(mds))
return;
if(covered==((1L<<n)-1)){
mds=choosed;
return;
}
long s=covered;
for(long remained=~removed&((1L<<n)-1); remained!=0; remained&=remained-1){
int i=Long.numberOfTrailingZeros(remained);
s|=(1L<<i)|g[i];
}
if(s!=((1L<<n)-1))
return;
int k=-1;
for(long remained=~removed&((1L<<n)-1); remained!=0; remained&=remained-1){
int i=Long.numberOfTrailingZeros(remained);
if((covered>>>i&1)==1){
if(Long.bitCount(g[i]&~covered)==0){
mds(choosed, removed|(1L<<i), covered);
return;
}else if(Long.bitCount(g[i]&~covered)==1
&&(g[i]&~covered&~removed)!=0){
mds(choosed, removed|(1L<<i), covered);
return;
}
}else{
if(Long.bitCount(g[i]&~removed)==0){
mds(choosed|(1L<<i), removed|(1L<<i), covered|(1L<<i)|g[i]);
return;
}else if(Long.bitCount(g[i]&~removed)==1
&&((g[i]&~removed)|(g[i]&~covered))==(g[i]&~removed)){
int j=Long.numberOfTrailingZeros(g[i]&~removed);
mds(choosed|(1L<<j), removed|(1L<<i)|(1L<<j), covered
|(1L<<j)|g[j]);
return;
}
}
if(k==-1||Long.bitCount(g[i]&~covered)>Long.bitCount(g[k]&~covered))
k=i;
}
if(k==-1)
return;
mds(choosed|(1L<<k), removed|(1L<<k), covered|(1L<<k)|g[k]);
mds(choosed, removed|(1L<<k), covered);
}
void println(String s){
System.out.println(s);
}
void debug(Object... os){
System.err.println(Arrays.deepToString(os));
}
public static void main(String[] args){
Locale.setDefault(Locale.US);
new P111C().run();
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
import java.lang.*;
import java.math.*;
import java.io.*;
import static java.lang.Math.*;
import static java.util.Arrays.*;
import static java.util.Collections.*;
// Petya and Spiders
// 2012/08/16
public class P111C{
Scanner sc=new Scanner(System.in);
int INF=1<<28;
double EPS=1e-9;
int h, w;
void run(){
h=sc.nextInt();
w=sc.nextInt();
solve();
}
void solve(){
n=w*h;
g=new long[n];
int[] dx={0, 0, -1, 1};
int[] dy={-1, 1, 0, 0};
for(int y=0; y<h; y++){
for(int x=0; x<w; x++){
for(int k=0; k<4; k++){
int x2=x+dx[k];
int y2=y+dy[k];
if(x2>=0&&x2<w&&y2>=0&&y2<h){
g[y*w+x]|=1L<<(y2*w+x2);
}
}
}
}
mds=(1L<<n)-1;
mds(0, 0, 0);
println((n-Long.bitCount(mds))+"");
}
int n;
long[] g;
long mds;
void mds(long choosed, long removed, long covered){
if(Long.bitCount(choosed)>=Long.bitCount(mds))
return;
if(covered==((1L<<n)-1)){
mds=choosed;
return;
}
long s=covered;
for(long remained=~removed&((1L<<n)-1); remained!=0; remained&=remained-1){
int i=Long.numberOfTrailingZeros(remained);
s|=(1L<<i)|g[i];
}
if(s!=((1L<<n)-1))
return;
int k=-1;
for(long remained=~removed&((1L<<n)-1); remained!=0; remained&=remained-1){
int i=Long.numberOfTrailingZeros(remained);
if((covered>>>i&1)==1){
if(Long.bitCount(g[i]&~covered)==0){
mds(choosed, removed|(1L<<i), covered);
return;
}else if(Long.bitCount(g[i]&~covered)==1
&&(g[i]&~covered&~removed)!=0){
mds(choosed, removed|(1L<<i), covered);
return;
}
}else{
if(Long.bitCount(g[i]&~removed)==0){
mds(choosed|(1L<<i), removed|(1L<<i), covered|(1L<<i)|g[i]);
return;
}else if(Long.bitCount(g[i]&~removed)==1
&&((g[i]&~removed)|(g[i]&~covered))==(g[i]&~removed)){
int j=Long.numberOfTrailingZeros(g[i]&~removed);
mds(choosed|(1L<<j), removed|(1L<<i)|(1L<<j), covered
|(1L<<j)|g[j]);
return;
}
}
if(k==-1||Long.bitCount(g[i]&~covered)>Long.bitCount(g[k]&~covered))
k=i;
}
if(k==-1)
return;
mds(choosed|(1L<<k), removed|(1L<<k), covered|(1L<<k)|g[k]);
mds(choosed, removed|(1L<<k), covered);
}
void println(String s){
System.out.println(s);
}
void debug(Object... os){
System.err.println(Arrays.deepToString(os));
}
public static void main(String[] args){
Locale.setDefault(Locale.US);
new P111C().run();
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(1): The time complexity is constant to the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
import java.lang.*;
import java.math.*;
import java.io.*;
import static java.lang.Math.*;
import static java.util.Arrays.*;
import static java.util.Collections.*;
// Petya and Spiders
// 2012/08/16
public class P111C{
Scanner sc=new Scanner(System.in);
int INF=1<<28;
double EPS=1e-9;
int h, w;
void run(){
h=sc.nextInt();
w=sc.nextInt();
solve();
}
void solve(){
n=w*h;
g=new long[n];
int[] dx={0, 0, -1, 1};
int[] dy={-1, 1, 0, 0};
for(int y=0; y<h; y++){
for(int x=0; x<w; x++){
for(int k=0; k<4; k++){
int x2=x+dx[k];
int y2=y+dy[k];
if(x2>=0&&x2<w&&y2>=0&&y2<h){
g[y*w+x]|=1L<<(y2*w+x2);
}
}
}
}
mds=(1L<<n)-1;
mds(0, 0, 0);
println((n-Long.bitCount(mds))+"");
}
int n;
long[] g;
long mds;
void mds(long choosed, long removed, long covered){
if(Long.bitCount(choosed)>=Long.bitCount(mds))
return;
if(covered==((1L<<n)-1)){
mds=choosed;
return;
}
long s=covered;
for(long remained=~removed&((1L<<n)-1); remained!=0; remained&=remained-1){
int i=Long.numberOfTrailingZeros(remained);
s|=(1L<<i)|g[i];
}
if(s!=((1L<<n)-1))
return;
int k=-1;
for(long remained=~removed&((1L<<n)-1); remained!=0; remained&=remained-1){
int i=Long.numberOfTrailingZeros(remained);
if((covered>>>i&1)==1){
if(Long.bitCount(g[i]&~covered)==0){
mds(choosed, removed|(1L<<i), covered);
return;
}else if(Long.bitCount(g[i]&~covered)==1
&&(g[i]&~covered&~removed)!=0){
mds(choosed, removed|(1L<<i), covered);
return;
}
}else{
if(Long.bitCount(g[i]&~removed)==0){
mds(choosed|(1L<<i), removed|(1L<<i), covered|(1L<<i)|g[i]);
return;
}else if(Long.bitCount(g[i]&~removed)==1
&&((g[i]&~removed)|(g[i]&~covered))==(g[i]&~removed)){
int j=Long.numberOfTrailingZeros(g[i]&~removed);
mds(choosed|(1L<<j), removed|(1L<<i)|(1L<<j), covered
|(1L<<j)|g[j]);
return;
}
}
if(k==-1||Long.bitCount(g[i]&~covered)>Long.bitCount(g[k]&~covered))
k=i;
}
if(k==-1)
return;
mds(choosed|(1L<<k), removed|(1L<<k), covered|(1L<<k)|g[k]);
mds(choosed, removed|(1L<<k), covered);
}
void println(String s){
System.out.println(s);
}
void debug(Object... os){
System.err.println(Arrays.deepToString(os));
}
public static void main(String[] args){
Locale.setDefault(Locale.US);
new P111C().run();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,207 | 3,957 |
1,440 |
import java.io.*;
import java.util.*;
public class Example {
BufferedReader in;
PrintWriter out;
StringTokenizer st;
String next() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(in.readLine());
} catch (Exception e) {
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
public void run() throws Exception {
//in = new BufferedReader(new FileReader("input.txt"));
//out = new PrintWriter(new FileWriter("output.txt"));
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
solve();
out.flush();
out.close();
in.close();
}
long n, x, y, c;
boolean check(long z) {
long res = 1 + 2 * z * (z + 1);
long bx1 = z - x + 1;
long by1 = z - y + 1;
long bxn = z - n + x;
long byn = z - n + y;
if (bx1 > 0) {
res -= bx1 * bx1;
}
if (bxn > 0) {
res -= bxn * bxn;
}
if (by1 > 0) {
res -= by1 * by1;
}
if (byn > 0) {
res -= byn * byn;
}
if (z > x + y - 1) {
long m = z - x - y + 1;
res += m * (m + 1) / 2;
}
if (z > x + n - y) {
long m = z - x - n + y;
res += m * (m + 1) / 2;
}
if (z > n - x + y) {
long m = z - n - y + x;
res += m * (m + 1) / 2;
}
if (z > n - x + n - y + 1) {
long m = z - 2 * n + x + y - 1;
res += m * (m + 1) / 2;
}
return res >= c;
}
public void solve() throws Exception {
n = nextLong();
x = nextLong();
y = nextLong();
c = nextLong();
long l = 0;
long r = 2 * n;
while (r > l) {
long mid = (r + l) / 2;
if (check(mid)) {
r = mid;
} else {
l = mid + 1;
}
}
out.println(r);
}
public static void main(String[] args) throws Exception {
new Example().run();
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Example {
BufferedReader in;
PrintWriter out;
StringTokenizer st;
String next() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(in.readLine());
} catch (Exception e) {
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
public void run() throws Exception {
//in = new BufferedReader(new FileReader("input.txt"));
//out = new PrintWriter(new FileWriter("output.txt"));
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
solve();
out.flush();
out.close();
in.close();
}
long n, x, y, c;
boolean check(long z) {
long res = 1 + 2 * z * (z + 1);
long bx1 = z - x + 1;
long by1 = z - y + 1;
long bxn = z - n + x;
long byn = z - n + y;
if (bx1 > 0) {
res -= bx1 * bx1;
}
if (bxn > 0) {
res -= bxn * bxn;
}
if (by1 > 0) {
res -= by1 * by1;
}
if (byn > 0) {
res -= byn * byn;
}
if (z > x + y - 1) {
long m = z - x - y + 1;
res += m * (m + 1) / 2;
}
if (z > x + n - y) {
long m = z - x - n + y;
res += m * (m + 1) / 2;
}
if (z > n - x + y) {
long m = z - n - y + x;
res += m * (m + 1) / 2;
}
if (z > n - x + n - y + 1) {
long m = z - 2 * n + x + y - 1;
res += m * (m + 1) / 2;
}
return res >= c;
}
public void solve() throws Exception {
n = nextLong();
x = nextLong();
y = nextLong();
c = nextLong();
long l = 0;
long r = 2 * n;
while (r > l) {
long mid = (r + l) / 2;
if (check(mid)) {
r = mid;
} else {
l = mid + 1;
}
}
out.println(r);
}
public static void main(String[] args) throws Exception {
new Example().run();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The execution time is unaffected by the size of the input n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Example {
BufferedReader in;
PrintWriter out;
StringTokenizer st;
String next() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(in.readLine());
} catch (Exception e) {
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
public void run() throws Exception {
//in = new BufferedReader(new FileReader("input.txt"));
//out = new PrintWriter(new FileWriter("output.txt"));
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
solve();
out.flush();
out.close();
in.close();
}
long n, x, y, c;
boolean check(long z) {
long res = 1 + 2 * z * (z + 1);
long bx1 = z - x + 1;
long by1 = z - y + 1;
long bxn = z - n + x;
long byn = z - n + y;
if (bx1 > 0) {
res -= bx1 * bx1;
}
if (bxn > 0) {
res -= bxn * bxn;
}
if (by1 > 0) {
res -= by1 * by1;
}
if (byn > 0) {
res -= byn * byn;
}
if (z > x + y - 1) {
long m = z - x - y + 1;
res += m * (m + 1) / 2;
}
if (z > x + n - y) {
long m = z - x - n + y;
res += m * (m + 1) / 2;
}
if (z > n - x + y) {
long m = z - n - y + x;
res += m * (m + 1) / 2;
}
if (z > n - x + n - y + 1) {
long m = z - 2 * n + x + y - 1;
res += m * (m + 1) / 2;
}
return res >= c;
}
public void solve() throws Exception {
n = nextLong();
x = nextLong();
y = nextLong();
c = nextLong();
long l = 0;
long r = 2 * n;
while (r > l) {
long mid = (r + l) / 2;
if (check(mid)) {
r = mid;
} else {
l = mid + 1;
}
}
out.println(r);
}
public static void main(String[] args) throws Exception {
new Example().run();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The running time does not change regardless of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,007 | 1,438 |
1,822 |
import java.io.*;
import java.util.*;
public class ProblemA {
InputReader in; PrintWriter out;
void solve() {
int n = in.nextInt();
int m = in.nextInt();
int k = in.nextInt();
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = in.nextInt();
Arrays.sort(a);
int d = k;
int cur = n - 1;
int ans = 0;
while (d < m && cur >= 0) {
d += a[cur] - 1;
cur--;
ans++;
}
if (d >= m)
out.println(ans);
else
out.println("-1");
}
ProblemA(){
boolean oj = System.getProperty("ONLINE_JUDGE") != null;
try {
if (oj) {
in = new InputReader(System.in);
out = new PrintWriter(System.out);
}
else {
Writer w = new FileWriter("output.txt");
in = new InputReader(new FileReader("input.txt"));
out = new PrintWriter(w);
}
} catch(Exception e) {
throw new RuntimeException(e);
}
solve();
out.close();
}
public static void main(String[] args){
new ProblemA();
}
}
class InputReader {
private BufferedReader reader;
private StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream));
tokenizer = null;
}
public InputReader(FileReader fr) {
reader = new BufferedReader(fr);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class ProblemA {
InputReader in; PrintWriter out;
void solve() {
int n = in.nextInt();
int m = in.nextInt();
int k = in.nextInt();
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = in.nextInt();
Arrays.sort(a);
int d = k;
int cur = n - 1;
int ans = 0;
while (d < m && cur >= 0) {
d += a[cur] - 1;
cur--;
ans++;
}
if (d >= m)
out.println(ans);
else
out.println("-1");
}
ProblemA(){
boolean oj = System.getProperty("ONLINE_JUDGE") != null;
try {
if (oj) {
in = new InputReader(System.in);
out = new PrintWriter(System.out);
}
else {
Writer w = new FileWriter("output.txt");
in = new InputReader(new FileReader("input.txt"));
out = new PrintWriter(w);
}
} catch(Exception e) {
throw new RuntimeException(e);
}
solve();
out.close();
}
public static void main(String[] args){
new ProblemA();
}
}
class InputReader {
private BufferedReader reader;
private StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream));
tokenizer = null;
}
public InputReader(FileReader fr) {
reader = new BufferedReader(fr);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^3): The running time increases with the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class ProblemA {
InputReader in; PrintWriter out;
void solve() {
int n = in.nextInt();
int m = in.nextInt();
int k = in.nextInt();
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = in.nextInt();
Arrays.sort(a);
int d = k;
int cur = n - 1;
int ans = 0;
while (d < m && cur >= 0) {
d += a[cur] - 1;
cur--;
ans++;
}
if (d >= m)
out.println(ans);
else
out.println("-1");
}
ProblemA(){
boolean oj = System.getProperty("ONLINE_JUDGE") != null;
try {
if (oj) {
in = new InputReader(System.in);
out = new PrintWriter(System.out);
}
else {
Writer w = new FileWriter("output.txt");
in = new InputReader(new FileReader("input.txt"));
out = new PrintWriter(w);
}
} catch(Exception e) {
throw new RuntimeException(e);
}
solve();
out.close();
}
public static void main(String[] args){
new ProblemA();
}
}
class InputReader {
private BufferedReader reader;
private StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream));
tokenizer = null;
}
public InputReader(FileReader fr) {
reader = new BufferedReader(fr);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 779 | 1,818 |
2,175 |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.Reader;
import java.util.*;
public class C {
public static void main(String[] args) {
FastScanner sc = new FastScanner();
int n = sc.nextInt();
long r = sc.nextInt();
double d = 2 * r;
long[] xs = sc.readLongArray(n);
P[] points = new P[n];
StringBuilder sb = new StringBuilder();
for (int i = 0; i < n; i++) {
if (i > 0) sb.append(' ');
double y = r;
for (int j = 0; j < i; j++) {
long diff = Math.abs(xs[i] - points[j].x);
if (diff <= 2 * r) {
double dy = Math.sqrt(d * d - diff * diff);
double testY = points[j].y + dy;
y = Math.max(y, testY);
}
}
sb.append(y);
points[i] = new P(xs[i], y);
}
System.out.println(sb);
}
static class P {
final long x;
final double y;
public P(long x, double y) {
this.x = x;
this.y = y;
}
}
static void shuffle(int[] arr) {
Random rng = new Random();
int length = arr.length;
for (int idx = 0; idx < arr.length; idx++) {
int toSwap = idx + rng.nextInt(length - idx);
int tmp = arr[idx];
arr[idx] = arr[toSwap];
arr[toSwap] = tmp;
}
}
public static class FastScanner {
BufferedReader br;
StringTokenizer st;
public FastScanner(Reader in) {
br = new BufferedReader(in);
}
public FastScanner() {
this(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String readNextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
int[] readIntArray(int n) {
int[] a = new int[n];
for (int idx = 0; idx < n; idx++) {
a[idx] = nextInt();
}
return a;
}
long[] readLongArray(int n) {
long[] a = new long[n];
for (int idx = 0; idx < n; idx++) {
a[idx] = nextLong();
}
return a;
}
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.Reader;
import java.util.*;
public class C {
public static void main(String[] args) {
FastScanner sc = new FastScanner();
int n = sc.nextInt();
long r = sc.nextInt();
double d = 2 * r;
long[] xs = sc.readLongArray(n);
P[] points = new P[n];
StringBuilder sb = new StringBuilder();
for (int i = 0; i < n; i++) {
if (i > 0) sb.append(' ');
double y = r;
for (int j = 0; j < i; j++) {
long diff = Math.abs(xs[i] - points[j].x);
if (diff <= 2 * r) {
double dy = Math.sqrt(d * d - diff * diff);
double testY = points[j].y + dy;
y = Math.max(y, testY);
}
}
sb.append(y);
points[i] = new P(xs[i], y);
}
System.out.println(sb);
}
static class P {
final long x;
final double y;
public P(long x, double y) {
this.x = x;
this.y = y;
}
}
static void shuffle(int[] arr) {
Random rng = new Random();
int length = arr.length;
for (int idx = 0; idx < arr.length; idx++) {
int toSwap = idx + rng.nextInt(length - idx);
int tmp = arr[idx];
arr[idx] = arr[toSwap];
arr[toSwap] = tmp;
}
}
public static class FastScanner {
BufferedReader br;
StringTokenizer st;
public FastScanner(Reader in) {
br = new BufferedReader(in);
}
public FastScanner() {
this(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String readNextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
int[] readIntArray(int n) {
int[] a = new int[n];
for (int idx = 0; idx < n; idx++) {
a[idx] = nextInt();
}
return a;
}
long[] readLongArray(int n) {
long[] a = new long[n];
for (int idx = 0; idx < n; idx++) {
a[idx] = nextLong();
}
return a;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.Reader;
import java.util.*;
public class C {
public static void main(String[] args) {
FastScanner sc = new FastScanner();
int n = sc.nextInt();
long r = sc.nextInt();
double d = 2 * r;
long[] xs = sc.readLongArray(n);
P[] points = new P[n];
StringBuilder sb = new StringBuilder();
for (int i = 0; i < n; i++) {
if (i > 0) sb.append(' ');
double y = r;
for (int j = 0; j < i; j++) {
long diff = Math.abs(xs[i] - points[j].x);
if (diff <= 2 * r) {
double dy = Math.sqrt(d * d - diff * diff);
double testY = points[j].y + dy;
y = Math.max(y, testY);
}
}
sb.append(y);
points[i] = new P(xs[i], y);
}
System.out.println(sb);
}
static class P {
final long x;
final double y;
public P(long x, double y) {
this.x = x;
this.y = y;
}
}
static void shuffle(int[] arr) {
Random rng = new Random();
int length = arr.length;
for (int idx = 0; idx < arr.length; idx++) {
int toSwap = idx + rng.nextInt(length - idx);
int tmp = arr[idx];
arr[idx] = arr[toSwap];
arr[toSwap] = tmp;
}
}
public static class FastScanner {
BufferedReader br;
StringTokenizer st;
public FastScanner(Reader in) {
br = new BufferedReader(in);
}
public FastScanner() {
this(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String readNextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
int[] readIntArray(int n) {
int[] a = new int[n];
for (int idx = 0; idx < n; idx++) {
a[idx] = nextInt();
}
return a;
}
long[] readLongArray(int n) {
long[] a = new long[n];
for (int idx = 0; idx < n; idx++) {
a[idx] = nextLong();
}
return a;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(1): The time complexity is constant to the input size n.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 978 | 2,171 |
314 |
import java.io.*;
import java.util.*;
public class Main{
public static void main(String[] args){
try {
new Main().solve();
} catch (Exception e) {
e.printStackTrace();
}
}
ArrayList<Edge>[]edge;
int n,m,cnt=0;
int ord;
int[]order;int[]vis;
Edge[] e;
private void solve() throws Exception{
InputReader in = new InputReader(System.in);
PrintWriter out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
n=in.nextInt();m=in.nextInt();
edge=new ArrayList[n+1];
e=new Edge[m];
vis=new int[n+1];
order=new int[n+1];
for(int i=1;i<=n;i++){
edge[i]=new ArrayList<>();
}
for(int i=1;i<=m;i++){
int s=in.nextInt(),t=in.nextInt(),c=in.nextInt();
edge[s].add(new Edge(s,t,c,i));
}
int l=0,r=1000000000;
while (l<r){
int mid=(l+r)>>>1;
if(judge(mid,false))r=mid;
else l=mid+1;
}
out.print(l+" ");
judge(l,true);
Arrays.sort(e,0,cnt,Comparator.comparingInt(x->x.id));
int ans=0;
int[]a=new int[m];
for(int i=0;i<cnt;i++){
if(order[e[i].s]<order[e[i].t])a[ans++]=e[i].id;
}
out.println(ans);
for(int i=0;i<ans;i++){
out.print(a[i]+" ");
}
out.println();
out.flush();
}
boolean judge(int min,boolean mod){
Arrays.fill(vis,0);
cycle=false;
for(int i=1;i<=n;i++){
if(vis[i]==0){
dfs(i,min,mod);
if(cycle)return false;
}
}
return true;
}
boolean cycle=false;
void dfs(int cur,int min,boolean mod){
if(cycle)return;
vis[cur]=1;
for(Edge e:edge[cur]){
if(e.c<=min){
if(mod)this.e[cnt++]=e;
continue;
}
if(vis[e.t]==1){
cycle=true;return;
}
else if(vis[e.t]==0)dfs(e.t,min,mod);
}
vis[cur]=2;
if(mod)order[cur]=ord++;
}
}
class Edge{
int s,t,c,id;
Edge(int a,int b,int c,int d){
s=a;t=b;this.c=c;id=d;
}
}
class InputReader{
StreamTokenizer tokenizer;
public InputReader(InputStream stream){
tokenizer=new StreamTokenizer(new BufferedReader(new InputStreamReader(stream)));
tokenizer.ordinaryChars(33,126);
tokenizer.wordChars(33,126);
}
public String next() throws IOException {
tokenizer.nextToken();
return tokenizer.sval;
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public boolean hasNext() throws IOException {
int res=tokenizer.nextToken();
tokenizer.pushBack();
return res!=tokenizer.TT_EOF;
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Main{
public static void main(String[] args){
try {
new Main().solve();
} catch (Exception e) {
e.printStackTrace();
}
}
ArrayList<Edge>[]edge;
int n,m,cnt=0;
int ord;
int[]order;int[]vis;
Edge[] e;
private void solve() throws Exception{
InputReader in = new InputReader(System.in);
PrintWriter out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
n=in.nextInt();m=in.nextInt();
edge=new ArrayList[n+1];
e=new Edge[m];
vis=new int[n+1];
order=new int[n+1];
for(int i=1;i<=n;i++){
edge[i]=new ArrayList<>();
}
for(int i=1;i<=m;i++){
int s=in.nextInt(),t=in.nextInt(),c=in.nextInt();
edge[s].add(new Edge(s,t,c,i));
}
int l=0,r=1000000000;
while (l<r){
int mid=(l+r)>>>1;
if(judge(mid,false))r=mid;
else l=mid+1;
}
out.print(l+" ");
judge(l,true);
Arrays.sort(e,0,cnt,Comparator.comparingInt(x->x.id));
int ans=0;
int[]a=new int[m];
for(int i=0;i<cnt;i++){
if(order[e[i].s]<order[e[i].t])a[ans++]=e[i].id;
}
out.println(ans);
for(int i=0;i<ans;i++){
out.print(a[i]+" ");
}
out.println();
out.flush();
}
boolean judge(int min,boolean mod){
Arrays.fill(vis,0);
cycle=false;
for(int i=1;i<=n;i++){
if(vis[i]==0){
dfs(i,min,mod);
if(cycle)return false;
}
}
return true;
}
boolean cycle=false;
void dfs(int cur,int min,boolean mod){
if(cycle)return;
vis[cur]=1;
for(Edge e:edge[cur]){
if(e.c<=min){
if(mod)this.e[cnt++]=e;
continue;
}
if(vis[e.t]==1){
cycle=true;return;
}
else if(vis[e.t]==0)dfs(e.t,min,mod);
}
vis[cur]=2;
if(mod)order[cur]=ord++;
}
}
class Edge{
int s,t,c,id;
Edge(int a,int b,int c,int d){
s=a;t=b;this.c=c;id=d;
}
}
class InputReader{
StreamTokenizer tokenizer;
public InputReader(InputStream stream){
tokenizer=new StreamTokenizer(new BufferedReader(new InputStreamReader(stream)));
tokenizer.ordinaryChars(33,126);
tokenizer.wordChars(33,126);
}
public String next() throws IOException {
tokenizer.nextToken();
return tokenizer.sval;
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public boolean hasNext() throws IOException {
int res=tokenizer.nextToken();
tokenizer.pushBack();
return res!=tokenizer.TT_EOF;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Main{
public static void main(String[] args){
try {
new Main().solve();
} catch (Exception e) {
e.printStackTrace();
}
}
ArrayList<Edge>[]edge;
int n,m,cnt=0;
int ord;
int[]order;int[]vis;
Edge[] e;
private void solve() throws Exception{
InputReader in = new InputReader(System.in);
PrintWriter out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
n=in.nextInt();m=in.nextInt();
edge=new ArrayList[n+1];
e=new Edge[m];
vis=new int[n+1];
order=new int[n+1];
for(int i=1;i<=n;i++){
edge[i]=new ArrayList<>();
}
for(int i=1;i<=m;i++){
int s=in.nextInt(),t=in.nextInt(),c=in.nextInt();
edge[s].add(new Edge(s,t,c,i));
}
int l=0,r=1000000000;
while (l<r){
int mid=(l+r)>>>1;
if(judge(mid,false))r=mid;
else l=mid+1;
}
out.print(l+" ");
judge(l,true);
Arrays.sort(e,0,cnt,Comparator.comparingInt(x->x.id));
int ans=0;
int[]a=new int[m];
for(int i=0;i<cnt;i++){
if(order[e[i].s]<order[e[i].t])a[ans++]=e[i].id;
}
out.println(ans);
for(int i=0;i<ans;i++){
out.print(a[i]+" ");
}
out.println();
out.flush();
}
boolean judge(int min,boolean mod){
Arrays.fill(vis,0);
cycle=false;
for(int i=1;i<=n;i++){
if(vis[i]==0){
dfs(i,min,mod);
if(cycle)return false;
}
}
return true;
}
boolean cycle=false;
void dfs(int cur,int min,boolean mod){
if(cycle)return;
vis[cur]=1;
for(Edge e:edge[cur]){
if(e.c<=min){
if(mod)this.e[cnt++]=e;
continue;
}
if(vis[e.t]==1){
cycle=true;return;
}
else if(vis[e.t]==0)dfs(e.t,min,mod);
}
vis[cur]=2;
if(mod)order[cur]=ord++;
}
}
class Edge{
int s,t,c,id;
Edge(int a,int b,int c,int d){
s=a;t=b;this.c=c;id=d;
}
}
class InputReader{
StreamTokenizer tokenizer;
public InputReader(InputStream stream){
tokenizer=new StreamTokenizer(new BufferedReader(new InputStreamReader(stream)));
tokenizer.ordinaryChars(33,126);
tokenizer.wordChars(33,126);
}
public String next() throws IOException {
tokenizer.nextToken();
return tokenizer.sval;
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public boolean hasNext() throws IOException {
int res=tokenizer.nextToken();
tokenizer.pushBack();
return res!=tokenizer.TT_EOF;
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,043 | 314 |
3,018 |
//package arbuz;
import java.util.Scanner;
public class Arbuz {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
if (n % 4 == 0 || n % 7 == 0 || n % 47 == 0 || n % 74 == 0 || n % 444 == 0 || n % 447 == 0 || n % 474 == 0 || n % 477 == 0) {
System.out.println("YES");
} else {
System.out.println("NO");
}
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
//package arbuz;
import java.util.Scanner;
public class Arbuz {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
if (n % 4 == 0 || n % 7 == 0 || n % 47 == 0 || n % 74 == 0 || n % 444 == 0 || n % 447 == 0 || n % 474 == 0 || n % 477 == 0) {
System.out.println("YES");
} else {
System.out.println("NO");
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(1): The time complexity is constant to the input size n.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
//package arbuz;
import java.util.Scanner;
public class Arbuz {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
if (n % 4 == 0 || n % 7 == 0 || n % 47 == 0 || n % 74 == 0 || n % 444 == 0 || n % 447 == 0 || n % 474 == 0 || n % 477 == 0) {
System.out.println("YES");
} else {
System.out.println("NO");
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 471 | 3,012 |
1,882 |
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.math.BigInteger;
import java.util.HashMap;
import java.util.InputMismatchException;
import java.io.IOException;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
FastScanner in = new FastScanner(inputStream);
PrintWriter out = new PrintWriter(outputStream);
D903 solver = new D903();
solver.solve(1, in, out);
out.close();
}
static class D903 {
int N;
long ripple;
BigInteger tot;
long[] nums;
BigInteger[] cs;
public void solve(int testNumber, FastScanner s, PrintWriter out) {
N = s.nextInt();
nums = s.nextLongArray(N);
tot = new BigInteger("0");
cs = new BigInteger[N + 1];
cs[0] = new BigInteger("0");
ripple = 0;
for (int i = 1; i <= N; i++)
cs[i] = cs[i - 1].add(new BigInteger("" + nums[i - 1]));
for (int i = 1; i <= N; i++) {
long cur = nums[i - 1];
// out.printf("%d: cs %d, minus %d%n", i, (cs[N] - cs[i]), cur * (N - i));
tot = tot.add(cs[N].subtract(cs[i])).subtract(new BigInteger("" + (cur * (N - i))));
}
HashMap<Long, Integer> seen = new HashMap<>();
for (long i : nums) {
Integer lo = seen.get(i - 1);
Integer hi = seen.get(i + 1);
if (lo != null)
tot = tot.subtract(new BigInteger("" + lo));
if (hi != null)
tot = tot.add(new BigInteger("" + hi));
if (!seen.containsKey(i))
seen.put(i, 0);
seen.put(i, seen.get(i) + 1);
}
out.println(tot);
}
}
static class FastScanner {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
public FastScanner(InputStream stream) {
this.stream = stream;
}
int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public String next() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public long[] nextLongArray(int N) {
long[] ret = new long[N];
for (int i = 0; i < N; i++)
ret[i] = this.nextLong();
return ret;
}
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.math.BigInteger;
import java.util.HashMap;
import java.util.InputMismatchException;
import java.io.IOException;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
FastScanner in = new FastScanner(inputStream);
PrintWriter out = new PrintWriter(outputStream);
D903 solver = new D903();
solver.solve(1, in, out);
out.close();
}
static class D903 {
int N;
long ripple;
BigInteger tot;
long[] nums;
BigInteger[] cs;
public void solve(int testNumber, FastScanner s, PrintWriter out) {
N = s.nextInt();
nums = s.nextLongArray(N);
tot = new BigInteger("0");
cs = new BigInteger[N + 1];
cs[0] = new BigInteger("0");
ripple = 0;
for (int i = 1; i <= N; i++)
cs[i] = cs[i - 1].add(new BigInteger("" + nums[i - 1]));
for (int i = 1; i <= N; i++) {
long cur = nums[i - 1];
// out.printf("%d: cs %d, minus %d%n", i, (cs[N] - cs[i]), cur * (N - i));
tot = tot.add(cs[N].subtract(cs[i])).subtract(new BigInteger("" + (cur * (N - i))));
}
HashMap<Long, Integer> seen = new HashMap<>();
for (long i : nums) {
Integer lo = seen.get(i - 1);
Integer hi = seen.get(i + 1);
if (lo != null)
tot = tot.subtract(new BigInteger("" + lo));
if (hi != null)
tot = tot.add(new BigInteger("" + hi));
if (!seen.containsKey(i))
seen.put(i, 0);
seen.put(i, seen.get(i) + 1);
}
out.println(tot);
}
}
static class FastScanner {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
public FastScanner(InputStream stream) {
this.stream = stream;
}
int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public String next() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public long[] nextLongArray(int N) {
long[] ret = new long[N];
for (int i = 0; i < N; i++)
ret[i] = this.nextLong();
return ret;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(1): The time complexity is constant to the input size n.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.math.BigInteger;
import java.util.HashMap;
import java.util.InputMismatchException;
import java.io.IOException;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
FastScanner in = new FastScanner(inputStream);
PrintWriter out = new PrintWriter(outputStream);
D903 solver = new D903();
solver.solve(1, in, out);
out.close();
}
static class D903 {
int N;
long ripple;
BigInteger tot;
long[] nums;
BigInteger[] cs;
public void solve(int testNumber, FastScanner s, PrintWriter out) {
N = s.nextInt();
nums = s.nextLongArray(N);
tot = new BigInteger("0");
cs = new BigInteger[N + 1];
cs[0] = new BigInteger("0");
ripple = 0;
for (int i = 1; i <= N; i++)
cs[i] = cs[i - 1].add(new BigInteger("" + nums[i - 1]));
for (int i = 1; i <= N; i++) {
long cur = nums[i - 1];
// out.printf("%d: cs %d, minus %d%n", i, (cs[N] - cs[i]), cur * (N - i));
tot = tot.add(cs[N].subtract(cs[i])).subtract(new BigInteger("" + (cur * (N - i))));
}
HashMap<Long, Integer> seen = new HashMap<>();
for (long i : nums) {
Integer lo = seen.get(i - 1);
Integer hi = seen.get(i + 1);
if (lo != null)
tot = tot.subtract(new BigInteger("" + lo));
if (hi != null)
tot = tot.add(new BigInteger("" + hi));
if (!seen.containsKey(i))
seen.put(i, 0);
seen.put(i, seen.get(i) + 1);
}
out.println(tot);
}
}
static class FastScanner {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
public FastScanner(InputStream stream) {
this.stream = stream;
}
int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public String next() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public long[] nextLongArray(int N) {
long[] ret = new long[N];
for (int i = 0; i < N; i++)
ret[i] = this.nextLong();
return ret;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,137 | 1,878 |
2,586 |
import java.util.ArrayList;
import java.util.Scanner;
public class PaintTheNumber {
public static void main(String[] args) {
Scanner sc=new Scanner(System.in);
int n=sc.nextInt();
ArrayList<Integer> l=new ArrayList<Integer>();
for(int i=0; i<n; i++) {
l.add(sc.nextInt());
}
boolean c=false;
for(int i=0; i<l.size(); i++) {
if(l.get(i)==-1)
continue;
for(int j=0; j<l.size(); j++) {
if(i==j || l.get(j)==-1)
continue;
else {
if(l.get(j)%l.get(i)==0) {
l.set(j, -1);
}
}
}
}
int nbr=0;
for(int i=0; i<l.size(); i++)
if(l.get(i)!=-1)
nbr++;
System.out.println(nbr);
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.ArrayList;
import java.util.Scanner;
public class PaintTheNumber {
public static void main(String[] args) {
Scanner sc=new Scanner(System.in);
int n=sc.nextInt();
ArrayList<Integer> l=new ArrayList<Integer>();
for(int i=0; i<n; i++) {
l.add(sc.nextInt());
}
boolean c=false;
for(int i=0; i<l.size(); i++) {
if(l.get(i)==-1)
continue;
for(int j=0; j<l.size(); j++) {
if(i==j || l.get(j)==-1)
continue;
else {
if(l.get(j)%l.get(i)==0) {
l.set(j, -1);
}
}
}
}
int nbr=0;
for(int i=0; i<l.size(); i++)
if(l.get(i)!=-1)
nbr++;
System.out.println(nbr);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.ArrayList;
import java.util.Scanner;
public class PaintTheNumber {
public static void main(String[] args) {
Scanner sc=new Scanner(System.in);
int n=sc.nextInt();
ArrayList<Integer> l=new ArrayList<Integer>();
for(int i=0; i<n; i++) {
l.add(sc.nextInt());
}
boolean c=false;
for(int i=0; i<l.size(); i++) {
if(l.get(i)==-1)
continue;
for(int j=0; j<l.size(); j++) {
if(i==j || l.get(j)==-1)
continue;
else {
if(l.get(j)%l.get(i)==0) {
l.set(j, -1);
}
}
}
}
int nbr=0;
for(int i=0; i<l.size(); i++)
if(l.get(i)!=-1)
nbr++;
System.out.println(nbr);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 545 | 2,580 |
4,441 |
/*(c) gorlum0 [at] gmail.com*/
import java.io.*;
import java.util.*;
import java.math.*;
public class E
{
int bitcount(int x) {
int c = 0;
for ( ; x != 0; c++)
x &= x-1;
return c;
}
boolean bit(int x, int i)
{
if (i < 0) return false;
return (x>>i & 1) == 1 ? true : false;
}
int solve(int n, int m)
{
if (m > n) { int x = m; m = n; n = x; }
int maxmask = 1<<m;
int[][][] dp = new int[n+1][maxmask][maxmask];
for (int i = 0; i <= n; i++)
for (int j = 0; j < maxmask; j++)
for (int k = 0; k < maxmask; k++)
dp[i][j][k] = inf;
for (int i = 0; i < maxmask; i++)
dp[0][0][i] = bitcount(i);
for (int i = 1; i <= n; i++)
for (int b = 0; b < maxmask; b++)
for (int c = 0; c < maxmask; c++)
for (int a = 0; a < maxmask; a++) {
boolean nospider = false;
for (int j = 0; j < m; j++)
if (not(bit(a,j) || bit(c,j) || bit(b,j-1) || bit(b,j) || bit(b,j+1))) {
nospider = true;
break;
}
if (nospider) continue;
dp[i][b][c] = Math.min(dp[i][b][c], dp[i-1][a][b] + bitcount(c));
}
int res = inf;
for (int b = 0; b < maxmask; b++)
res = Math.min(res, dp[n][b][0]);
return n*m - res;
}
void main() throws IOException {
int n;
while ((n = nextInt()) != EOF) {
int m = nextInt();
out.println(solve(n, m));
}
}
public static void main(String[] args) {
new E().run();
}
// ======================================================================
int inf = (int) 1e9;
final int EOF = -1;
boolean not(boolean p) { return !p; }
int sqr(int x) { return x*x; }
long sqr(long x) { return x*x; }
double sqr(double x) { return x*x; }
BufferedReader fin;
StringTokenizer st;
PrintWriter out;
public void run() {
try {
fin = new BufferedReader(new InputStreamReader(System.in));
st = null;
out = new PrintWriter(System.out);
main();
fin.close();
out.close();
} catch (Exception e) {
e.printStackTrace();
System.exit(1);
}
}
int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
String nextToken() throws IOException {
while (st == null || !st.hasMoreTokens()) {
String line = fin.readLine();
if (line == null) return "-1";
else st = new StringTokenizer(line);
}
return st.nextToken();
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
/*(c) gorlum0 [at] gmail.com*/
import java.io.*;
import java.util.*;
import java.math.*;
public class E
{
int bitcount(int x) {
int c = 0;
for ( ; x != 0; c++)
x &= x-1;
return c;
}
boolean bit(int x, int i)
{
if (i < 0) return false;
return (x>>i & 1) == 1 ? true : false;
}
int solve(int n, int m)
{
if (m > n) { int x = m; m = n; n = x; }
int maxmask = 1<<m;
int[][][] dp = new int[n+1][maxmask][maxmask];
for (int i = 0; i <= n; i++)
for (int j = 0; j < maxmask; j++)
for (int k = 0; k < maxmask; k++)
dp[i][j][k] = inf;
for (int i = 0; i < maxmask; i++)
dp[0][0][i] = bitcount(i);
for (int i = 1; i <= n; i++)
for (int b = 0; b < maxmask; b++)
for (int c = 0; c < maxmask; c++)
for (int a = 0; a < maxmask; a++) {
boolean nospider = false;
for (int j = 0; j < m; j++)
if (not(bit(a,j) || bit(c,j) || bit(b,j-1) || bit(b,j) || bit(b,j+1))) {
nospider = true;
break;
}
if (nospider) continue;
dp[i][b][c] = Math.min(dp[i][b][c], dp[i-1][a][b] + bitcount(c));
}
int res = inf;
for (int b = 0; b < maxmask; b++)
res = Math.min(res, dp[n][b][0]);
return n*m - res;
}
void main() throws IOException {
int n;
while ((n = nextInt()) != EOF) {
int m = nextInt();
out.println(solve(n, m));
}
}
public static void main(String[] args) {
new E().run();
}
// ======================================================================
int inf = (int) 1e9;
final int EOF = -1;
boolean not(boolean p) { return !p; }
int sqr(int x) { return x*x; }
long sqr(long x) { return x*x; }
double sqr(double x) { return x*x; }
BufferedReader fin;
StringTokenizer st;
PrintWriter out;
public void run() {
try {
fin = new BufferedReader(new InputStreamReader(System.in));
st = null;
out = new PrintWriter(System.out);
main();
fin.close();
out.close();
} catch (Exception e) {
e.printStackTrace();
System.exit(1);
}
}
int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
String nextToken() throws IOException {
while (st == null || !st.hasMoreTokens()) {
String line = fin.readLine();
if (line == null) return "-1";
else st = new StringTokenizer(line);
}
return st.nextToken();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
/*(c) gorlum0 [at] gmail.com*/
import java.io.*;
import java.util.*;
import java.math.*;
public class E
{
int bitcount(int x) {
int c = 0;
for ( ; x != 0; c++)
x &= x-1;
return c;
}
boolean bit(int x, int i)
{
if (i < 0) return false;
return (x>>i & 1) == 1 ? true : false;
}
int solve(int n, int m)
{
if (m > n) { int x = m; m = n; n = x; }
int maxmask = 1<<m;
int[][][] dp = new int[n+1][maxmask][maxmask];
for (int i = 0; i <= n; i++)
for (int j = 0; j < maxmask; j++)
for (int k = 0; k < maxmask; k++)
dp[i][j][k] = inf;
for (int i = 0; i < maxmask; i++)
dp[0][0][i] = bitcount(i);
for (int i = 1; i <= n; i++)
for (int b = 0; b < maxmask; b++)
for (int c = 0; c < maxmask; c++)
for (int a = 0; a < maxmask; a++) {
boolean nospider = false;
for (int j = 0; j < m; j++)
if (not(bit(a,j) || bit(c,j) || bit(b,j-1) || bit(b,j) || bit(b,j+1))) {
nospider = true;
break;
}
if (nospider) continue;
dp[i][b][c] = Math.min(dp[i][b][c], dp[i-1][a][b] + bitcount(c));
}
int res = inf;
for (int b = 0; b < maxmask; b++)
res = Math.min(res, dp[n][b][0]);
return n*m - res;
}
void main() throws IOException {
int n;
while ((n = nextInt()) != EOF) {
int m = nextInt();
out.println(solve(n, m));
}
}
public static void main(String[] args) {
new E().run();
}
// ======================================================================
int inf = (int) 1e9;
final int EOF = -1;
boolean not(boolean p) { return !p; }
int sqr(int x) { return x*x; }
long sqr(long x) { return x*x; }
double sqr(double x) { return x*x; }
BufferedReader fin;
StringTokenizer st;
PrintWriter out;
public void run() {
try {
fin = new BufferedReader(new InputStreamReader(System.in));
st = null;
out = new PrintWriter(System.out);
main();
fin.close();
out.close();
} catch (Exception e) {
e.printStackTrace();
System.exit(1);
}
}
int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
String nextToken() throws IOException {
while (st == null || !st.hasMoreTokens()) {
String line = fin.readLine();
if (line == null) return "-1";
else st = new StringTokenizer(line);
}
return st.nextToken();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(1): The time complexity is constant to the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,129 | 4,430 |
3,076 |
import java.util.*;
import java.io.*;
public class A
{
public static void main(String[] args)
{
Kattio io = new Kattio(System.in);
int n = io.getInt();
int ans = 0;
int V = n;
int A = n;
A -= n/2;
ans += n/2;
V -= A;
ans += A;
A -= n/2;
ans += n/2;
io.println(ans);
io.flush();
}
}
class Kattio extends PrintWriter {
public Kattio(InputStream i) {
super(new BufferedOutputStream(System.out));
r = new BufferedReader(new InputStreamReader(i));
}
public Kattio(InputStream i, OutputStream o) {
super(new BufferedOutputStream(o));
r = new BufferedReader(new InputStreamReader(i));
}
public boolean hasMoreTokens() {
return peekToken() != null;
}
public int getInt() {
return Integer.parseInt(nextToken());
}
public double getDouble() {
return Double.parseDouble(nextToken());
}
public long getLong() {
return Long.parseLong(nextToken());
}
public String getWord() {
return nextToken();
}
private BufferedReader r;
private String line;
private StringTokenizer st;
private String token;
private String peekToken() {
if (token == null)
try {
while (st == null || !st.hasMoreTokens()) {
line = r.readLine();
if (line == null) return null;
st = new StringTokenizer(line);
}
token = st.nextToken();
} catch (IOException e) { }
return token;
}
private String nextToken() {
String ans = peekToken();
token = null;
return ans;
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class A
{
public static void main(String[] args)
{
Kattio io = new Kattio(System.in);
int n = io.getInt();
int ans = 0;
int V = n;
int A = n;
A -= n/2;
ans += n/2;
V -= A;
ans += A;
A -= n/2;
ans += n/2;
io.println(ans);
io.flush();
}
}
class Kattio extends PrintWriter {
public Kattio(InputStream i) {
super(new BufferedOutputStream(System.out));
r = new BufferedReader(new InputStreamReader(i));
}
public Kattio(InputStream i, OutputStream o) {
super(new BufferedOutputStream(o));
r = new BufferedReader(new InputStreamReader(i));
}
public boolean hasMoreTokens() {
return peekToken() != null;
}
public int getInt() {
return Integer.parseInt(nextToken());
}
public double getDouble() {
return Double.parseDouble(nextToken());
}
public long getLong() {
return Long.parseLong(nextToken());
}
public String getWord() {
return nextToken();
}
private BufferedReader r;
private String line;
private StringTokenizer st;
private String token;
private String peekToken() {
if (token == null)
try {
while (st == null || !st.hasMoreTokens()) {
line = r.readLine();
if (line == null) return null;
st = new StringTokenizer(line);
}
token = st.nextToken();
} catch (IOException e) { }
return token;
}
private String nextToken() {
String ans = peekToken();
token = null;
return ans;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class A
{
public static void main(String[] args)
{
Kattio io = new Kattio(System.in);
int n = io.getInt();
int ans = 0;
int V = n;
int A = n;
A -= n/2;
ans += n/2;
V -= A;
ans += A;
A -= n/2;
ans += n/2;
io.println(ans);
io.flush();
}
}
class Kattio extends PrintWriter {
public Kattio(InputStream i) {
super(new BufferedOutputStream(System.out));
r = new BufferedReader(new InputStreamReader(i));
}
public Kattio(InputStream i, OutputStream o) {
super(new BufferedOutputStream(o));
r = new BufferedReader(new InputStreamReader(i));
}
public boolean hasMoreTokens() {
return peekToken() != null;
}
public int getInt() {
return Integer.parseInt(nextToken());
}
public double getDouble() {
return Double.parseDouble(nextToken());
}
public long getLong() {
return Long.parseLong(nextToken());
}
public String getWord() {
return nextToken();
}
private BufferedReader r;
private String line;
private StringTokenizer st;
private String token;
private String peekToken() {
if (token == null)
try {
while (st == null || !st.hasMoreTokens()) {
line = r.readLine();
if (line == null) return null;
st = new StringTokenizer(line);
}
token = st.nextToken();
} catch (IOException e) { }
return token;
}
private String nextToken() {
String ans = peekToken();
token = null;
return ans;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 719 | 3,070 |
2,391 |
import java.util.Scanner;
public class d {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int size = in.nextInt();
int[] vals = new int[size];
long[] cum = new long[size];
for(int i=0; i<size; i++){
vals[i] = in.nextInt();
int c = 0;
for(int j=0; j<i; j++)
if(vals[j] > vals[i]) c++;
if(i != 0) cum[i] = cum[i-1]+c;
else cum[i] = c;
}
long tot = cum[size-1];
int q = in.nextInt();
int[] nv = new int[size];
for(int i=0; i<q; i++)
{
int l = in.nextInt()-1;
int r = in.nextInt()-1;
int n = (r-l);
long add = (n*(n+1))/2 - (cum[r] - cum[l]);
tot = tot - (cum[r] - cum[l]) + add;
if(tot%2 == 0)
System.out.println("even");
else
System.out.println("odd");
// for(int j=0; j<=r-l; j++)
// nv[l+j] = vals[r-j];
//
// for(int j=0; j<=r-l; j++)
// vals[l+j] = nv[l+j];
}
}
}
/*
3
1 2 3
2
1 2
2 3
4
1 2 4 3
4
1 1
1 4
1 4
2 3
*/
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class d {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int size = in.nextInt();
int[] vals = new int[size];
long[] cum = new long[size];
for(int i=0; i<size; i++){
vals[i] = in.nextInt();
int c = 0;
for(int j=0; j<i; j++)
if(vals[j] > vals[i]) c++;
if(i != 0) cum[i] = cum[i-1]+c;
else cum[i] = c;
}
long tot = cum[size-1];
int q = in.nextInt();
int[] nv = new int[size];
for(int i=0; i<q; i++)
{
int l = in.nextInt()-1;
int r = in.nextInt()-1;
int n = (r-l);
long add = (n*(n+1))/2 - (cum[r] - cum[l]);
tot = tot - (cum[r] - cum[l]) + add;
if(tot%2 == 0)
System.out.println("even");
else
System.out.println("odd");
// for(int j=0; j<=r-l; j++)
// nv[l+j] = vals[r-j];
//
// for(int j=0; j<=r-l; j++)
// vals[l+j] = nv[l+j];
}
}
}
/*
3
1 2 3
2
1 2
2 3
4
1 2 4 3
4
1 1
1 4
1 4
2 3
*/
</CODE>
<EVALUATION_RUBRIC>
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(1): The time complexity is constant to the input size n.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class d {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int size = in.nextInt();
int[] vals = new int[size];
long[] cum = new long[size];
for(int i=0; i<size; i++){
vals[i] = in.nextInt();
int c = 0;
for(int j=0; j<i; j++)
if(vals[j] > vals[i]) c++;
if(i != 0) cum[i] = cum[i-1]+c;
else cum[i] = c;
}
long tot = cum[size-1];
int q = in.nextInt();
int[] nv = new int[size];
for(int i=0; i<q; i++)
{
int l = in.nextInt()-1;
int r = in.nextInt()-1;
int n = (r-l);
long add = (n*(n+1))/2 - (cum[r] - cum[l]);
tot = tot - (cum[r] - cum[l]) + add;
if(tot%2 == 0)
System.out.println("even");
else
System.out.println("odd");
// for(int j=0; j<=r-l; j++)
// nv[l+j] = vals[r-j];
//
// for(int j=0; j<=r-l; j++)
// vals[l+j] = nv[l+j];
}
}
}
/*
3
1 2 3
2
1 2
2 3
4
1 2 4 3
4
1 1
1 4
1 4
2 3
*/
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 712 | 2,386 |
2,467 |
// Author: aman_robotics
//package math_codet;
import java.io.*;
import java.util.*;
public class lets_do {
FastReader in;
PrintWriter out;
Helper_class h;
final long mod = 1000000009;
final int MAXN = 1000005;
final int lgN = 20;
final long INF = (long)1e18;
final long MAX_Ai = (long)1e12;
public static void main(String[] args) throws java.lang.Exception{
new lets_do().run();
}
void run() throws Exception{
in=new FastReader(System.in);
out = new PrintWriter(System.out);
h = new Helper_class();
int t = 1;
while(t--> 0)
solve();
out.flush();
out.close();
}
void solve(){
int n = h.ni();
long[] arr = new long[n];
int i = 0, j = 0;
for(i = 0; i < n; i++)
arr[i] = h.nl();
HashMap<Long, Integer> hmap = new HashMap<Long, Integer>();
int cnt = 0;
for(i = 0; i < n; i++){
long sum = 0;
for(j = i; j < n; j++){
sum += arr[j];
Integer x = hmap.get(sum);
if(x == null)
hmap.put(sum, cnt++);
}
}
TreeSet<Pair>[] tset = new TreeSet[cnt];
for(i = 0; i < cnt; i++)
tset[i] = new TreeSet<Pair>(com);
for(i = 0; i < n; i++){
long sum = 0;
for(j = i; j < n; j++){
sum += arr[j];
tset[hmap.get(sum)].add(new Pair(i, j));
}
}
int max = 0;
int ind = -1;
int max_x = 0, max_y = 0;
for(i = 0; i < cnt; i++){
int curr_y = tset[i].first().y;
int cnt1 = 1;
for(Pair yo : tset[i]){
if(yo.x > curr_y) {
cnt1++;
curr_y = yo.y;
}
}
if(max < cnt1) {
max = cnt1;
ind = i;
}
}
h.pn(max);
Pair hola_yee = new Pair(tset[ind].first().x, tset[ind].first().y);
h.pn((tset[ind].first().x + 1) +" "+(tset[ind].first().y + 1));
int curr_y = tset[ind].first().y;
for(Pair yo : tset[ind]){
if(yo.x > curr_y) {
curr_y = yo.y;
h.pn((yo.x + 1) +" "+(yo.y + 1));
}
}
}
static final Comparator<Pair> com=new Comparator<Pair>(){
public int compare(Pair a, Pair b){
if(Integer.compare(a.y, b.y) != 0)
return Integer.compare(a.y, b.y);
else
return Integer.compare(a.x, b.x);
}
};
class Pair{
int x;
int y;
Pair(int p, int q){
x = p;
y = q;
}
}
class Edge{
int u , v;
long wt;
Edge(int a, int b, long w){
u = a;
v = b;
wt = w;
}
int other(int x) {
return u ^ v ^ x;
}
}
class Helper_class{
long gcd(long a, long b){return (b==0)?a:gcd(b,a%b);}
int gcd(int a, int b){return (b==0)?a:gcd(b,a%b);}
int bitcount(long n){return (n==0)?0:(1+bitcount(n&(n-1)));}
void p(Object o){out.print(o);}
void pn(Object o){out.println(o);}
void pni(Object o){out.println(o);out.flush();}
String n(){return in.next();}
String nln(){return in.nextLine();}
int ni(){return Integer.parseInt(in.next());}
long nl(){return Long.parseLong(in.next());}
double nd(){return Double.parseDouble(in.next());}
long mul(long a,long b){
if(a>=mod)a%=mod;
if(b>=mod)b%=mod;
a*=b;
if(a>=mod)a%=mod;
return a;
}
long modPow(long a, long p){
long o = 1;
while(p>0){
if((p&1)==1)o = mul(o,a);
a = mul(a,a);
p>>=1;
}
return o;
}
long add(long a, long b){
if(a>=mod)a%=mod;
if(b>=mod)b%=mod;
if(b<0)b+=mod;
a+=b;
if(a>=mod)a-=mod;
return a;
}
}
class FastReader{
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
public FastReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1)
throw new UnknownError();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new UnknownError();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int peek() {
if (numChars == -1)
return -1;
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
return -1;
}
if (numChars <= 0)
return -1;
}
return buf[curChar];
}
public void skip(int x) {
while (x-- > 0)
read();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public String nextString() {
return next();
}
public String next() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuffer res = new StringBuffer();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public String nextLine() {
StringBuffer buf = new StringBuffer();
int c = read();
while (c != '\n' && c != -1) {
if (c != '\r')
buf.appendCodePoint(c);
c = read();
}
return buf.toString();
}
public double nextDouble() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
double res = 0;
while (!isSpaceChar(c) && c != '.') {
if (c == 'e' || c == 'E')
return res * Math.pow(10, nextInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
if (c == '.') {
c = read();
double m = 1;
while (!isSpaceChar(c)) {
if (c == 'e' || c == 'E')
return res * Math.pow(10, nextInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
m /= 10;
res += (c - '0') * m;
c = read();
}
}
return res * sgn;
}
public boolean hasNext() {
int value;
while (isSpaceChar(value = peek()) && value != -1)
read();
return value != -1;
}
private boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
// Author: aman_robotics
//package math_codet;
import java.io.*;
import java.util.*;
public class lets_do {
FastReader in;
PrintWriter out;
Helper_class h;
final long mod = 1000000009;
final int MAXN = 1000005;
final int lgN = 20;
final long INF = (long)1e18;
final long MAX_Ai = (long)1e12;
public static void main(String[] args) throws java.lang.Exception{
new lets_do().run();
}
void run() throws Exception{
in=new FastReader(System.in);
out = new PrintWriter(System.out);
h = new Helper_class();
int t = 1;
while(t--> 0)
solve();
out.flush();
out.close();
}
void solve(){
int n = h.ni();
long[] arr = new long[n];
int i = 0, j = 0;
for(i = 0; i < n; i++)
arr[i] = h.nl();
HashMap<Long, Integer> hmap = new HashMap<Long, Integer>();
int cnt = 0;
for(i = 0; i < n; i++){
long sum = 0;
for(j = i; j < n; j++){
sum += arr[j];
Integer x = hmap.get(sum);
if(x == null)
hmap.put(sum, cnt++);
}
}
TreeSet<Pair>[] tset = new TreeSet[cnt];
for(i = 0; i < cnt; i++)
tset[i] = new TreeSet<Pair>(com);
for(i = 0; i < n; i++){
long sum = 0;
for(j = i; j < n; j++){
sum += arr[j];
tset[hmap.get(sum)].add(new Pair(i, j));
}
}
int max = 0;
int ind = -1;
int max_x = 0, max_y = 0;
for(i = 0; i < cnt; i++){
int curr_y = tset[i].first().y;
int cnt1 = 1;
for(Pair yo : tset[i]){
if(yo.x > curr_y) {
cnt1++;
curr_y = yo.y;
}
}
if(max < cnt1) {
max = cnt1;
ind = i;
}
}
h.pn(max);
Pair hola_yee = new Pair(tset[ind].first().x, tset[ind].first().y);
h.pn((tset[ind].first().x + 1) +" "+(tset[ind].first().y + 1));
int curr_y = tset[ind].first().y;
for(Pair yo : tset[ind]){
if(yo.x > curr_y) {
curr_y = yo.y;
h.pn((yo.x + 1) +" "+(yo.y + 1));
}
}
}
static final Comparator<Pair> com=new Comparator<Pair>(){
public int compare(Pair a, Pair b){
if(Integer.compare(a.y, b.y) != 0)
return Integer.compare(a.y, b.y);
else
return Integer.compare(a.x, b.x);
}
};
class Pair{
int x;
int y;
Pair(int p, int q){
x = p;
y = q;
}
}
class Edge{
int u , v;
long wt;
Edge(int a, int b, long w){
u = a;
v = b;
wt = w;
}
int other(int x) {
return u ^ v ^ x;
}
}
class Helper_class{
long gcd(long a, long b){return (b==0)?a:gcd(b,a%b);}
int gcd(int a, int b){return (b==0)?a:gcd(b,a%b);}
int bitcount(long n){return (n==0)?0:(1+bitcount(n&(n-1)));}
void p(Object o){out.print(o);}
void pn(Object o){out.println(o);}
void pni(Object o){out.println(o);out.flush();}
String n(){return in.next();}
String nln(){return in.nextLine();}
int ni(){return Integer.parseInt(in.next());}
long nl(){return Long.parseLong(in.next());}
double nd(){return Double.parseDouble(in.next());}
long mul(long a,long b){
if(a>=mod)a%=mod;
if(b>=mod)b%=mod;
a*=b;
if(a>=mod)a%=mod;
return a;
}
long modPow(long a, long p){
long o = 1;
while(p>0){
if((p&1)==1)o = mul(o,a);
a = mul(a,a);
p>>=1;
}
return o;
}
long add(long a, long b){
if(a>=mod)a%=mod;
if(b>=mod)b%=mod;
if(b<0)b+=mod;
a+=b;
if(a>=mod)a-=mod;
return a;
}
}
class FastReader{
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
public FastReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1)
throw new UnknownError();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new UnknownError();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int peek() {
if (numChars == -1)
return -1;
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
return -1;
}
if (numChars <= 0)
return -1;
}
return buf[curChar];
}
public void skip(int x) {
while (x-- > 0)
read();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public String nextString() {
return next();
}
public String next() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuffer res = new StringBuffer();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public String nextLine() {
StringBuffer buf = new StringBuffer();
int c = read();
while (c != '\n' && c != -1) {
if (c != '\r')
buf.appendCodePoint(c);
c = read();
}
return buf.toString();
}
public double nextDouble() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
double res = 0;
while (!isSpaceChar(c) && c != '.') {
if (c == 'e' || c == 'E')
return res * Math.pow(10, nextInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
if (c == '.') {
c = read();
double m = 1;
while (!isSpaceChar(c)) {
if (c == 'e' || c == 'E')
return res * Math.pow(10, nextInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
m /= 10;
res += (c - '0') * m;
c = read();
}
}
return res * sgn;
}
public boolean hasNext() {
int value;
while (isSpaceChar(value = peek()) && value != -1)
read();
return value != -1;
}
private boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
// Author: aman_robotics
//package math_codet;
import java.io.*;
import java.util.*;
public class lets_do {
FastReader in;
PrintWriter out;
Helper_class h;
final long mod = 1000000009;
final int MAXN = 1000005;
final int lgN = 20;
final long INF = (long)1e18;
final long MAX_Ai = (long)1e12;
public static void main(String[] args) throws java.lang.Exception{
new lets_do().run();
}
void run() throws Exception{
in=new FastReader(System.in);
out = new PrintWriter(System.out);
h = new Helper_class();
int t = 1;
while(t--> 0)
solve();
out.flush();
out.close();
}
void solve(){
int n = h.ni();
long[] arr = new long[n];
int i = 0, j = 0;
for(i = 0; i < n; i++)
arr[i] = h.nl();
HashMap<Long, Integer> hmap = new HashMap<Long, Integer>();
int cnt = 0;
for(i = 0; i < n; i++){
long sum = 0;
for(j = i; j < n; j++){
sum += arr[j];
Integer x = hmap.get(sum);
if(x == null)
hmap.put(sum, cnt++);
}
}
TreeSet<Pair>[] tset = new TreeSet[cnt];
for(i = 0; i < cnt; i++)
tset[i] = new TreeSet<Pair>(com);
for(i = 0; i < n; i++){
long sum = 0;
for(j = i; j < n; j++){
sum += arr[j];
tset[hmap.get(sum)].add(new Pair(i, j));
}
}
int max = 0;
int ind = -1;
int max_x = 0, max_y = 0;
for(i = 0; i < cnt; i++){
int curr_y = tset[i].first().y;
int cnt1 = 1;
for(Pair yo : tset[i]){
if(yo.x > curr_y) {
cnt1++;
curr_y = yo.y;
}
}
if(max < cnt1) {
max = cnt1;
ind = i;
}
}
h.pn(max);
Pair hola_yee = new Pair(tset[ind].first().x, tset[ind].first().y);
h.pn((tset[ind].first().x + 1) +" "+(tset[ind].first().y + 1));
int curr_y = tset[ind].first().y;
for(Pair yo : tset[ind]){
if(yo.x > curr_y) {
curr_y = yo.y;
h.pn((yo.x + 1) +" "+(yo.y + 1));
}
}
}
static final Comparator<Pair> com=new Comparator<Pair>(){
public int compare(Pair a, Pair b){
if(Integer.compare(a.y, b.y) != 0)
return Integer.compare(a.y, b.y);
else
return Integer.compare(a.x, b.x);
}
};
class Pair{
int x;
int y;
Pair(int p, int q){
x = p;
y = q;
}
}
class Edge{
int u , v;
long wt;
Edge(int a, int b, long w){
u = a;
v = b;
wt = w;
}
int other(int x) {
return u ^ v ^ x;
}
}
class Helper_class{
long gcd(long a, long b){return (b==0)?a:gcd(b,a%b);}
int gcd(int a, int b){return (b==0)?a:gcd(b,a%b);}
int bitcount(long n){return (n==0)?0:(1+bitcount(n&(n-1)));}
void p(Object o){out.print(o);}
void pn(Object o){out.println(o);}
void pni(Object o){out.println(o);out.flush();}
String n(){return in.next();}
String nln(){return in.nextLine();}
int ni(){return Integer.parseInt(in.next());}
long nl(){return Long.parseLong(in.next());}
double nd(){return Double.parseDouble(in.next());}
long mul(long a,long b){
if(a>=mod)a%=mod;
if(b>=mod)b%=mod;
a*=b;
if(a>=mod)a%=mod;
return a;
}
long modPow(long a, long p){
long o = 1;
while(p>0){
if((p&1)==1)o = mul(o,a);
a = mul(a,a);
p>>=1;
}
return o;
}
long add(long a, long b){
if(a>=mod)a%=mod;
if(b>=mod)b%=mod;
if(b<0)b+=mod;
a+=b;
if(a>=mod)a-=mod;
return a;
}
}
class FastReader{
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
public FastReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1)
throw new UnknownError();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new UnknownError();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int peek() {
if (numChars == -1)
return -1;
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
return -1;
}
if (numChars <= 0)
return -1;
}
return buf[curChar];
}
public void skip(int x) {
while (x-- > 0)
read();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public String nextString() {
return next();
}
public String next() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuffer res = new StringBuffer();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public String nextLine() {
StringBuffer buf = new StringBuffer();
int c = read();
while (c != '\n' && c != -1) {
if (c != '\r')
buf.appendCodePoint(c);
c = read();
}
return buf.toString();
}
public double nextDouble() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
double res = 0;
while (!isSpaceChar(c) && c != '.') {
if (c == 'e' || c == 'E')
return res * Math.pow(10, nextInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
if (c == '.') {
c = read();
double m = 1;
while (!isSpaceChar(c)) {
if (c == 'e' || c == 'E')
return res * Math.pow(10, nextInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
m /= 10;
res += (c - '0') * m;
c = read();
}
}
return res * sgn;
}
public boolean hasNext() {
int value;
while (isSpaceChar(value = peek()) && value != -1)
read();
return value != -1;
}
private boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 2,246 | 2,462 |
494 |
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.io.BufferedWriter;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.util.InputMismatchException;
import java.io.IOException;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author prakhar897
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
TaskA solver = new TaskA();
solver.solve(1, in, out);
out.close();
}
static class TaskA {
public void solve(int testNumber, InputReader in, OutputWriter out) {
int n = in.nextInt();
String arr1[] = new String[n];
String arr2[] = new String[n];
int i, j, count = 0;
for (i = 0; i < n; i++) {
arr1[i] = in.nextString();
}
for (i = 0; i < n; i++) {
arr2[i] = in.nextString();
for (j = 0; j < n; j++) {
if (arr2[i].equals(arr1[j])) {
arr1[j] = "";
count++;
break;
}
}
}
out.println(n - count);
}
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private InputReader.SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1) {
throw new InputMismatchException();
}
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0) {
return -1;
}
}
return buf[curChar++];
}
public int nextInt() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public String nextString() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
StringBuilder res = new StringBuilder();
do {
if (Character.isValidCodePoint(c)) {
res.appendCodePoint(c);
}
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public boolean isSpaceChar(int c) {
if (filter != null) {
return filter.isSpaceChar(c);
}
return isWhitespace(c);
}
public static boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void close() {
writer.close();
}
public void println(int i) {
writer.println(i);
}
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.io.BufferedWriter;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.util.InputMismatchException;
import java.io.IOException;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author prakhar897
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
TaskA solver = new TaskA();
solver.solve(1, in, out);
out.close();
}
static class TaskA {
public void solve(int testNumber, InputReader in, OutputWriter out) {
int n = in.nextInt();
String arr1[] = new String[n];
String arr2[] = new String[n];
int i, j, count = 0;
for (i = 0; i < n; i++) {
arr1[i] = in.nextString();
}
for (i = 0; i < n; i++) {
arr2[i] = in.nextString();
for (j = 0; j < n; j++) {
if (arr2[i].equals(arr1[j])) {
arr1[j] = "";
count++;
break;
}
}
}
out.println(n - count);
}
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private InputReader.SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1) {
throw new InputMismatchException();
}
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0) {
return -1;
}
}
return buf[curChar++];
}
public int nextInt() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public String nextString() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
StringBuilder res = new StringBuilder();
do {
if (Character.isValidCodePoint(c)) {
res.appendCodePoint(c);
}
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public boolean isSpaceChar(int c) {
if (filter != null) {
return filter.isSpaceChar(c);
}
return isWhitespace(c);
}
public static boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void close() {
writer.close();
}
public void println(int i) {
writer.println(i);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.io.BufferedWriter;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.util.InputMismatchException;
import java.io.IOException;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author prakhar897
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
TaskA solver = new TaskA();
solver.solve(1, in, out);
out.close();
}
static class TaskA {
public void solve(int testNumber, InputReader in, OutputWriter out) {
int n = in.nextInt();
String arr1[] = new String[n];
String arr2[] = new String[n];
int i, j, count = 0;
for (i = 0; i < n; i++) {
arr1[i] = in.nextString();
}
for (i = 0; i < n; i++) {
arr2[i] = in.nextString();
for (j = 0; j < n; j++) {
if (arr2[i].equals(arr1[j])) {
arr1[j] = "";
count++;
break;
}
}
}
out.println(n - count);
}
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private InputReader.SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1) {
throw new InputMismatchException();
}
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0) {
return -1;
}
}
return buf[curChar++];
}
public int nextInt() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public String nextString() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
StringBuilder res = new StringBuilder();
do {
if (Character.isValidCodePoint(c)) {
res.appendCodePoint(c);
}
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public boolean isSpaceChar(int c) {
if (filter != null) {
return filter.isSpaceChar(c);
}
return isWhitespace(c);
}
public static boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void close() {
writer.close();
}
public void println(int i) {
writer.println(i);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,235 | 493 |
4,310 |
import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.Locale;
import java.util.StringTokenizer;
import java.util.TreeMap;
import java.util.Map.Entry;
public class Solution implements Runnable {
public static void main(String[] args) {
(new Thread(new Solution())).start();
}
BufferedReader in;
PrintWriter out;
StringTokenizer st;
String nextToken() throws IOException {
while (st == null || !st.hasMoreTokens()) {
String r = in.readLine();
if (r == null) return null;
st = new StringTokenizer(r);
}
return st.nextToken();
}
int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
int n;
int[] b, l;
double ans;
int[] sw;
int a;
void sol() {
for (int i = 0; i < n; i++) l[i] += sw[i] * 10;
double yes = 0;
for (int q = 0; q < (1 << n); q++) {
double p = 1;
int bb = 0;
int cnt = 0;
for (int i = 0; i < n; i++) {
if ((q & (1 << i)) == 0) {
p *= (1.0 - (double)l[i] / 100);
bb += b[i];
} else {
p *= 1.0 * (double)l[i] / 100;
cnt++;
}
}
if (cnt > n / 2) {
yes += p;
} else {
yes += p * (double)a / (double)(a + bb);
}
}
if (ans < yes) ans = yes;
for (int i = 0; i < n; i++) l[i] -= sw[i] * 10;
}
void rek(int i, int k) {
if (i == n) sol(); else {
for (int q = 0; q <= k && l[i] + q * 10 <= 100; q++) {
sw[i] = q;
rek(i + 1, k - q);
}
}
}
void solve() throws Exception {
n = nextInt();
int k = nextInt();
a = nextInt();
b = new int[n];
l = new int[n];
sw = new int[n];
for (int i = 0; i < n; i++) {
b[i] = nextInt();
l[i] = nextInt();
}
rek(0, k);
out.printf("%.10f", ans);
}
public void run() {
Locale.setDefault(Locale.UK);
try {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
// in = new BufferedReader(new FileReader("knights.in"));
// out = new PrintWriter("knights.out");
solve();
} catch (Exception e) {
e.printStackTrace();
System.exit(1);
} finally {
out.flush();
}
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.Locale;
import java.util.StringTokenizer;
import java.util.TreeMap;
import java.util.Map.Entry;
public class Solution implements Runnable {
public static void main(String[] args) {
(new Thread(new Solution())).start();
}
BufferedReader in;
PrintWriter out;
StringTokenizer st;
String nextToken() throws IOException {
while (st == null || !st.hasMoreTokens()) {
String r = in.readLine();
if (r == null) return null;
st = new StringTokenizer(r);
}
return st.nextToken();
}
int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
int n;
int[] b, l;
double ans;
int[] sw;
int a;
void sol() {
for (int i = 0; i < n; i++) l[i] += sw[i] * 10;
double yes = 0;
for (int q = 0; q < (1 << n); q++) {
double p = 1;
int bb = 0;
int cnt = 0;
for (int i = 0; i < n; i++) {
if ((q & (1 << i)) == 0) {
p *= (1.0 - (double)l[i] / 100);
bb += b[i];
} else {
p *= 1.0 * (double)l[i] / 100;
cnt++;
}
}
if (cnt > n / 2) {
yes += p;
} else {
yes += p * (double)a / (double)(a + bb);
}
}
if (ans < yes) ans = yes;
for (int i = 0; i < n; i++) l[i] -= sw[i] * 10;
}
void rek(int i, int k) {
if (i == n) sol(); else {
for (int q = 0; q <= k && l[i] + q * 10 <= 100; q++) {
sw[i] = q;
rek(i + 1, k - q);
}
}
}
void solve() throws Exception {
n = nextInt();
int k = nextInt();
a = nextInt();
b = new int[n];
l = new int[n];
sw = new int[n];
for (int i = 0; i < n; i++) {
b[i] = nextInt();
l[i] = nextInt();
}
rek(0, k);
out.printf("%.10f", ans);
}
public void run() {
Locale.setDefault(Locale.UK);
try {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
// in = new BufferedReader(new FileReader("knights.in"));
// out = new PrintWriter("knights.out");
solve();
} catch (Exception e) {
e.printStackTrace();
System.exit(1);
} finally {
out.flush();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.Locale;
import java.util.StringTokenizer;
import java.util.TreeMap;
import java.util.Map.Entry;
public class Solution implements Runnable {
public static void main(String[] args) {
(new Thread(new Solution())).start();
}
BufferedReader in;
PrintWriter out;
StringTokenizer st;
String nextToken() throws IOException {
while (st == null || !st.hasMoreTokens()) {
String r = in.readLine();
if (r == null) return null;
st = new StringTokenizer(r);
}
return st.nextToken();
}
int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
int n;
int[] b, l;
double ans;
int[] sw;
int a;
void sol() {
for (int i = 0; i < n; i++) l[i] += sw[i] * 10;
double yes = 0;
for (int q = 0; q < (1 << n); q++) {
double p = 1;
int bb = 0;
int cnt = 0;
for (int i = 0; i < n; i++) {
if ((q & (1 << i)) == 0) {
p *= (1.0 - (double)l[i] / 100);
bb += b[i];
} else {
p *= 1.0 * (double)l[i] / 100;
cnt++;
}
}
if (cnt > n / 2) {
yes += p;
} else {
yes += p * (double)a / (double)(a + bb);
}
}
if (ans < yes) ans = yes;
for (int i = 0; i < n; i++) l[i] -= sw[i] * 10;
}
void rek(int i, int k) {
if (i == n) sol(); else {
for (int q = 0; q <= k && l[i] + q * 10 <= 100; q++) {
sw[i] = q;
rek(i + 1, k - q);
}
}
}
void solve() throws Exception {
n = nextInt();
int k = nextInt();
a = nextInt();
b = new int[n];
l = new int[n];
sw = new int[n];
for (int i = 0; i < n; i++) {
b[i] = nextInt();
l[i] = nextInt();
}
rek(0, k);
out.printf("%.10f", ans);
}
public void run() {
Locale.setDefault(Locale.UK);
try {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
// in = new BufferedReader(new FileReader("knights.in"));
// out = new PrintWriter("knights.out");
solve();
} catch (Exception e) {
e.printStackTrace();
System.exit(1);
} finally {
out.flush();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(1): The running time does not change regardless of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The running time grows linearly with the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(log(n)): The running time increases with the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,080 | 4,299 |
1,554 |
import java.io.*;
import java.math.*;
import java.util.*;
import java.lang.*;
public class Main
{
static Input in;
static Output out;
public static void main(String[] args) throws IOException
{
in = new Input(System.in);
out = new Output(System.out);
run();
out.close();
System.exit(0);
}
private static void run() throws IOException
{
int n = in.nextInt(), k = in.nextInt();
int[] A = new int[n];
for (int i = 0; i < n; i++)
{
A[i] = in.nextInt();
}
Arrays.sort(A);
int count = n;
boolean[] hash = new boolean[n];
for (int i = n-1; i > 0; i--)
{
if(!hash[i])
{
int a = A[i];
if(a % k == 0)
{
int p = a / k;
int j = Arrays.binarySearch(A, p);
if(j >= 0 && j < i)
{
hash[j] = true;
count--;
}
}
}
}
out.print(count);
}
}
class Input
{
final int SIZE = 8192;
private InputStream in;
private byte[] buf = new byte[SIZE];
private int last, current, total;
public Input(InputStream stream) throws IOException
{
in = stream;
last = read();
}
private int read() throws IOException
{
if (total == -1) return -1;
if (current >= total)
{
current = 0;
total = in.read(buf);
if (total <= 0) return -1;
}
return buf[current++];
}
private void advance() throws IOException
{
while (true)
{
if (last == -1) return;
if (!isValidChar(last)) last = read();
else break;
}
}
private boolean isValidChar(int c)
{
return c > 32 && c < 127;
}
public boolean isEOF() throws IOException
{
advance();
return last == -1;
}
public String nextString() throws IOException
{
advance();
if (last == -1) throw new EOFException();
StringBuilder s = new StringBuilder();
while (true)
{
s.appendCodePoint(last);
last = read();
if (!isValidChar(last)) break;
}
return s.toString();
}
public String nextLine() throws IOException
{
if (last == -1) throw new EOFException();
StringBuilder s = new StringBuilder();
while (true)
{
s.appendCodePoint(last);
last = read();
if (last == '\n' || last == -1) break;
}
return s.toString();
}
public String nextLine(boolean ignoreIfEmpty) throws IOException
{
if (!ignoreIfEmpty) return nextLine();
String s = nextLine();
while (s.trim().length() == 0) s = nextLine();
return s;
}
public int nextInt() throws IOException
{
advance();
if (last == -1) throw new EOFException();
int n = 0, s = 1;
if (last == '-')
{
s = -1;
last = read();
if (last == -1) throw new EOFException();
}
while (true)
{
n = n * 10 + last - '0';
last = read();
if (!isValidChar(last)) break;
}
return n * s;
}
public long nextLong() throws IOException
{
advance();
if (last == -1) throw new EOFException();
int s = 1;
if (last == '-')
{
s = -1;
last = read();
if (last == -1) throw new EOFException();
}
long n = 0;
while (true)
{
n = n * 10 + last - '0';
last = read();
if (!isValidChar(last)) break;
}
return n * s;
}
public BigInteger nextBigInt() throws IOException
{
return new BigInteger(nextString());
}
public char nextChar() throws IOException
{
advance();
return (char) last;
}
public double nextDouble() throws IOException
{
advance();
if (last == -1) throw new EOFException();
int s = 1;
if (last == '-')
{
s = -1;
last = read();
if (last == -1) throw new EOFException();
}
double n = 0;
while (true)
{
n = n * 10 + last - '0';
last = read();
if (!isValidChar(last) || last == '.') break;
}
if (last == '.')
{
last = read();
if (last == -1) throw new EOFException();
double m = 1;
while (true)
{
m = m / 10;
n = n + (last - '0') * m;
last = read();
if (!isValidChar(last)) break;
}
}
return n * s;
}
public BigDecimal nextBigDecimal() throws IOException
{
return new BigDecimal(nextString());
}
public void close() throws IOException
{
in.close();
in = null;
}
}
class Output
{
final int SIZE = 8192;
private Writer out;
private char cb[] = new char[SIZE];
private int nChars = SIZE, nextChar = 0;
private char lineSeparator = '\n';
public Output(OutputStream stream)
{
out = new OutputStreamWriter(stream);
}
void flushBuffer() throws IOException
{
if (nextChar == 0) return;
out.write(cb, 0, nextChar);
nextChar = 0;
}
void write(int c) throws IOException
{
if (nextChar >= nChars) flushBuffer();
cb[nextChar++] = (char) c;
}
void write(String s, int off, int len) throws IOException
{
int b = off, t = off + len;
while (b < t)
{
int a = nChars - nextChar, a1 = t - b;
int d = a < a1 ? a : a1;
s.getChars(b, b + d, cb, nextChar);
b += d;
nextChar += d;
if (nextChar >= nChars) flushBuffer();
}
}
void write(String s) throws IOException
{
write(s, 0, s.length());
}
public void print(Object obj) throws IOException
{
write(String.valueOf(obj));
}
public void println(Object obj) throws IOException
{
write(String.valueOf(obj));
write(lineSeparator);
}
public void printf(String format, Object... obj) throws IOException
{
write(String.format(format, obj));
}
public void close() throws IOException
{
flushBuffer();
out.close();
out = null;
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.math.*;
import java.util.*;
import java.lang.*;
public class Main
{
static Input in;
static Output out;
public static void main(String[] args) throws IOException
{
in = new Input(System.in);
out = new Output(System.out);
run();
out.close();
System.exit(0);
}
private static void run() throws IOException
{
int n = in.nextInt(), k = in.nextInt();
int[] A = new int[n];
for (int i = 0; i < n; i++)
{
A[i] = in.nextInt();
}
Arrays.sort(A);
int count = n;
boolean[] hash = new boolean[n];
for (int i = n-1; i > 0; i--)
{
if(!hash[i])
{
int a = A[i];
if(a % k == 0)
{
int p = a / k;
int j = Arrays.binarySearch(A, p);
if(j >= 0 && j < i)
{
hash[j] = true;
count--;
}
}
}
}
out.print(count);
}
}
class Input
{
final int SIZE = 8192;
private InputStream in;
private byte[] buf = new byte[SIZE];
private int last, current, total;
public Input(InputStream stream) throws IOException
{
in = stream;
last = read();
}
private int read() throws IOException
{
if (total == -1) return -1;
if (current >= total)
{
current = 0;
total = in.read(buf);
if (total <= 0) return -1;
}
return buf[current++];
}
private void advance() throws IOException
{
while (true)
{
if (last == -1) return;
if (!isValidChar(last)) last = read();
else break;
}
}
private boolean isValidChar(int c)
{
return c > 32 && c < 127;
}
public boolean isEOF() throws IOException
{
advance();
return last == -1;
}
public String nextString() throws IOException
{
advance();
if (last == -1) throw new EOFException();
StringBuilder s = new StringBuilder();
while (true)
{
s.appendCodePoint(last);
last = read();
if (!isValidChar(last)) break;
}
return s.toString();
}
public String nextLine() throws IOException
{
if (last == -1) throw new EOFException();
StringBuilder s = new StringBuilder();
while (true)
{
s.appendCodePoint(last);
last = read();
if (last == '\n' || last == -1) break;
}
return s.toString();
}
public String nextLine(boolean ignoreIfEmpty) throws IOException
{
if (!ignoreIfEmpty) return nextLine();
String s = nextLine();
while (s.trim().length() == 0) s = nextLine();
return s;
}
public int nextInt() throws IOException
{
advance();
if (last == -1) throw new EOFException();
int n = 0, s = 1;
if (last == '-')
{
s = -1;
last = read();
if (last == -1) throw new EOFException();
}
while (true)
{
n = n * 10 + last - '0';
last = read();
if (!isValidChar(last)) break;
}
return n * s;
}
public long nextLong() throws IOException
{
advance();
if (last == -1) throw new EOFException();
int s = 1;
if (last == '-')
{
s = -1;
last = read();
if (last == -1) throw new EOFException();
}
long n = 0;
while (true)
{
n = n * 10 + last - '0';
last = read();
if (!isValidChar(last)) break;
}
return n * s;
}
public BigInteger nextBigInt() throws IOException
{
return new BigInteger(nextString());
}
public char nextChar() throws IOException
{
advance();
return (char) last;
}
public double nextDouble() throws IOException
{
advance();
if (last == -1) throw new EOFException();
int s = 1;
if (last == '-')
{
s = -1;
last = read();
if (last == -1) throw new EOFException();
}
double n = 0;
while (true)
{
n = n * 10 + last - '0';
last = read();
if (!isValidChar(last) || last == '.') break;
}
if (last == '.')
{
last = read();
if (last == -1) throw new EOFException();
double m = 1;
while (true)
{
m = m / 10;
n = n + (last - '0') * m;
last = read();
if (!isValidChar(last)) break;
}
}
return n * s;
}
public BigDecimal nextBigDecimal() throws IOException
{
return new BigDecimal(nextString());
}
public void close() throws IOException
{
in.close();
in = null;
}
}
class Output
{
final int SIZE = 8192;
private Writer out;
private char cb[] = new char[SIZE];
private int nChars = SIZE, nextChar = 0;
private char lineSeparator = '\n';
public Output(OutputStream stream)
{
out = new OutputStreamWriter(stream);
}
void flushBuffer() throws IOException
{
if (nextChar == 0) return;
out.write(cb, 0, nextChar);
nextChar = 0;
}
void write(int c) throws IOException
{
if (nextChar >= nChars) flushBuffer();
cb[nextChar++] = (char) c;
}
void write(String s, int off, int len) throws IOException
{
int b = off, t = off + len;
while (b < t)
{
int a = nChars - nextChar, a1 = t - b;
int d = a < a1 ? a : a1;
s.getChars(b, b + d, cb, nextChar);
b += d;
nextChar += d;
if (nextChar >= nChars) flushBuffer();
}
}
void write(String s) throws IOException
{
write(s, 0, s.length());
}
public void print(Object obj) throws IOException
{
write(String.valueOf(obj));
}
public void println(Object obj) throws IOException
{
write(String.valueOf(obj));
write(lineSeparator);
}
public void printf(String format, Object... obj) throws IOException
{
write(String.format(format, obj));
}
public void close() throws IOException
{
flushBuffer();
out.close();
out = null;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.math.*;
import java.util.*;
import java.lang.*;
public class Main
{
static Input in;
static Output out;
public static void main(String[] args) throws IOException
{
in = new Input(System.in);
out = new Output(System.out);
run();
out.close();
System.exit(0);
}
private static void run() throws IOException
{
int n = in.nextInt(), k = in.nextInt();
int[] A = new int[n];
for (int i = 0; i < n; i++)
{
A[i] = in.nextInt();
}
Arrays.sort(A);
int count = n;
boolean[] hash = new boolean[n];
for (int i = n-1; i > 0; i--)
{
if(!hash[i])
{
int a = A[i];
if(a % k == 0)
{
int p = a / k;
int j = Arrays.binarySearch(A, p);
if(j >= 0 && j < i)
{
hash[j] = true;
count--;
}
}
}
}
out.print(count);
}
}
class Input
{
final int SIZE = 8192;
private InputStream in;
private byte[] buf = new byte[SIZE];
private int last, current, total;
public Input(InputStream stream) throws IOException
{
in = stream;
last = read();
}
private int read() throws IOException
{
if (total == -1) return -1;
if (current >= total)
{
current = 0;
total = in.read(buf);
if (total <= 0) return -1;
}
return buf[current++];
}
private void advance() throws IOException
{
while (true)
{
if (last == -1) return;
if (!isValidChar(last)) last = read();
else break;
}
}
private boolean isValidChar(int c)
{
return c > 32 && c < 127;
}
public boolean isEOF() throws IOException
{
advance();
return last == -1;
}
public String nextString() throws IOException
{
advance();
if (last == -1) throw new EOFException();
StringBuilder s = new StringBuilder();
while (true)
{
s.appendCodePoint(last);
last = read();
if (!isValidChar(last)) break;
}
return s.toString();
}
public String nextLine() throws IOException
{
if (last == -1) throw new EOFException();
StringBuilder s = new StringBuilder();
while (true)
{
s.appendCodePoint(last);
last = read();
if (last == '\n' || last == -1) break;
}
return s.toString();
}
public String nextLine(boolean ignoreIfEmpty) throws IOException
{
if (!ignoreIfEmpty) return nextLine();
String s = nextLine();
while (s.trim().length() == 0) s = nextLine();
return s;
}
public int nextInt() throws IOException
{
advance();
if (last == -1) throw new EOFException();
int n = 0, s = 1;
if (last == '-')
{
s = -1;
last = read();
if (last == -1) throw new EOFException();
}
while (true)
{
n = n * 10 + last - '0';
last = read();
if (!isValidChar(last)) break;
}
return n * s;
}
public long nextLong() throws IOException
{
advance();
if (last == -1) throw new EOFException();
int s = 1;
if (last == '-')
{
s = -1;
last = read();
if (last == -1) throw new EOFException();
}
long n = 0;
while (true)
{
n = n * 10 + last - '0';
last = read();
if (!isValidChar(last)) break;
}
return n * s;
}
public BigInteger nextBigInt() throws IOException
{
return new BigInteger(nextString());
}
public char nextChar() throws IOException
{
advance();
return (char) last;
}
public double nextDouble() throws IOException
{
advance();
if (last == -1) throw new EOFException();
int s = 1;
if (last == '-')
{
s = -1;
last = read();
if (last == -1) throw new EOFException();
}
double n = 0;
while (true)
{
n = n * 10 + last - '0';
last = read();
if (!isValidChar(last) || last == '.') break;
}
if (last == '.')
{
last = read();
if (last == -1) throw new EOFException();
double m = 1;
while (true)
{
m = m / 10;
n = n + (last - '0') * m;
last = read();
if (!isValidChar(last)) break;
}
}
return n * s;
}
public BigDecimal nextBigDecimal() throws IOException
{
return new BigDecimal(nextString());
}
public void close() throws IOException
{
in.close();
in = null;
}
}
class Output
{
final int SIZE = 8192;
private Writer out;
private char cb[] = new char[SIZE];
private int nChars = SIZE, nextChar = 0;
private char lineSeparator = '\n';
public Output(OutputStream stream)
{
out = new OutputStreamWriter(stream);
}
void flushBuffer() throws IOException
{
if (nextChar == 0) return;
out.write(cb, 0, nextChar);
nextChar = 0;
}
void write(int c) throws IOException
{
if (nextChar >= nChars) flushBuffer();
cb[nextChar++] = (char) c;
}
void write(String s, int off, int len) throws IOException
{
int b = off, t = off + len;
while (b < t)
{
int a = nChars - nextChar, a1 = t - b;
int d = a < a1 ? a : a1;
s.getChars(b, b + d, cb, nextChar);
b += d;
nextChar += d;
if (nextChar >= nChars) flushBuffer();
}
}
void write(String s) throws IOException
{
write(s, 0, s.length());
}
public void print(Object obj) throws IOException
{
write(String.valueOf(obj));
}
public void println(Object obj) throws IOException
{
write(String.valueOf(obj));
write(lineSeparator);
}
public void printf(String format, Object... obj) throws IOException
{
write(String.format(format, obj));
}
public void close() throws IOException
{
flushBuffer();
out.close();
out = null;
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,923 | 1,552 |
1,576 |
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.util.InputMismatchException;
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
Task solver = new Task();
int testCount = 1;
for (int i = 1; i <= testCount; i++)
solver.solve(i, in, out);
out.close();
}
}
class Task {
int n;
int[] a;
int[] b;
public void solve(int testNumber, InputReader in, PrintWriter out) {
n = in.readInt();
a = new int[n];
b = new int[n];
for (int i = 0; i < n; ++i)
a[i] = b[i] = in.readInt();
sort(0, n - 1);
int different = 0;
for (int i = 0; i < n; ++i)
if (a[i] != b[i])
++different;
out.println(different <= 2 ? "YES" : "NO");
}
public void sort(int lo, int hi) {
if (lo < hi) {
int mid = (lo + hi) / 2;
sort(lo, mid);
sort(mid + 1, hi);
merge(lo, mid, hi);
}
}
public void merge(int lo, int mid, int hi) {
int n1 = mid - lo + 1;
int n2 = hi - (mid + 1) + 1;
int[] x = new int[n1 + 1];
int[] y = new int[n2 + 1];
for (int i = 0; i < n1; ++i)
x[i] = b[lo + i];
for (int j = 0; j < n2; ++j)
y[j] = b[mid + 1 + j];
x[n1] = y[n2] = Integer.MAX_VALUE;
for (int k = lo, i = 0, j = 0; k <= hi; ++k)
b[k] = x[i] < y[j] ? x[i++] : y[j++];
}
}
class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int readInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public String readString() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuffer res = new StringBuffer();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public Long readLong() {
return Long.parseLong(readString());
}
public Double readDouble() {
return Double.parseDouble(readString());
}
public static boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.util.InputMismatchException;
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
Task solver = new Task();
int testCount = 1;
for (int i = 1; i <= testCount; i++)
solver.solve(i, in, out);
out.close();
}
}
class Task {
int n;
int[] a;
int[] b;
public void solve(int testNumber, InputReader in, PrintWriter out) {
n = in.readInt();
a = new int[n];
b = new int[n];
for (int i = 0; i < n; ++i)
a[i] = b[i] = in.readInt();
sort(0, n - 1);
int different = 0;
for (int i = 0; i < n; ++i)
if (a[i] != b[i])
++different;
out.println(different <= 2 ? "YES" : "NO");
}
public void sort(int lo, int hi) {
if (lo < hi) {
int mid = (lo + hi) / 2;
sort(lo, mid);
sort(mid + 1, hi);
merge(lo, mid, hi);
}
}
public void merge(int lo, int mid, int hi) {
int n1 = mid - lo + 1;
int n2 = hi - (mid + 1) + 1;
int[] x = new int[n1 + 1];
int[] y = new int[n2 + 1];
for (int i = 0; i < n1; ++i)
x[i] = b[lo + i];
for (int j = 0; j < n2; ++j)
y[j] = b[mid + 1 + j];
x[n1] = y[n2] = Integer.MAX_VALUE;
for (int k = lo, i = 0, j = 0; k <= hi; ++k)
b[k] = x[i] < y[j] ? x[i++] : y[j++];
}
}
class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int readInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public String readString() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuffer res = new StringBuffer();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public Long readLong() {
return Long.parseLong(readString());
}
public Double readDouble() {
return Double.parseDouble(readString());
}
public static boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The running time increases with the square of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.util.InputMismatchException;
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
Task solver = new Task();
int testCount = 1;
for (int i = 1; i <= testCount; i++)
solver.solve(i, in, out);
out.close();
}
}
class Task {
int n;
int[] a;
int[] b;
public void solve(int testNumber, InputReader in, PrintWriter out) {
n = in.readInt();
a = new int[n];
b = new int[n];
for (int i = 0; i < n; ++i)
a[i] = b[i] = in.readInt();
sort(0, n - 1);
int different = 0;
for (int i = 0; i < n; ++i)
if (a[i] != b[i])
++different;
out.println(different <= 2 ? "YES" : "NO");
}
public void sort(int lo, int hi) {
if (lo < hi) {
int mid = (lo + hi) / 2;
sort(lo, mid);
sort(mid + 1, hi);
merge(lo, mid, hi);
}
}
public void merge(int lo, int mid, int hi) {
int n1 = mid - lo + 1;
int n2 = hi - (mid + 1) + 1;
int[] x = new int[n1 + 1];
int[] y = new int[n2 + 1];
for (int i = 0; i < n1; ++i)
x[i] = b[lo + i];
for (int j = 0; j < n2; ++j)
y[j] = b[mid + 1 + j];
x[n1] = y[n2] = Integer.MAX_VALUE;
for (int k = lo, i = 0, j = 0; k <= hi; ++k)
b[k] = x[i] < y[j] ? x[i++] : y[j++];
}
}
class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int readInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public String readString() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuffer res = new StringBuffer();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public Long readLong() {
return Long.parseLong(readString());
}
public Double readDouble() {
return Double.parseDouble(readString());
}
public static boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,254 | 1,573 |
2,088 |
import java.util.Arrays;
import java.util.Scanner;
public class AAA {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int n = in.nextInt();
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = in.nextInt();
int max = a[0];
int ind = 0;
for (int k = 1; k < n; k++) {
if (a[k] > max) {
max = a[k];
ind = k;
}
}
if (max != 1) {
a[ind] = 1;
Arrays.sort(a);
for (int i = 0; i < a.length - 1; i++)
System.out.print(a[i] + " ");
System.out.println(a[a.length - 1]);
} else {
a[0] = 2;
Arrays.sort(a);
for (int i = 0; i < a.length - 1; i++)
System.out.print(a[i] + " ");
System.out.println(a[a.length - 1]);
}
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.Arrays;
import java.util.Scanner;
public class AAA {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int n = in.nextInt();
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = in.nextInt();
int max = a[0];
int ind = 0;
for (int k = 1; k < n; k++) {
if (a[k] > max) {
max = a[k];
ind = k;
}
}
if (max != 1) {
a[ind] = 1;
Arrays.sort(a);
for (int i = 0; i < a.length - 1; i++)
System.out.print(a[i] + " ");
System.out.println(a[a.length - 1]);
} else {
a[0] = 2;
Arrays.sort(a);
for (int i = 0; i < a.length - 1; i++)
System.out.print(a[i] + " ");
System.out.println(a[a.length - 1]);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.Arrays;
import java.util.Scanner;
public class AAA {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int n = in.nextInt();
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = in.nextInt();
int max = a[0];
int ind = 0;
for (int k = 1; k < n; k++) {
if (a[k] > max) {
max = a[k];
ind = k;
}
}
if (max != 1) {
a[ind] = 1;
Arrays.sort(a);
for (int i = 0; i < a.length - 1; i++)
System.out.print(a[i] + " ");
System.out.println(a[a.length - 1]);
} else {
a[0] = 2;
Arrays.sort(a);
for (int i = 0; i < a.length - 1; i++)
System.out.print(a[i] + " ");
System.out.println(a[a.length - 1]);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 585 | 2,084 |
2,818 |
import java.util.*;
public class subtractionn {
public static void main(String[] args) {
// TODO Auto-generated method stub
Scanner in = new Scanner(System.in);
int t;
t=in.nextInt();
while(t!=0)
{
int a=in.nextInt();
int b=in.nextInt();
int total=0,neww=0;
if(a%b==0)
{
System.out.println(a/b);
}
else if(b%a==0)
{
System.out.println(b/a);
}
else
{
while(a!=0 && b!=0)
{
if(a>b)
{
total=total+(a/b);
a=a%b;
if(a==0)
{
break;
}
}
else if(b>a)
{
total=total+(b/a);
b=b%a;
if(b==0)
{
break;
}
}
else
{
System.exit(0);
}
}
System.out.println(total);
}
t--;
}
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
public class subtractionn {
public static void main(String[] args) {
// TODO Auto-generated method stub
Scanner in = new Scanner(System.in);
int t;
t=in.nextInt();
while(t!=0)
{
int a=in.nextInt();
int b=in.nextInt();
int total=0,neww=0;
if(a%b==0)
{
System.out.println(a/b);
}
else if(b%a==0)
{
System.out.println(b/a);
}
else
{
while(a!=0 && b!=0)
{
if(a>b)
{
total=total+(a/b);
a=a%b;
if(a==0)
{
break;
}
}
else if(b>a)
{
total=total+(b/a);
b=b%a;
if(b==0)
{
break;
}
}
else
{
System.exit(0);
}
}
System.out.println(total);
}
t--;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The execution time is unaffected by the size of the input n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
public class subtractionn {
public static void main(String[] args) {
// TODO Auto-generated method stub
Scanner in = new Scanner(System.in);
int t;
t=in.nextInt();
while(t!=0)
{
int a=in.nextInt();
int b=in.nextInt();
int total=0,neww=0;
if(a%b==0)
{
System.out.println(a/b);
}
else if(b%a==0)
{
System.out.println(b/a);
}
else
{
while(a!=0 && b!=0)
{
if(a>b)
{
total=total+(a/b);
a=a%b;
if(a==0)
{
break;
}
}
else if(b>a)
{
total=total+(b/a);
b=b%a;
if(b==0)
{
break;
}
}
else
{
System.exit(0);
}
}
System.out.println(total);
}
t--;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The running time increases with the logarithm of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n^3): The running time increases with the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 606 | 2,812 |
1,779 |
import java.io.*;
import java.util.*;
import java.math.*;
import static java.lang.Math.*;
public class Main implements Runnable {
class Home implements Comparable<Home> {
@Override
public int compareTo(Home arg0) {
return st - arg0.st;
}
int st, end;
}
public void solve() throws IOException {
int n = nextInt(), t = nextInt() * 2;
Home[] h = new Home[n];
for(int i = 0; i < n; ++i) {
int x = nextInt() * 2, a = nextInt() * 2;
h[i] = new Home();
h[i].st = x - a / 2;
h[i].end = x + a / 2;
}
Arrays.sort(h);
int ans = 2;
for(int i = 0; i + 1 < n; ++i) {
int delta = h[i + 1].st - h[i].end;
if (delta == t)
ans++;
if (delta > t)
ans += 2;
}
pw.println(ans);
}
static final String filename = "A";
static final boolean fromConsole = true;
public void run() {
try {
if (!fromConsole) {
in = new BufferedReader(new FileReader(filename + ".in"));
pw = new PrintWriter(filename + ".out");
} else {
in = new BufferedReader(new InputStreamReader(System.in));
pw = new PrintWriter(System.out);
}
st = new StringTokenizer("");
long st = System.currentTimeMillis();
solve();
//pw.printf("\nWorking time: %d ms\n", System.currentTimeMillis() - st);
pw.close();
} catch (Exception e) {
e.printStackTrace();
System.exit(-1);
}
}
private StringTokenizer st;
private BufferedReader in;
private PrintWriter pw;
boolean hasNext() throws IOException {
while (!st.hasMoreTokens()) {
String line = in.readLine();
if (line == null) {
return false;
}
st = new StringTokenizer(line);
}
return st.hasMoreTokens();
}
String next() throws IOException {
return hasNext() ? st.nextToken() : null;
}
int nextInt() throws IOException {
return Integer.parseInt(next());
}
BigInteger nextBigInteger() throws IOException {
return new BigInteger(next());
}
long nextLong() throws IOException {
return Long.parseLong(next());
}
double nextDouble() throws IOException {
return Double.parseDouble(next());
}
public static void main(String[] args) {
new Thread(new Main()).start();
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
import java.math.*;
import static java.lang.Math.*;
public class Main implements Runnable {
class Home implements Comparable<Home> {
@Override
public int compareTo(Home arg0) {
return st - arg0.st;
}
int st, end;
}
public void solve() throws IOException {
int n = nextInt(), t = nextInt() * 2;
Home[] h = new Home[n];
for(int i = 0; i < n; ++i) {
int x = nextInt() * 2, a = nextInt() * 2;
h[i] = new Home();
h[i].st = x - a / 2;
h[i].end = x + a / 2;
}
Arrays.sort(h);
int ans = 2;
for(int i = 0; i + 1 < n; ++i) {
int delta = h[i + 1].st - h[i].end;
if (delta == t)
ans++;
if (delta > t)
ans += 2;
}
pw.println(ans);
}
static final String filename = "A";
static final boolean fromConsole = true;
public void run() {
try {
if (!fromConsole) {
in = new BufferedReader(new FileReader(filename + ".in"));
pw = new PrintWriter(filename + ".out");
} else {
in = new BufferedReader(new InputStreamReader(System.in));
pw = new PrintWriter(System.out);
}
st = new StringTokenizer("");
long st = System.currentTimeMillis();
solve();
//pw.printf("\nWorking time: %d ms\n", System.currentTimeMillis() - st);
pw.close();
} catch (Exception e) {
e.printStackTrace();
System.exit(-1);
}
}
private StringTokenizer st;
private BufferedReader in;
private PrintWriter pw;
boolean hasNext() throws IOException {
while (!st.hasMoreTokens()) {
String line = in.readLine();
if (line == null) {
return false;
}
st = new StringTokenizer(line);
}
return st.hasMoreTokens();
}
String next() throws IOException {
return hasNext() ? st.nextToken() : null;
}
int nextInt() throws IOException {
return Integer.parseInt(next());
}
BigInteger nextBigInteger() throws IOException {
return new BigInteger(next());
}
long nextLong() throws IOException {
return Long.parseLong(next());
}
double nextDouble() throws IOException {
return Double.parseDouble(next());
}
public static void main(String[] args) {
new Thread(new Main()).start();
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
import java.math.*;
import static java.lang.Math.*;
public class Main implements Runnable {
class Home implements Comparable<Home> {
@Override
public int compareTo(Home arg0) {
return st - arg0.st;
}
int st, end;
}
public void solve() throws IOException {
int n = nextInt(), t = nextInt() * 2;
Home[] h = new Home[n];
for(int i = 0; i < n; ++i) {
int x = nextInt() * 2, a = nextInt() * 2;
h[i] = new Home();
h[i].st = x - a / 2;
h[i].end = x + a / 2;
}
Arrays.sort(h);
int ans = 2;
for(int i = 0; i + 1 < n; ++i) {
int delta = h[i + 1].st - h[i].end;
if (delta == t)
ans++;
if (delta > t)
ans += 2;
}
pw.println(ans);
}
static final String filename = "A";
static final boolean fromConsole = true;
public void run() {
try {
if (!fromConsole) {
in = new BufferedReader(new FileReader(filename + ".in"));
pw = new PrintWriter(filename + ".out");
} else {
in = new BufferedReader(new InputStreamReader(System.in));
pw = new PrintWriter(System.out);
}
st = new StringTokenizer("");
long st = System.currentTimeMillis();
solve();
//pw.printf("\nWorking time: %d ms\n", System.currentTimeMillis() - st);
pw.close();
} catch (Exception e) {
e.printStackTrace();
System.exit(-1);
}
}
private StringTokenizer st;
private BufferedReader in;
private PrintWriter pw;
boolean hasNext() throws IOException {
while (!st.hasMoreTokens()) {
String line = in.readLine();
if (line == null) {
return false;
}
st = new StringTokenizer(line);
}
return st.hasMoreTokens();
}
String next() throws IOException {
return hasNext() ? st.nextToken() : null;
}
int nextInt() throws IOException {
return Integer.parseInt(next());
}
BigInteger nextBigInteger() throws IOException {
return new BigInteger(next());
}
long nextLong() throws IOException {
return Long.parseLong(next());
}
double nextDouble() throws IOException {
return Double.parseDouble(next());
}
public static void main(String[] args) {
new Thread(new Main()).start();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(1): The time complexity is constant to the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 933 | 1,775 |
4,471 |
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.InputMismatchException;
import java.io.IOException;
import java.util.Comparator;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
FastReader in = new FastReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
E2RotateColumnsHardVersion solver = new E2RotateColumnsHardVersion();
int testCount = Integer.parseInt(in.next());
for (int i = 1; i <= testCount; i++)
solver.solve(i, in, out);
out.close();
}
static class E2RotateColumnsHardVersion {
public void solve(int testNumber, FastReader in, PrintWriter out) {
int n = in.nextInt();
int m = in.nextInt();
E2RotateColumnsHardVersion.Column[] columns = new E2RotateColumnsHardVersion.Column[m];
for (int i = 0; i < columns.length; ++i) columns[i] = new E2RotateColumnsHardVersion.Column(new int[n]);
for (int i = 0; i < n; ++i) {
for (int j = 0; j < m; ++j) {
columns[j].v[i] = in.nextInt();
if (i == n - 1) columns[j].initMax();
}
}
Arrays.sort(columns, new Comparator<E2RotateColumnsHardVersion.Column>() {
public int compare(E2RotateColumnsHardVersion.Column o1, E2RotateColumnsHardVersion.Column o2) {
return o2.max - o1.max;
}
});
if (columns.length > n)
columns = Arrays.copyOf(columns, n);
long[] dp = new long[1 << n];
for (E2RotateColumnsHardVersion.Column c : columns) {
long[] ndp = new long[1 << n];
System.arraycopy(dp, 0, ndp, 0, dp.length);
for (int rot = 0; rot < n; ++rot) {
long[] temp = new long[1 << n];
System.arraycopy(dp, 0, temp, 0, dp.length);
for (int i = 0, pos = rot; i < n; ++i, ++pos) {
if (pos >= n) pos = 0;
int val = c.v[pos];
for (int j = 0; j < temp.length; ++j) {
if ((j & (1 << i)) == 0)
temp[j | (1 << i)] = Math.max(temp[j | (1 << i)], temp[j] + val);
}
}
for (int i = 0; i < ndp.length; ++i)
ndp[i] = Math.max(ndp[i], temp[i]);
}
dp = ndp;
}
out.println(dp[dp.length - 1]);
}
static class Column {
int[] v;
int max;
public Column(int[] v) {
this.v = v;
}
void initMax() {
max = 0;
for (int vv : v) max = Math.max(max, vv);
}
}
}
static class FastReader {
private InputStream stream;
private byte[] buf = new byte[8192];
private int curChar;
private int pnumChars;
public FastReader(InputStream stream) {
this.stream = stream;
}
private int pread() {
if (pnumChars == -1) {
throw new InputMismatchException();
}
if (curChar >= pnumChars) {
curChar = 0;
try {
pnumChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (pnumChars <= 0) {
return -1;
}
}
return buf[curChar++];
}
public String next() {
return nextString();
}
public int nextInt() {
int c = pread();
while (isSpaceChar(c))
c = pread();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = pread();
}
int res = 0;
do {
if (c == ',') {
c = pread();
}
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = pread();
} while (!isSpaceChar(c));
return res * sgn;
}
public String nextString() {
int c = pread();
while (isSpaceChar(c))
c = pread();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = pread();
} while (!isSpaceChar(c));
return res.toString();
}
private boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.InputMismatchException;
import java.io.IOException;
import java.util.Comparator;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
FastReader in = new FastReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
E2RotateColumnsHardVersion solver = new E2RotateColumnsHardVersion();
int testCount = Integer.parseInt(in.next());
for (int i = 1; i <= testCount; i++)
solver.solve(i, in, out);
out.close();
}
static class E2RotateColumnsHardVersion {
public void solve(int testNumber, FastReader in, PrintWriter out) {
int n = in.nextInt();
int m = in.nextInt();
E2RotateColumnsHardVersion.Column[] columns = new E2RotateColumnsHardVersion.Column[m];
for (int i = 0; i < columns.length; ++i) columns[i] = new E2RotateColumnsHardVersion.Column(new int[n]);
for (int i = 0; i < n; ++i) {
for (int j = 0; j < m; ++j) {
columns[j].v[i] = in.nextInt();
if (i == n - 1) columns[j].initMax();
}
}
Arrays.sort(columns, new Comparator<E2RotateColumnsHardVersion.Column>() {
public int compare(E2RotateColumnsHardVersion.Column o1, E2RotateColumnsHardVersion.Column o2) {
return o2.max - o1.max;
}
});
if (columns.length > n)
columns = Arrays.copyOf(columns, n);
long[] dp = new long[1 << n];
for (E2RotateColumnsHardVersion.Column c : columns) {
long[] ndp = new long[1 << n];
System.arraycopy(dp, 0, ndp, 0, dp.length);
for (int rot = 0; rot < n; ++rot) {
long[] temp = new long[1 << n];
System.arraycopy(dp, 0, temp, 0, dp.length);
for (int i = 0, pos = rot; i < n; ++i, ++pos) {
if (pos >= n) pos = 0;
int val = c.v[pos];
for (int j = 0; j < temp.length; ++j) {
if ((j & (1 << i)) == 0)
temp[j | (1 << i)] = Math.max(temp[j | (1 << i)], temp[j] + val);
}
}
for (int i = 0; i < ndp.length; ++i)
ndp[i] = Math.max(ndp[i], temp[i]);
}
dp = ndp;
}
out.println(dp[dp.length - 1]);
}
static class Column {
int[] v;
int max;
public Column(int[] v) {
this.v = v;
}
void initMax() {
max = 0;
for (int vv : v) max = Math.max(max, vv);
}
}
}
static class FastReader {
private InputStream stream;
private byte[] buf = new byte[8192];
private int curChar;
private int pnumChars;
public FastReader(InputStream stream) {
this.stream = stream;
}
private int pread() {
if (pnumChars == -1) {
throw new InputMismatchException();
}
if (curChar >= pnumChars) {
curChar = 0;
try {
pnumChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (pnumChars <= 0) {
return -1;
}
}
return buf[curChar++];
}
public String next() {
return nextString();
}
public int nextInt() {
int c = pread();
while (isSpaceChar(c))
c = pread();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = pread();
}
int res = 0;
do {
if (c == ',') {
c = pread();
}
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = pread();
} while (!isSpaceChar(c));
return res * sgn;
}
public String nextString() {
int c = pread();
while (isSpaceChar(c))
c = pread();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = pread();
} while (!isSpaceChar(c));
return res.toString();
}
private boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.InputMismatchException;
import java.io.IOException;
import java.util.Comparator;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
FastReader in = new FastReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
E2RotateColumnsHardVersion solver = new E2RotateColumnsHardVersion();
int testCount = Integer.parseInt(in.next());
for (int i = 1; i <= testCount; i++)
solver.solve(i, in, out);
out.close();
}
static class E2RotateColumnsHardVersion {
public void solve(int testNumber, FastReader in, PrintWriter out) {
int n = in.nextInt();
int m = in.nextInt();
E2RotateColumnsHardVersion.Column[] columns = new E2RotateColumnsHardVersion.Column[m];
for (int i = 0; i < columns.length; ++i) columns[i] = new E2RotateColumnsHardVersion.Column(new int[n]);
for (int i = 0; i < n; ++i) {
for (int j = 0; j < m; ++j) {
columns[j].v[i] = in.nextInt();
if (i == n - 1) columns[j].initMax();
}
}
Arrays.sort(columns, new Comparator<E2RotateColumnsHardVersion.Column>() {
public int compare(E2RotateColumnsHardVersion.Column o1, E2RotateColumnsHardVersion.Column o2) {
return o2.max - o1.max;
}
});
if (columns.length > n)
columns = Arrays.copyOf(columns, n);
long[] dp = new long[1 << n];
for (E2RotateColumnsHardVersion.Column c : columns) {
long[] ndp = new long[1 << n];
System.arraycopy(dp, 0, ndp, 0, dp.length);
for (int rot = 0; rot < n; ++rot) {
long[] temp = new long[1 << n];
System.arraycopy(dp, 0, temp, 0, dp.length);
for (int i = 0, pos = rot; i < n; ++i, ++pos) {
if (pos >= n) pos = 0;
int val = c.v[pos];
for (int j = 0; j < temp.length; ++j) {
if ((j & (1 << i)) == 0)
temp[j | (1 << i)] = Math.max(temp[j | (1 << i)], temp[j] + val);
}
}
for (int i = 0; i < ndp.length; ++i)
ndp[i] = Math.max(ndp[i], temp[i]);
}
dp = ndp;
}
out.println(dp[dp.length - 1]);
}
static class Column {
int[] v;
int max;
public Column(int[] v) {
this.v = v;
}
void initMax() {
max = 0;
for (int vv : v) max = Math.max(max, vv);
}
}
}
static class FastReader {
private InputStream stream;
private byte[] buf = new byte[8192];
private int curChar;
private int pnumChars;
public FastReader(InputStream stream) {
this.stream = stream;
}
private int pread() {
if (pnumChars == -1) {
throw new InputMismatchException();
}
if (curChar >= pnumChars) {
curChar = 0;
try {
pnumChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (pnumChars <= 0) {
return -1;
}
}
return buf[curChar++];
}
public String next() {
return nextString();
}
public int nextInt() {
int c = pread();
while (isSpaceChar(c))
c = pread();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = pread();
}
int res = 0;
do {
if (c == ',') {
c = pread();
}
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = pread();
} while (!isSpaceChar(c));
return res * sgn;
}
public String nextString() {
int c = pread();
while (isSpaceChar(c))
c = pread();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = pread();
} while (!isSpaceChar(c));
return res.toString();
}
private boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The running time increases with the cube of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,486 | 4,460 |
1,635 |
/**
* Write a description of class VK2A here.
*
* @author (your name)
* @version (a version number or a date)
*/
import java.util.*;
public class VK2A
{
public static void main(String args[])
{
Scanner S = new Scanner(System.in);
int n = S.nextInt();
int a = S.nextInt();
int b = S.nextInt();
int[] A = new int[n];
for(int i = 0; i < n; i++)
A[i] = S.nextInt();
for(int i = 0; i < n; i++)
for(int j = 0; j < n - i - 1; j++)
{
if(A[j] < A[j + 1])
{
int temp = A[j];
A[j] = A[j + 1];
A[j + 1] = temp;
}
}
System.out.println(A[a - 1] - A[a]);
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
/**
* Write a description of class VK2A here.
*
* @author (your name)
* @version (a version number or a date)
*/
import java.util.*;
public class VK2A
{
public static void main(String args[])
{
Scanner S = new Scanner(System.in);
int n = S.nextInt();
int a = S.nextInt();
int b = S.nextInt();
int[] A = new int[n];
for(int i = 0; i < n; i++)
A[i] = S.nextInt();
for(int i = 0; i < n; i++)
for(int j = 0; j < n - i - 1; j++)
{
if(A[j] < A[j + 1])
{
int temp = A[j];
A[j] = A[j + 1];
A[j + 1] = temp;
}
}
System.out.println(A[a - 1] - A[a]);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
/**
* Write a description of class VK2A here.
*
* @author (your name)
* @version (a version number or a date)
*/
import java.util.*;
public class VK2A
{
public static void main(String args[])
{
Scanner S = new Scanner(System.in);
int n = S.nextInt();
int a = S.nextInt();
int b = S.nextInt();
int[] A = new int[n];
for(int i = 0; i < n; i++)
A[i] = S.nextInt();
for(int i = 0; i < n; i++)
for(int j = 0; j < n - i - 1; j++)
{
if(A[j] < A[j + 1])
{
int temp = A[j];
A[j] = A[j + 1];
A[j + 1] = temp;
}
}
System.out.println(A[a - 1] - A[a]);
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The running time increases with the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 567 | 1,632 |
4,194 |
import java.io.*;
import java.util.*;
public class Main {
static Scanner in;
static PrintWriter out;
// static StreamTokenizer in; static int next() throws Exception {in.nextToken(); return (int) in.nval;}
public static void main(String[] args) throws Exception {
in = new Scanner(System.in);
out = new PrintWriter(System.out);
// in = new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in)));
int n = in.nextInt();
double[][] p = new double[n][n];
for (int i = 0; i < n; i++) for (int j = 0; j < n; j++) p[i][j] = in.nextDouble();
double[] q = new double[1 << n];
q[(1 << n) - 1] = 1;
for (int mask = (1 << n) - 1; mask > 0; mask--) {
int count = 0;
for (int t = 0; t < n; t++) if (((1 << t) & mask) != 0) count++;
if (count <= 1) continue;
count = count*(count - 1)/2;
for (int t = 0; t < n; t++) if (((1 << t) & mask) != 0)
for (int s = 0; s < t; s++) if (((1 << s) & mask) != 0) {
q[mask - (1 << t)] += q[mask] / count * p[s][t];
q[mask - (1 << s)] += q[mask] / count * p[t][s];
}
}
for (int i = 0; i < n; i++) out.print(q[1 << i] + " ");
out.close();
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Main {
static Scanner in;
static PrintWriter out;
// static StreamTokenizer in; static int next() throws Exception {in.nextToken(); return (int) in.nval;}
public static void main(String[] args) throws Exception {
in = new Scanner(System.in);
out = new PrintWriter(System.out);
// in = new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in)));
int n = in.nextInt();
double[][] p = new double[n][n];
for (int i = 0; i < n; i++) for (int j = 0; j < n; j++) p[i][j] = in.nextDouble();
double[] q = new double[1 << n];
q[(1 << n) - 1] = 1;
for (int mask = (1 << n) - 1; mask > 0; mask--) {
int count = 0;
for (int t = 0; t < n; t++) if (((1 << t) & mask) != 0) count++;
if (count <= 1) continue;
count = count*(count - 1)/2;
for (int t = 0; t < n; t++) if (((1 << t) & mask) != 0)
for (int s = 0; s < t; s++) if (((1 << s) & mask) != 0) {
q[mask - (1 << t)] += q[mask] / count * p[s][t];
q[mask - (1 << s)] += q[mask] / count * p[t][s];
}
}
for (int i = 0; i < n; i++) out.print(q[1 << i] + " ");
out.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Main {
static Scanner in;
static PrintWriter out;
// static StreamTokenizer in; static int next() throws Exception {in.nextToken(); return (int) in.nval;}
public static void main(String[] args) throws Exception {
in = new Scanner(System.in);
out = new PrintWriter(System.out);
// in = new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in)));
int n = in.nextInt();
double[][] p = new double[n][n];
for (int i = 0; i < n; i++) for (int j = 0; j < n; j++) p[i][j] = in.nextDouble();
double[] q = new double[1 << n];
q[(1 << n) - 1] = 1;
for (int mask = (1 << n) - 1; mask > 0; mask--) {
int count = 0;
for (int t = 0; t < n; t++) if (((1 << t) & mask) != 0) count++;
if (count <= 1) continue;
count = count*(count - 1)/2;
for (int t = 0; t < n; t++) if (((1 << t) & mask) != 0)
for (int s = 0; s < t; s++) if (((1 << s) & mask) != 0) {
q[mask - (1 << t)] += q[mask] / count * p[s][t];
q[mask - (1 << s)] += q[mask] / count * p[t][s];
}
}
for (int i = 0; i < n; i++) out.print(q[1 << i] + " ");
out.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The running time increases with the square of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n^3): The running time increases with the cube of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 739 | 4,183 |
978 |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
public class Cf2 {
static boolean ok(long n, long k, long eatten) {
long moves = n-eatten;
long ans = moves*(moves+1)/2;
ans -= eatten;
return ans <= k;
}
public static void main(String[] args) {
FastReader in = new FastReader();
long n = in.nextInt();
long k = in.nextInt();
long left = 0, right = n;
while (left <= right) {
long middle = (left+right)/2;
if (ok(n, k, middle)) right = middle-1;
else left=middle+1;
}
System.out.println(left);
}
static class FastReader
{
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new
InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements())
{
try
{
st = new StringTokenizer(br.readLine());
}
catch (IOException e)
{
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt()
{
return Integer.parseInt(next());
}
long nextLong()
{
return Long.parseLong(next());
}
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try
{
str = br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return str;
}
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
public class Cf2 {
static boolean ok(long n, long k, long eatten) {
long moves = n-eatten;
long ans = moves*(moves+1)/2;
ans -= eatten;
return ans <= k;
}
public static void main(String[] args) {
FastReader in = new FastReader();
long n = in.nextInt();
long k = in.nextInt();
long left = 0, right = n;
while (left <= right) {
long middle = (left+right)/2;
if (ok(n, k, middle)) right = middle-1;
else left=middle+1;
}
System.out.println(left);
}
static class FastReader
{
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new
InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements())
{
try
{
st = new StringTokenizer(br.readLine());
}
catch (IOException e)
{
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt()
{
return Integer.parseInt(next());
}
long nextLong()
{
return Long.parseLong(next());
}
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try
{
str = br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return str;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
public class Cf2 {
static boolean ok(long n, long k, long eatten) {
long moves = n-eatten;
long ans = moves*(moves+1)/2;
ans -= eatten;
return ans <= k;
}
public static void main(String[] args) {
FastReader in = new FastReader();
long n = in.nextInt();
long k = in.nextInt();
long left = 0, right = n;
while (left <= right) {
long middle = (left+right)/2;
if (ok(n, k, middle)) right = middle-1;
else left=middle+1;
}
System.out.println(left);
}
static class FastReader
{
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new
InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements())
{
try
{
st = new StringTokenizer(br.readLine());
}
catch (IOException e)
{
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt()
{
return Integer.parseInt(next());
}
long nextLong()
{
return Long.parseLong(next());
}
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try
{
str = br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return str;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n): The running time grows linearly with the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 691 | 977 |
4,387 |
import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.StringTokenizer;
public class B {
static int first(int n)
{
int res = 0;
while(n > 0 && (n & 1) == 0){
n >>= 1;
res++;
}
return res;
}
public static void main(String[] args) throws Exception
{
Scanner bf = new Scanner(System.in);
PrintWriter out = new PrintWriter(System.out);
int n = bf.nextInt(), m = bf.nextInt();
ArrayList<Integer> [] adjList = new ArrayList[n];
for (int i = 0; i < adjList.length; i++)
{
adjList[i] = new ArrayList<Integer>();
}
for (int i = 0; i < m; i++)
{
int u = bf.nextInt()-1, v = bf.nextInt()-1;
adjList[u].add(v);
adjList[v].add(u);
}
long [][] memo = new long[(1<<n)][n];
for (int i = 0; i < n; i++)
{
memo[1<<i][i] = 1;
}
long ans = 0;
for (int i = 1; i < 1<<n; i++)
{
if(Integer.bitCount(i) == 1) continue;
for (int j = 0; j < n; j++)
{
if((i & (1<<j)) == 0 || j == first(i)) continue;
for(int v:adjList[j])
memo[i][j] += memo[i^(1<<j)][v];
}
}
for (int i = 1; i < 1<<n; i++)
{
if(Integer.bitCount(i) < 3) continue;
int t = first(i);
for (int j = 0; j < n; j++)
{
if(adjList[j].contains(t))
ans += memo[i][j];
}
}
out.println(ans/2);
out.flush();
out.close();
}
static class Scanner {
StringTokenizer st;
BufferedReader br;
public Scanner(InputStream s)
{
br = new BufferedReader(new InputStreamReader(s));
}
public Scanner(FileReader fileReader)
{
br = new BufferedReader(fileReader);
}
public String next() throws IOException
{
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public int nextInt() throws IOException
{
return Integer.parseInt(next());
}
public long nextLong() throws IOException
{
return Long.parseLong(next());
}
public String nextLine() throws IOException
{
return br.readLine();
}
public boolean ready() throws IOException
{
return br.ready();
}
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.StringTokenizer;
public class B {
static int first(int n)
{
int res = 0;
while(n > 0 && (n & 1) == 0){
n >>= 1;
res++;
}
return res;
}
public static void main(String[] args) throws Exception
{
Scanner bf = new Scanner(System.in);
PrintWriter out = new PrintWriter(System.out);
int n = bf.nextInt(), m = bf.nextInt();
ArrayList<Integer> [] adjList = new ArrayList[n];
for (int i = 0; i < adjList.length; i++)
{
adjList[i] = new ArrayList<Integer>();
}
for (int i = 0; i < m; i++)
{
int u = bf.nextInt()-1, v = bf.nextInt()-1;
adjList[u].add(v);
adjList[v].add(u);
}
long [][] memo = new long[(1<<n)][n];
for (int i = 0; i < n; i++)
{
memo[1<<i][i] = 1;
}
long ans = 0;
for (int i = 1; i < 1<<n; i++)
{
if(Integer.bitCount(i) == 1) continue;
for (int j = 0; j < n; j++)
{
if((i & (1<<j)) == 0 || j == first(i)) continue;
for(int v:adjList[j])
memo[i][j] += memo[i^(1<<j)][v];
}
}
for (int i = 1; i < 1<<n; i++)
{
if(Integer.bitCount(i) < 3) continue;
int t = first(i);
for (int j = 0; j < n; j++)
{
if(adjList[j].contains(t))
ans += memo[i][j];
}
}
out.println(ans/2);
out.flush();
out.close();
}
static class Scanner {
StringTokenizer st;
BufferedReader br;
public Scanner(InputStream s)
{
br = new BufferedReader(new InputStreamReader(s));
}
public Scanner(FileReader fileReader)
{
br = new BufferedReader(fileReader);
}
public String next() throws IOException
{
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public int nextInt() throws IOException
{
return Integer.parseInt(next());
}
public long nextLong() throws IOException
{
return Long.parseLong(next());
}
public String nextLine() throws IOException
{
return br.readLine();
}
public boolean ready() throws IOException
{
return br.ready();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.StringTokenizer;
public class B {
static int first(int n)
{
int res = 0;
while(n > 0 && (n & 1) == 0){
n >>= 1;
res++;
}
return res;
}
public static void main(String[] args) throws Exception
{
Scanner bf = new Scanner(System.in);
PrintWriter out = new PrintWriter(System.out);
int n = bf.nextInt(), m = bf.nextInt();
ArrayList<Integer> [] adjList = new ArrayList[n];
for (int i = 0; i < adjList.length; i++)
{
adjList[i] = new ArrayList<Integer>();
}
for (int i = 0; i < m; i++)
{
int u = bf.nextInt()-1, v = bf.nextInt()-1;
adjList[u].add(v);
adjList[v].add(u);
}
long [][] memo = new long[(1<<n)][n];
for (int i = 0; i < n; i++)
{
memo[1<<i][i] = 1;
}
long ans = 0;
for (int i = 1; i < 1<<n; i++)
{
if(Integer.bitCount(i) == 1) continue;
for (int j = 0; j < n; j++)
{
if((i & (1<<j)) == 0 || j == first(i)) continue;
for(int v:adjList[j])
memo[i][j] += memo[i^(1<<j)][v];
}
}
for (int i = 1; i < 1<<n; i++)
{
if(Integer.bitCount(i) < 3) continue;
int t = first(i);
for (int j = 0; j < n; j++)
{
if(adjList[j].contains(t))
ans += memo[i][j];
}
}
out.println(ans/2);
out.flush();
out.close();
}
static class Scanner {
StringTokenizer st;
BufferedReader br;
public Scanner(InputStream s)
{
br = new BufferedReader(new InputStreamReader(s));
}
public Scanner(FileReader fileReader)
{
br = new BufferedReader(fileReader);
}
public String next() throws IOException
{
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public int nextInt() throws IOException
{
return Integer.parseInt(next());
}
public long nextLong() throws IOException
{
return Long.parseLong(next());
}
public String nextLine() throws IOException
{
return br.readLine();
}
public boolean ready() throws IOException
{
return br.ready();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 978 | 4,376 |
3,844 |
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.io.BufferedWriter;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.util.InputMismatchException;
import java.io.IOException;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
TaskC solver = new TaskC();
solver.solve(1, in, out);
out.close();
}
static class TaskC {
public void solve(int testNumber, InputReader in, OutputWriter out) {
int tests = in.nextInt();
for (int t = 0; t < tests; t++) {
int numLines = in.nextInt();
// greedy, maintain stack, keep stack as big as possible
int stackIdx = -1;
int[] stack = new int[10000];
String prev = "";
for (int x = 0; x < numLines; x++) {
int depth = 0;
int next = in.nextInt();
boolean found = false;
for (int i = stackIdx; i >= 0; i--) {
if (next == stack[i] + 1) {
depth = i;
found = true;
break;
}
}
if (found == true) {
stackIdx = depth;
stack[depth] = next;
for (int i = 0; i <= depth; i++) {
if (i != 0) {
out.print(".");
}
out.print(stack[i]);
}
out.println();
} else if (next == 1) {
stackIdx++;
stack[stackIdx] = 1;
for (int i = 0; i <= stackIdx; i++) {
if (i != 0) {
out.print(".");
}
out.print(stack[i]);
}
out.println();
} else {
// start a new one
stackIdx = 0;
stack[0] = next;
out.println(next);
}
}
}
}
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void print(Object... objects) {
for (int i = 0; i < objects.length; i++) {
if (i != 0) {
writer.print(' ');
}
writer.print(objects[i]);
}
}
public void println() {
writer.println();
}
public void close() {
writer.close();
}
public void print(int i) {
writer.print(i);
}
public void println(int i) {
writer.println(i);
}
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private InputReader.SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1) {
throw new InputMismatchException();
}
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0) {
return -1;
}
}
return buf[curChar++];
}
public int nextInt() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c) {
if (filter != null) {
return filter.isSpaceChar(c);
}
return isWhitespace(c);
}
public static boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.io.BufferedWriter;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.util.InputMismatchException;
import java.io.IOException;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
TaskC solver = new TaskC();
solver.solve(1, in, out);
out.close();
}
static class TaskC {
public void solve(int testNumber, InputReader in, OutputWriter out) {
int tests = in.nextInt();
for (int t = 0; t < tests; t++) {
int numLines = in.nextInt();
// greedy, maintain stack, keep stack as big as possible
int stackIdx = -1;
int[] stack = new int[10000];
String prev = "";
for (int x = 0; x < numLines; x++) {
int depth = 0;
int next = in.nextInt();
boolean found = false;
for (int i = stackIdx; i >= 0; i--) {
if (next == stack[i] + 1) {
depth = i;
found = true;
break;
}
}
if (found == true) {
stackIdx = depth;
stack[depth] = next;
for (int i = 0; i <= depth; i++) {
if (i != 0) {
out.print(".");
}
out.print(stack[i]);
}
out.println();
} else if (next == 1) {
stackIdx++;
stack[stackIdx] = 1;
for (int i = 0; i <= stackIdx; i++) {
if (i != 0) {
out.print(".");
}
out.print(stack[i]);
}
out.println();
} else {
// start a new one
stackIdx = 0;
stack[0] = next;
out.println(next);
}
}
}
}
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void print(Object... objects) {
for (int i = 0; i < objects.length; i++) {
if (i != 0) {
writer.print(' ');
}
writer.print(objects[i]);
}
}
public void println() {
writer.println();
}
public void close() {
writer.close();
}
public void print(int i) {
writer.print(i);
}
public void println(int i) {
writer.println(i);
}
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private InputReader.SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1) {
throw new InputMismatchException();
}
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0) {
return -1;
}
}
return buf[curChar++];
}
public int nextInt() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c) {
if (filter != null) {
return filter.isSpaceChar(c);
}
return isWhitespace(c);
}
public static boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.io.BufferedWriter;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.util.InputMismatchException;
import java.io.IOException;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
TaskC solver = new TaskC();
solver.solve(1, in, out);
out.close();
}
static class TaskC {
public void solve(int testNumber, InputReader in, OutputWriter out) {
int tests = in.nextInt();
for (int t = 0; t < tests; t++) {
int numLines = in.nextInt();
// greedy, maintain stack, keep stack as big as possible
int stackIdx = -1;
int[] stack = new int[10000];
String prev = "";
for (int x = 0; x < numLines; x++) {
int depth = 0;
int next = in.nextInt();
boolean found = false;
for (int i = stackIdx; i >= 0; i--) {
if (next == stack[i] + 1) {
depth = i;
found = true;
break;
}
}
if (found == true) {
stackIdx = depth;
stack[depth] = next;
for (int i = 0; i <= depth; i++) {
if (i != 0) {
out.print(".");
}
out.print(stack[i]);
}
out.println();
} else if (next == 1) {
stackIdx++;
stack[stackIdx] = 1;
for (int i = 0; i <= stackIdx; i++) {
if (i != 0) {
out.print(".");
}
out.print(stack[i]);
}
out.println();
} else {
// start a new one
stackIdx = 0;
stack[0] = next;
out.println(next);
}
}
}
}
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void print(Object... objects) {
for (int i = 0; i < objects.length; i++) {
if (i != 0) {
writer.print(' ');
}
writer.print(objects[i]);
}
}
public void println() {
writer.println();
}
public void close() {
writer.close();
}
public void print(int i) {
writer.print(i);
}
public void println(int i) {
writer.println(i);
}
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private InputReader.SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1) {
throw new InputMismatchException();
}
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0) {
return -1;
}
}
return buf[curChar++];
}
public int nextInt() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c) {
if (filter != null) {
return filter.isSpaceChar(c);
}
return isWhitespace(c);
}
public static boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,388 | 3,834 |
1,363 |
import java.io.*;
import java.util.*;
import java.math.*;
public class Main {
InputStream is;
PrintWriter out;
String INPUT = "" ;
boolean local = false;
int inf=0x7FFFFFFF;
int MOD=(int)(1e9+7);
double eps=1e-5;
double PI=Math.acos(-1);
void solve() {
long maxn=nl();
long L=1,R=maxn,ans=-1;
while (L<=R){
long mid=(L+R)/2;
if(ask(1,1,mid,maxn)<1)L=mid+1;
else{
R=mid-1;
ans=mid;
}
}
if(ask(1,1,ans,maxn)==1 && ask(ans+1,1,maxn,maxn)==1){
Yts1999 a1=gao(1,1,ans,maxn);
Yts1999 a2=gao(ans+1,1,maxn,maxn);
answer(a1,a2);
}else{
L=1;R=maxn;ans=-1;
while (L<=R){
long mid=(L+R)/2;
if(ask(1,1,maxn,mid)<1)L=mid+1;
else{
R=mid-1;
ans=mid;
}
}
Yts1999 a1=gao(1,1,maxn,ans);
Yts1999 a2=gao(1,ans+1,maxn,maxn);
answer(a1,a2);
}
}
void answer(Yts1999 a1,Yts1999 a2){
out.print("!");
a1.print();
a2.print();
out.flush();
}
int ask(long a,long b,long c,long d){
out.printf("? %d %d %d %d",a,b,c,d);
out.println();
out.flush();
return ni();
}
Yts1999 gao(long x1,long x2,long y1,long y2){
long a1=0,a2=0,a3=0,a4=0;
long L,R;
L=x1;R=y1;
while(L<=R){
long mid=(L+R)/2;
if(ask(mid,x2,y1,y2)==1){
a1=mid;
L=mid+1;
}else R=mid-1;
}
L=x1;R=y1;
while(L<=R){
long mid=(L+R)/2;
if(ask(x1,x2,mid,y2)==1){
a3=mid;
R=mid-1;
}else L=mid+1;
}
L=x2;R=y2;
while(L<=R){
long mid=(L+R)/2;
if(ask(x1,mid,y1,y2)==1){
a2=mid;
L=mid+1;
}else R=mid-1;
}
L=x2;R=y2;
while(L<=R){
long mid=(L+R)/2;
if(ask(x1,x2,y1,mid)==1){
a4=mid;
R=mid-1;
}else L=mid+1;
}
return new Yts1999(a1,a2,a3,a4);
}
public class Yts1999 implements Comparable{
public long a,b,c,d;
public Yts1999(long a,long b,long c,long d){
this.a=a;
this.b=b;
this.c=c;
this.d=d;
}
public int compareTo(Object o) {
Yts1999 to=(Yts1999)o;
if(this.d<to.d) return 1;
else if(this.d==to.d) return 0;
else return -1;
}
public void print(){
out.printf(" %d %d %d %d",a,b,c,d);
}
}
long[] exgcd(long a, long b) {
if (b == 0) return new long[]{1,0,a};
long[] res = exgcd(b, a%b);
long t = res[0]; res[0] = res[1]; res[1] = t;
res[1] -= a/b*res[0];
return res;
}
long gcd(long a,long b){
return b==0?a:gcd(b,a%b);
}
long lcm(long a,long b){
return a*b/gcd(a,b);
}
private void run() {
is = local? new ByteArrayInputStream(INPUT.getBytes()):System.in;
out = new PrintWriter(System.out);
long s = System.currentTimeMillis();
solve();
out.flush();
tr(System.currentTimeMillis()-s+"ms");
}
public static void main(String[] args) throws Exception { new Main().run(); }
private byte[] inbuf = new byte[1024];
public int lenbuf = 0, ptrbuf = 0;
private int readByte(){
if(lenbuf == -1)throw new InputMismatchException();
if(ptrbuf >= lenbuf){
ptrbuf = 0;
try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); }
if(lenbuf <= 0)return -1;
}
return inbuf[ptrbuf++];
}
private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); }
private int skip() { int b; while((b = readByte()) != -1 && isSpaceChar(b)); return b; }
private double nd() { return Double.parseDouble(ns()); }
private char nc() { return (char)skip(); }
private String ns(){
int b = skip();
StringBuilder sb = new StringBuilder();
while(!(isSpaceChar(b))){ // when nextLine, (isSpaceChar(b) && b != ' ')
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
private char[] ns(int n){
char[] buf = new char[n];
int b = skip(), p = 0;
while(p < n && !(isSpaceChar(b))){
buf[p++] = (char)b;
b = readByte();
}
return n == p ? buf : Arrays.copyOf(buf, p);
}
private char[][] nm(int n, int m){
char[][] map = new char[n][];
for(int i = 0;i < n;i++)map[i] = ns(m);
return map;
}
private int[] na(int n){
int[] a = new int[n];
for(int i = 0;i < n;i++)a[i] = ni();
return a;
}
private int ni(){
int num = 0, b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private long nl(){
long num = 0;
int b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private void tr(Object... o) { if(local)System.out.println(Arrays.deepToString(o)); }
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
import java.math.*;
public class Main {
InputStream is;
PrintWriter out;
String INPUT = "" ;
boolean local = false;
int inf=0x7FFFFFFF;
int MOD=(int)(1e9+7);
double eps=1e-5;
double PI=Math.acos(-1);
void solve() {
long maxn=nl();
long L=1,R=maxn,ans=-1;
while (L<=R){
long mid=(L+R)/2;
if(ask(1,1,mid,maxn)<1)L=mid+1;
else{
R=mid-1;
ans=mid;
}
}
if(ask(1,1,ans,maxn)==1 && ask(ans+1,1,maxn,maxn)==1){
Yts1999 a1=gao(1,1,ans,maxn);
Yts1999 a2=gao(ans+1,1,maxn,maxn);
answer(a1,a2);
}else{
L=1;R=maxn;ans=-1;
while (L<=R){
long mid=(L+R)/2;
if(ask(1,1,maxn,mid)<1)L=mid+1;
else{
R=mid-1;
ans=mid;
}
}
Yts1999 a1=gao(1,1,maxn,ans);
Yts1999 a2=gao(1,ans+1,maxn,maxn);
answer(a1,a2);
}
}
void answer(Yts1999 a1,Yts1999 a2){
out.print("!");
a1.print();
a2.print();
out.flush();
}
int ask(long a,long b,long c,long d){
out.printf("? %d %d %d %d",a,b,c,d);
out.println();
out.flush();
return ni();
}
Yts1999 gao(long x1,long x2,long y1,long y2){
long a1=0,a2=0,a3=0,a4=0;
long L,R;
L=x1;R=y1;
while(L<=R){
long mid=(L+R)/2;
if(ask(mid,x2,y1,y2)==1){
a1=mid;
L=mid+1;
}else R=mid-1;
}
L=x1;R=y1;
while(L<=R){
long mid=(L+R)/2;
if(ask(x1,x2,mid,y2)==1){
a3=mid;
R=mid-1;
}else L=mid+1;
}
L=x2;R=y2;
while(L<=R){
long mid=(L+R)/2;
if(ask(x1,mid,y1,y2)==1){
a2=mid;
L=mid+1;
}else R=mid-1;
}
L=x2;R=y2;
while(L<=R){
long mid=(L+R)/2;
if(ask(x1,x2,y1,mid)==1){
a4=mid;
R=mid-1;
}else L=mid+1;
}
return new Yts1999(a1,a2,a3,a4);
}
public class Yts1999 implements Comparable{
public long a,b,c,d;
public Yts1999(long a,long b,long c,long d){
this.a=a;
this.b=b;
this.c=c;
this.d=d;
}
public int compareTo(Object o) {
Yts1999 to=(Yts1999)o;
if(this.d<to.d) return 1;
else if(this.d==to.d) return 0;
else return -1;
}
public void print(){
out.printf(" %d %d %d %d",a,b,c,d);
}
}
long[] exgcd(long a, long b) {
if (b == 0) return new long[]{1,0,a};
long[] res = exgcd(b, a%b);
long t = res[0]; res[0] = res[1]; res[1] = t;
res[1] -= a/b*res[0];
return res;
}
long gcd(long a,long b){
return b==0?a:gcd(b,a%b);
}
long lcm(long a,long b){
return a*b/gcd(a,b);
}
private void run() {
is = local? new ByteArrayInputStream(INPUT.getBytes()):System.in;
out = new PrintWriter(System.out);
long s = System.currentTimeMillis();
solve();
out.flush();
tr(System.currentTimeMillis()-s+"ms");
}
public static void main(String[] args) throws Exception { new Main().run(); }
private byte[] inbuf = new byte[1024];
public int lenbuf = 0, ptrbuf = 0;
private int readByte(){
if(lenbuf == -1)throw new InputMismatchException();
if(ptrbuf >= lenbuf){
ptrbuf = 0;
try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); }
if(lenbuf <= 0)return -1;
}
return inbuf[ptrbuf++];
}
private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); }
private int skip() { int b; while((b = readByte()) != -1 && isSpaceChar(b)); return b; }
private double nd() { return Double.parseDouble(ns()); }
private char nc() { return (char)skip(); }
private String ns(){
int b = skip();
StringBuilder sb = new StringBuilder();
while(!(isSpaceChar(b))){ // when nextLine, (isSpaceChar(b) && b != ' ')
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
private char[] ns(int n){
char[] buf = new char[n];
int b = skip(), p = 0;
while(p < n && !(isSpaceChar(b))){
buf[p++] = (char)b;
b = readByte();
}
return n == p ? buf : Arrays.copyOf(buf, p);
}
private char[][] nm(int n, int m){
char[][] map = new char[n][];
for(int i = 0;i < n;i++)map[i] = ns(m);
return map;
}
private int[] na(int n){
int[] a = new int[n];
for(int i = 0;i < n;i++)a[i] = ni();
return a;
}
private int ni(){
int num = 0, b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private long nl(){
long num = 0;
int b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private void tr(Object... o) { if(local)System.out.println(Arrays.deepToString(o)); }
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The running time increases with the square of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
import java.math.*;
public class Main {
InputStream is;
PrintWriter out;
String INPUT = "" ;
boolean local = false;
int inf=0x7FFFFFFF;
int MOD=(int)(1e9+7);
double eps=1e-5;
double PI=Math.acos(-1);
void solve() {
long maxn=nl();
long L=1,R=maxn,ans=-1;
while (L<=R){
long mid=(L+R)/2;
if(ask(1,1,mid,maxn)<1)L=mid+1;
else{
R=mid-1;
ans=mid;
}
}
if(ask(1,1,ans,maxn)==1 && ask(ans+1,1,maxn,maxn)==1){
Yts1999 a1=gao(1,1,ans,maxn);
Yts1999 a2=gao(ans+1,1,maxn,maxn);
answer(a1,a2);
}else{
L=1;R=maxn;ans=-1;
while (L<=R){
long mid=(L+R)/2;
if(ask(1,1,maxn,mid)<1)L=mid+1;
else{
R=mid-1;
ans=mid;
}
}
Yts1999 a1=gao(1,1,maxn,ans);
Yts1999 a2=gao(1,ans+1,maxn,maxn);
answer(a1,a2);
}
}
void answer(Yts1999 a1,Yts1999 a2){
out.print("!");
a1.print();
a2.print();
out.flush();
}
int ask(long a,long b,long c,long d){
out.printf("? %d %d %d %d",a,b,c,d);
out.println();
out.flush();
return ni();
}
Yts1999 gao(long x1,long x2,long y1,long y2){
long a1=0,a2=0,a3=0,a4=0;
long L,R;
L=x1;R=y1;
while(L<=R){
long mid=(L+R)/2;
if(ask(mid,x2,y1,y2)==1){
a1=mid;
L=mid+1;
}else R=mid-1;
}
L=x1;R=y1;
while(L<=R){
long mid=(L+R)/2;
if(ask(x1,x2,mid,y2)==1){
a3=mid;
R=mid-1;
}else L=mid+1;
}
L=x2;R=y2;
while(L<=R){
long mid=(L+R)/2;
if(ask(x1,mid,y1,y2)==1){
a2=mid;
L=mid+1;
}else R=mid-1;
}
L=x2;R=y2;
while(L<=R){
long mid=(L+R)/2;
if(ask(x1,x2,y1,mid)==1){
a4=mid;
R=mid-1;
}else L=mid+1;
}
return new Yts1999(a1,a2,a3,a4);
}
public class Yts1999 implements Comparable{
public long a,b,c,d;
public Yts1999(long a,long b,long c,long d){
this.a=a;
this.b=b;
this.c=c;
this.d=d;
}
public int compareTo(Object o) {
Yts1999 to=(Yts1999)o;
if(this.d<to.d) return 1;
else if(this.d==to.d) return 0;
else return -1;
}
public void print(){
out.printf(" %d %d %d %d",a,b,c,d);
}
}
long[] exgcd(long a, long b) {
if (b == 0) return new long[]{1,0,a};
long[] res = exgcd(b, a%b);
long t = res[0]; res[0] = res[1]; res[1] = t;
res[1] -= a/b*res[0];
return res;
}
long gcd(long a,long b){
return b==0?a:gcd(b,a%b);
}
long lcm(long a,long b){
return a*b/gcd(a,b);
}
private void run() {
is = local? new ByteArrayInputStream(INPUT.getBytes()):System.in;
out = new PrintWriter(System.out);
long s = System.currentTimeMillis();
solve();
out.flush();
tr(System.currentTimeMillis()-s+"ms");
}
public static void main(String[] args) throws Exception { new Main().run(); }
private byte[] inbuf = new byte[1024];
public int lenbuf = 0, ptrbuf = 0;
private int readByte(){
if(lenbuf == -1)throw new InputMismatchException();
if(ptrbuf >= lenbuf){
ptrbuf = 0;
try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); }
if(lenbuf <= 0)return -1;
}
return inbuf[ptrbuf++];
}
private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); }
private int skip() { int b; while((b = readByte()) != -1 && isSpaceChar(b)); return b; }
private double nd() { return Double.parseDouble(ns()); }
private char nc() { return (char)skip(); }
private String ns(){
int b = skip();
StringBuilder sb = new StringBuilder();
while(!(isSpaceChar(b))){ // when nextLine, (isSpaceChar(b) && b != ' ')
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
private char[] ns(int n){
char[] buf = new char[n];
int b = skip(), p = 0;
while(p < n && !(isSpaceChar(b))){
buf[p++] = (char)b;
b = readByte();
}
return n == p ? buf : Arrays.copyOf(buf, p);
}
private char[][] nm(int n, int m){
char[][] map = new char[n][];
for(int i = 0;i < n;i++)map[i] = ns(m);
return map;
}
private int[] na(int n){
int[] a = new int[n];
for(int i = 0;i < n;i++)a[i] = ni();
return a;
}
private int ni(){
int num = 0, b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private long nl(){
long num = 0;
int b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private void tr(Object... o) { if(local)System.out.println(Arrays.deepToString(o)); }
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The running time increases with the logarithm of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 2,127 | 1,361 |
581 |
import java.util.Arrays;
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner s = new Scanner(System.in);
int n = s.nextInt(), d = s.nextInt();
int[] arr = new int[n];
for(int i = 0; i < n; i++){
arr[i] = s.nextInt();
}
Arrays.sort(arr);
int count = 0;
for(int i = 1; i < n; i++){
int dist = arr[i] - arr[i - 1];
if(dist > 2 * d){
count += 2;
}else if(dist == 2 * d){
count++;
}
}
System.out.println(count + 2);
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.Arrays;
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner s = new Scanner(System.in);
int n = s.nextInt(), d = s.nextInt();
int[] arr = new int[n];
for(int i = 0; i < n; i++){
arr[i] = s.nextInt();
}
Arrays.sort(arr);
int count = 0;
for(int i = 1; i < n; i++){
int dist = arr[i] - arr[i - 1];
if(dist > 2 * d){
count += 2;
}else if(dist == 2 * d){
count++;
}
}
System.out.println(count + 2);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.Arrays;
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner s = new Scanner(System.in);
int n = s.nextInt(), d = s.nextInt();
int[] arr = new int[n];
for(int i = 0; i < n; i++){
arr[i] = s.nextInt();
}
Arrays.sort(arr);
int count = 0;
for(int i = 1; i < n; i++){
int dist = arr[i] - arr[i - 1];
if(dist > 2 * d){
count += 2;
}else if(dist == 2 * d){
count++;
}
}
System.out.println(count + 2);
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 499 | 580 |
1,694 |
import java.util.Scanner;
public class Flatwile {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int t = sc.nextInt();
int[] c = new int[n];
int[] a = new int[n];
for (int i=0; i<n; i++){
c[i] = sc.nextInt();
a[i] = sc.nextInt();
}
sort(c, a);
int res = 1;
double prev = Integer.MIN_VALUE;
for(int i=0; i<c.length; i++){
if (c[i]-a[i]/2d - prev >=t){
res++;
}
if (i!=c.length-1 && c[i+1]-a[i+1]/2d-(c[i]+a[i]/2d)>t ){
res++;
}
prev = c[i] +a[i]/2d;
}
System.out.println(res);
}
private static void sort(int[] a, int[] b){
for(int i=0; i<a.length; i++){
for(int j=i+1; j<a.length; j++){
if (a[i]>a[j]){
swap(a, i, j);
swap(b, i, j);
}
}
}
}
private static void swap(int[] a, int i, int j) {
int t = a[i];
a[i] = a[j];
a[j] = t;
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class Flatwile {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int t = sc.nextInt();
int[] c = new int[n];
int[] a = new int[n];
for (int i=0; i<n; i++){
c[i] = sc.nextInt();
a[i] = sc.nextInt();
}
sort(c, a);
int res = 1;
double prev = Integer.MIN_VALUE;
for(int i=0; i<c.length; i++){
if (c[i]-a[i]/2d - prev >=t){
res++;
}
if (i!=c.length-1 && c[i+1]-a[i+1]/2d-(c[i]+a[i]/2d)>t ){
res++;
}
prev = c[i] +a[i]/2d;
}
System.out.println(res);
}
private static void sort(int[] a, int[] b){
for(int i=0; i<a.length; i++){
for(int j=i+1; j<a.length; j++){
if (a[i]>a[j]){
swap(a, i, j);
swap(b, i, j);
}
}
}
}
private static void swap(int[] a, int i, int j) {
int t = a[i];
a[i] = a[j];
a[j] = t;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(1): The time complexity is constant to the input size n.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class Flatwile {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int t = sc.nextInt();
int[] c = new int[n];
int[] a = new int[n];
for (int i=0; i<n; i++){
c[i] = sc.nextInt();
a[i] = sc.nextInt();
}
sort(c, a);
int res = 1;
double prev = Integer.MIN_VALUE;
for(int i=0; i<c.length; i++){
if (c[i]-a[i]/2d - prev >=t){
res++;
}
if (i!=c.length-1 && c[i+1]-a[i+1]/2d-(c[i]+a[i]/2d)>t ){
res++;
}
prev = c[i] +a[i]/2d;
}
System.out.println(res);
}
private static void sort(int[] a, int[] b){
for(int i=0; i<a.length; i++){
for(int j=i+1; j<a.length; j++){
if (a[i]>a[j]){
swap(a, i, j);
swap(b, i, j);
}
}
}
}
private static void swap(int[] a, int i, int j) {
int t = a[i];
a[i] = a[j];
a[j] = t;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n^2): The running time increases with the square of the input size n.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 653 | 1,691 |
1,238 |
import java.util.*;
import java.lang.*;
import java.math.*;
import java.io.*;
import static java.lang.Math.*;
import static java.util.Arrays.*;
import static java.util.Collections.*;
public class A{
Scanner sc=new Scanner(System.in);
int INF=1<<28;
double EPS=1e-9;
int mod=(int)1e9+9;
long n, m, k;
void run(){
n=sc.nextLong();
m=sc.nextLong();
k=sc.nextLong();
solve();
}
void solve(){
long ans=0;
long s=n-m;
long remain=max(n-s*k, 0);
// debug("remain", remain);
ans=m-remain;
// debug("ans", ans);
long r=remain%k;
ans=(ans+r)%mod;
remain-=r;
// debug("remain2", remain);
long a=remain/k;
long add=(powMod(2, a, mod)-1)*k%mod*2%mod;
// debug("add", add);
ans=(ans+add)%mod;
// debug(ans);
println(ans+"");
}
long powMod(long x, long k, long mod){
if(k==0){
return 1%mod;
}else if(k%2==0){
return powMod(x*x%mod, k/2, mod);
}else{
return x*powMod(x, k-1, mod)%mod;
}
}
void println(String s){
System.out.println(s);
}
void print(String s){
System.out.print(s);
}
void debug(Object... os){
System.err.println(Arrays.deepToString(os));
}
public static void main(String[] args){
Locale.setDefault(Locale.US);
new A().run();
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.lang.*;
import java.math.*;
import java.io.*;
import static java.lang.Math.*;
import static java.util.Arrays.*;
import static java.util.Collections.*;
public class A{
Scanner sc=new Scanner(System.in);
int INF=1<<28;
double EPS=1e-9;
int mod=(int)1e9+9;
long n, m, k;
void run(){
n=sc.nextLong();
m=sc.nextLong();
k=sc.nextLong();
solve();
}
void solve(){
long ans=0;
long s=n-m;
long remain=max(n-s*k, 0);
// debug("remain", remain);
ans=m-remain;
// debug("ans", ans);
long r=remain%k;
ans=(ans+r)%mod;
remain-=r;
// debug("remain2", remain);
long a=remain/k;
long add=(powMod(2, a, mod)-1)*k%mod*2%mod;
// debug("add", add);
ans=(ans+add)%mod;
// debug(ans);
println(ans+"");
}
long powMod(long x, long k, long mod){
if(k==0){
return 1%mod;
}else if(k%2==0){
return powMod(x*x%mod, k/2, mod);
}else{
return x*powMod(x, k-1, mod)%mod;
}
}
void println(String s){
System.out.println(s);
}
void print(String s){
System.out.print(s);
}
void debug(Object... os){
System.err.println(Arrays.deepToString(os));
}
public static void main(String[] args){
Locale.setDefault(Locale.US);
new A().run();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
import java.lang.*;
import java.math.*;
import java.io.*;
import static java.lang.Math.*;
import static java.util.Arrays.*;
import static java.util.Collections.*;
public class A{
Scanner sc=new Scanner(System.in);
int INF=1<<28;
double EPS=1e-9;
int mod=(int)1e9+9;
long n, m, k;
void run(){
n=sc.nextLong();
m=sc.nextLong();
k=sc.nextLong();
solve();
}
void solve(){
long ans=0;
long s=n-m;
long remain=max(n-s*k, 0);
// debug("remain", remain);
ans=m-remain;
// debug("ans", ans);
long r=remain%k;
ans=(ans+r)%mod;
remain-=r;
// debug("remain2", remain);
long a=remain/k;
long add=(powMod(2, a, mod)-1)*k%mod*2%mod;
// debug("add", add);
ans=(ans+add)%mod;
// debug(ans);
println(ans+"");
}
long powMod(long x, long k, long mod){
if(k==0){
return 1%mod;
}else if(k%2==0){
return powMod(x*x%mod, k/2, mod);
}else{
return x*powMod(x, k-1, mod)%mod;
}
}
void println(String s){
System.out.println(s);
}
void print(String s){
System.out.print(s);
}
void debug(Object... os){
System.err.println(Arrays.deepToString(os));
}
public static void main(String[] args){
Locale.setDefault(Locale.US);
new A().run();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 717 | 1,237 |
2,727 |
import java.util.Scanner;
public class LCM {
public static void main(String[] args) {
Scanner scan = new Scanner(System.in);
long n = scan.nextLong();
if (n <= 2)
System.out.println(n);
else if (n % 2 == 1)
System.out.println(n * (n - 1) * (n - 2));
else if (n % 3 == 0)
System.out.println((n - 1) * (n - 2) * (n - 3));
else
System.out.println(n * (n - 1) * (n - 3));
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.Scanner;
public class LCM {
public static void main(String[] args) {
Scanner scan = new Scanner(System.in);
long n = scan.nextLong();
if (n <= 2)
System.out.println(n);
else if (n % 2 == 1)
System.out.println(n * (n - 1) * (n - 2));
else if (n % 3 == 0)
System.out.println((n - 1) * (n - 2) * (n - 3));
else
System.out.println(n * (n - 1) * (n - 3));
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class LCM {
public static void main(String[] args) {
Scanner scan = new Scanner(System.in);
long n = scan.nextLong();
if (n <= 2)
System.out.println(n);
else if (n % 2 == 1)
System.out.println(n * (n - 1) * (n - 2));
else if (n % 3 == 0)
System.out.println((n - 1) * (n - 2) * (n - 3));
else
System.out.println(n * (n - 1) * (n - 3));
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(1): The time complexity is constant to the input size n.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 494 | 2,721 |
527 |
import java.io.*;
import java.util.Arrays;
import java.util.StringJoiner;
import java.util.StringTokenizer;
import java.util.function.Function;
public class Main {
static String S;
public static void main(String[] args) {
FastScanner sc = new FastScanner(System.in);
S = sc.next();
System.out.println(solve());
}
static int solve() {
int ans = -1;
int time = 1;
int n = S.length();
for (int i = 1; i < n*2; i++) {
if( S.charAt((i-1)%n) != S.charAt(i%n) ) {
time++;
} else {
ans = Math.max(time, ans);
time = 1;
}
}
ans = Math.max(time, ans);
if( ans == n*2 ) {
return n;
} else {
return ans;
}
}
@SuppressWarnings("unused")
static class FastScanner {
private BufferedReader reader;
private StringTokenizer tokenizer;
FastScanner(InputStream in) {
reader = new BufferedReader(new InputStreamReader(in));
tokenizer = null;
}
String next() {
if (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
String nextLine() {
if (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
return reader.readLine();
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken("\n");
}
long nextLong() {
return Long.parseLong(next());
}
int nextInt() {
return Integer.parseInt(next());
}
int[] nextIntArray(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
int[] nextIntArray(int n, int delta) {
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = nextInt() + delta;
return a;
}
long[] nextLongArray(int n) {
long[] a = new long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
}
static <A> void writeLines(A[] as, Function<A, String> f) {
PrintWriter pw = new PrintWriter(System.out);
for (A a : as) {
pw.println(f.apply(a));
}
pw.flush();
}
static void writeLines(int[] as) {
PrintWriter pw = new PrintWriter(System.out);
for (int a : as) pw.println(a);
pw.flush();
}
static void writeLines(long[] as) {
PrintWriter pw = new PrintWriter(System.out);
for (long a : as) pw.println(a);
pw.flush();
}
static int max(int... as) {
int max = Integer.MIN_VALUE;
for (int a : as) max = Math.max(a, max);
return max;
}
static int min(int... as) {
int min = Integer.MAX_VALUE;
for (int a : as) min = Math.min(a, min);
return min;
}
static void debug(Object... args) {
StringJoiner j = new StringJoiner(" ");
for (Object arg : args) {
if (arg instanceof int[]) j.add(Arrays.toString((int[]) arg));
else if (arg instanceof long[]) j.add(Arrays.toString((long[]) arg));
else if (arg instanceof double[]) j.add(Arrays.toString((double[]) arg));
else if (arg instanceof Object[]) j.add(Arrays.toString((Object[]) arg));
else j.add(arg.toString());
}
System.err.println(j.toString());
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.Arrays;
import java.util.StringJoiner;
import java.util.StringTokenizer;
import java.util.function.Function;
public class Main {
static String S;
public static void main(String[] args) {
FastScanner sc = new FastScanner(System.in);
S = sc.next();
System.out.println(solve());
}
static int solve() {
int ans = -1;
int time = 1;
int n = S.length();
for (int i = 1; i < n*2; i++) {
if( S.charAt((i-1)%n) != S.charAt(i%n) ) {
time++;
} else {
ans = Math.max(time, ans);
time = 1;
}
}
ans = Math.max(time, ans);
if( ans == n*2 ) {
return n;
} else {
return ans;
}
}
@SuppressWarnings("unused")
static class FastScanner {
private BufferedReader reader;
private StringTokenizer tokenizer;
FastScanner(InputStream in) {
reader = new BufferedReader(new InputStreamReader(in));
tokenizer = null;
}
String next() {
if (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
String nextLine() {
if (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
return reader.readLine();
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken("\n");
}
long nextLong() {
return Long.parseLong(next());
}
int nextInt() {
return Integer.parseInt(next());
}
int[] nextIntArray(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
int[] nextIntArray(int n, int delta) {
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = nextInt() + delta;
return a;
}
long[] nextLongArray(int n) {
long[] a = new long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
}
static <A> void writeLines(A[] as, Function<A, String> f) {
PrintWriter pw = new PrintWriter(System.out);
for (A a : as) {
pw.println(f.apply(a));
}
pw.flush();
}
static void writeLines(int[] as) {
PrintWriter pw = new PrintWriter(System.out);
for (int a : as) pw.println(a);
pw.flush();
}
static void writeLines(long[] as) {
PrintWriter pw = new PrintWriter(System.out);
for (long a : as) pw.println(a);
pw.flush();
}
static int max(int... as) {
int max = Integer.MIN_VALUE;
for (int a : as) max = Math.max(a, max);
return max;
}
static int min(int... as) {
int min = Integer.MAX_VALUE;
for (int a : as) min = Math.min(a, min);
return min;
}
static void debug(Object... args) {
StringJoiner j = new StringJoiner(" ");
for (Object arg : args) {
if (arg instanceof int[]) j.add(Arrays.toString((int[]) arg));
else if (arg instanceof long[]) j.add(Arrays.toString((long[]) arg));
else if (arg instanceof double[]) j.add(Arrays.toString((double[]) arg));
else if (arg instanceof Object[]) j.add(Arrays.toString((Object[]) arg));
else j.add(arg.toString());
}
System.err.println(j.toString());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The running time increases with the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.Arrays;
import java.util.StringJoiner;
import java.util.StringTokenizer;
import java.util.function.Function;
public class Main {
static String S;
public static void main(String[] args) {
FastScanner sc = new FastScanner(System.in);
S = sc.next();
System.out.println(solve());
}
static int solve() {
int ans = -1;
int time = 1;
int n = S.length();
for (int i = 1; i < n*2; i++) {
if( S.charAt((i-1)%n) != S.charAt(i%n) ) {
time++;
} else {
ans = Math.max(time, ans);
time = 1;
}
}
ans = Math.max(time, ans);
if( ans == n*2 ) {
return n;
} else {
return ans;
}
}
@SuppressWarnings("unused")
static class FastScanner {
private BufferedReader reader;
private StringTokenizer tokenizer;
FastScanner(InputStream in) {
reader = new BufferedReader(new InputStreamReader(in));
tokenizer = null;
}
String next() {
if (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
String nextLine() {
if (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
return reader.readLine();
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken("\n");
}
long nextLong() {
return Long.parseLong(next());
}
int nextInt() {
return Integer.parseInt(next());
}
int[] nextIntArray(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
int[] nextIntArray(int n, int delta) {
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = nextInt() + delta;
return a;
}
long[] nextLongArray(int n) {
long[] a = new long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
}
static <A> void writeLines(A[] as, Function<A, String> f) {
PrintWriter pw = new PrintWriter(System.out);
for (A a : as) {
pw.println(f.apply(a));
}
pw.flush();
}
static void writeLines(int[] as) {
PrintWriter pw = new PrintWriter(System.out);
for (int a : as) pw.println(a);
pw.flush();
}
static void writeLines(long[] as) {
PrintWriter pw = new PrintWriter(System.out);
for (long a : as) pw.println(a);
pw.flush();
}
static int max(int... as) {
int max = Integer.MIN_VALUE;
for (int a : as) max = Math.max(a, max);
return max;
}
static int min(int... as) {
int min = Integer.MAX_VALUE;
for (int a : as) min = Math.min(a, min);
return min;
}
static void debug(Object... args) {
StringJoiner j = new StringJoiner(" ");
for (Object arg : args) {
if (arg instanceof int[]) j.add(Arrays.toString((int[]) arg));
else if (arg instanceof long[]) j.add(Arrays.toString((long[]) arg));
else if (arg instanceof double[]) j.add(Arrays.toString((double[]) arg));
else if (arg instanceof Object[]) j.add(Arrays.toString((Object[]) arg));
else j.add(arg.toString());
}
System.err.println(j.toString());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,183 | 526 |
2,111 |
import java.util.*;
import java.io.*;
import java.math.BigInteger;
public class Problem
{
static int mod = (int) (1e9+7);
static InputReader in;
static PrintWriter out;
static int[] rt;
static int[] size;
static void initialize(int n){
rt = new int[n + 1];
size = new int[n + 1];
for(int i = 0; i < rt.length; i++){
rt[i] = i;
size[i] = 1;
}
}
static int root(int x){
while(rt[x] != x){
rt[x] = rt[rt[x]];
x = rt[x];
}
return x;
}
static long union(int x,int y){
int root_x = root(x);
int root_y = root(y);
if(root_x == root_y) return 0;
long val = size[root_x] *1l* size[root_y];
if(size[root_x]<size[root_y]){
rt[root_x] = rt[root_y];
size[root_y] += size[root_x];
}
else{
rt[root_y] = rt[root_x];
size[root_x] += size[root_y];
}
return val;
}
static void solve()
{
in = new InputReader(System.in);
out = new PrintWriter(System.out);
int t = 1;
while(t-- > 0){
int n = in.nextInt();
int[] arr = in.nextIntArray(n);
ArrayList<Pair> list = new ArrayList<>();
for(int i = 1; i < n; i++){
int u = in.nextInt() - 1;
int v = in.nextInt() - 1;
list.add(new Pair(u, v, Math.max(arr[u],arr[v])));
}
list.sort((p1,p2) -> Integer.compare(p1.i, p2.i));
initialize(n);
long s1 = 0;
for(int i = 0; i < list.size(); i++){
s1 += union(list.get(i).x, list.get(i).y) * list.get(i).i;
}
for(int i = 0; i < list.size(); i++){
Pair p = list.get(i);
p.i = Math.min(arr[p.x],arr[p.y]);
}
list.sort((p1,p2) -> -Integer.compare(p1.i, p2.i));
initialize(n);
long s2 = 0;
for(int i = 0; i < list.size(); i++){
s2 += union(list.get(i).x, list.get(i).y) * list.get(i).i;
}
out.println(s1 - s2);
}
out.close();
}
public static void main(String[] args)
{
new Thread(null ,new Runnable(){
public void run(){
try{
solve();
} catch(Exception e){
e.printStackTrace();
}
}
},"1",1<<26).start();
}
static class Pair implements Comparable<Pair>
{
int x,y;
int i;
Pair (int x,int y)
{
this.x = x;
this.y = y;
}
Pair (int x,int y, int i)
{
this.x = x;
this.y = y;
this.i = i;
}
public int compareTo(Pair o)
{
if(this.x != o.x)
return -Integer.compare(this.x, o.y);
return -Integer.compare(this.y,o.y);
//return 0;
}
public boolean equals(Object o)
{
if (o instanceof Pair)
{
Pair p = (Pair)o;
return p.x == x && p.y==y;
}
return false;
}
@Override
public String toString()
{
return x + " "+ y + " "+i;
}
/*public int hashCode()
{
return new Long(x).hashCode() * 31 + new Long(y).hashCode();
}*/
}
static long add(long a,long b){
long x=(a+b);
while(x>=mod) x-=mod;
return x;
}
static long sub(long a,long b){
long x=(a-b);
while(x<0) x+=mod;
return x;
}
static long mul(long a,long b){
long x=(a*b);
while(x>=mod) x-=mod;
return x;
}
static String rev(String s){
StringBuilder sb=new StringBuilder(s);
sb.reverse();
return sb.toString();
}
static long gcd(long x,long y)
{
if(y==0)
return x;
else
return gcd(y,x%y);
}
static int gcd(int x,int y)
{
if(y==0)
return x;
else
return gcd(y,x%y);
}
static long pow(long n,long p,long m)
{
long result = 1;
if(p==0){
return n;
}
while(p!=0)
{
if(p%2==1)
result *= n;
if(result >= m)
result %= m;
p >>=1;
n*=n;
if(n >= m)
n%=m;
}
return result;
}
static long pow(long n,long p)
{
long result = 1;
if(p==0)
return 1;
while(p!=0)
{
if(p%2==1)
result *= n;
p >>=1;
n*=n;
}
return result;
}
static void debug(Object... o)
{
System.out.println(Arrays.deepToString(o));
}
static class InputReader
{
private final InputStream stream;
private final byte[] buf = new byte[8192];
private int curChar, snumChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream)
{
this.stream = stream;
}
public int snext()
{
if (snumChars == -1)
throw new InputMismatchException();
if (curChar >= snumChars)
{
curChar = 0;
try
{
snumChars = stream.read(buf);
} catch (IOException e)
{
throw new InputMismatchException();
}
if (snumChars <= 0)
return -1;
}
return buf[curChar++];
}
public int nextInt()
{
int c = snext();
while (isSpaceChar(c))
{
c = snext();
}
int sgn = 1;
if (c == '-')
{
sgn = -1;
c = snext();
}
int res = 0;
do
{
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = snext();
} while (!isSpaceChar(c));
return res * sgn;
}
public long nextLong()
{
int c = snext();
while (isSpaceChar(c))
{
c = snext();
}
int sgn = 1;
if (c == '-')
{
sgn = -1;
c = snext();
}
long res = 0;
do
{
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = snext();
} while (!isSpaceChar(c));
return res * sgn;
}
public int[] nextIntArray(int n)
{
int a[] = new int[n];
for (int i = 0; i < n; i++)
{
a[i] = nextInt();
}
return a;
}
public long[] nextLongArray(int n)
{
long a[] = new long[n];
for (int i = 0; i < n; i++)
{
a[i] = nextLong();
}
return a;
}
public String readString()
{
int c = snext();
while (isSpaceChar(c))
{
c = snext();
}
StringBuilder res = new StringBuilder();
do
{
res.appendCodePoint(c);
c = snext();
} while (!isSpaceChar(c));
return res.toString();
}
public String nextLine()
{
int c = snext();
while (isSpaceChar(c))
c = snext();
StringBuilder res = new StringBuilder();
do
{
res.appendCodePoint(c);
c = snext();
} while (!isEndOfLine(c));
return res.toString();
}
public boolean isSpaceChar(int c)
{
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
private boolean isEndOfLine(int c)
{
return c == '\n' || c == '\r' || c == -1;
}
public interface SpaceCharFilter
{
public boolean isSpaceChar(int ch);
}
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
import java.math.BigInteger;
public class Problem
{
static int mod = (int) (1e9+7);
static InputReader in;
static PrintWriter out;
static int[] rt;
static int[] size;
static void initialize(int n){
rt = new int[n + 1];
size = new int[n + 1];
for(int i = 0; i < rt.length; i++){
rt[i] = i;
size[i] = 1;
}
}
static int root(int x){
while(rt[x] != x){
rt[x] = rt[rt[x]];
x = rt[x];
}
return x;
}
static long union(int x,int y){
int root_x = root(x);
int root_y = root(y);
if(root_x == root_y) return 0;
long val = size[root_x] *1l* size[root_y];
if(size[root_x]<size[root_y]){
rt[root_x] = rt[root_y];
size[root_y] += size[root_x];
}
else{
rt[root_y] = rt[root_x];
size[root_x] += size[root_y];
}
return val;
}
static void solve()
{
in = new InputReader(System.in);
out = new PrintWriter(System.out);
int t = 1;
while(t-- > 0){
int n = in.nextInt();
int[] arr = in.nextIntArray(n);
ArrayList<Pair> list = new ArrayList<>();
for(int i = 1; i < n; i++){
int u = in.nextInt() - 1;
int v = in.nextInt() - 1;
list.add(new Pair(u, v, Math.max(arr[u],arr[v])));
}
list.sort((p1,p2) -> Integer.compare(p1.i, p2.i));
initialize(n);
long s1 = 0;
for(int i = 0; i < list.size(); i++){
s1 += union(list.get(i).x, list.get(i).y) * list.get(i).i;
}
for(int i = 0; i < list.size(); i++){
Pair p = list.get(i);
p.i = Math.min(arr[p.x],arr[p.y]);
}
list.sort((p1,p2) -> -Integer.compare(p1.i, p2.i));
initialize(n);
long s2 = 0;
for(int i = 0; i < list.size(); i++){
s2 += union(list.get(i).x, list.get(i).y) * list.get(i).i;
}
out.println(s1 - s2);
}
out.close();
}
public static void main(String[] args)
{
new Thread(null ,new Runnable(){
public void run(){
try{
solve();
} catch(Exception e){
e.printStackTrace();
}
}
},"1",1<<26).start();
}
static class Pair implements Comparable<Pair>
{
int x,y;
int i;
Pair (int x,int y)
{
this.x = x;
this.y = y;
}
Pair (int x,int y, int i)
{
this.x = x;
this.y = y;
this.i = i;
}
public int compareTo(Pair o)
{
if(this.x != o.x)
return -Integer.compare(this.x, o.y);
return -Integer.compare(this.y,o.y);
//return 0;
}
public boolean equals(Object o)
{
if (o instanceof Pair)
{
Pair p = (Pair)o;
return p.x == x && p.y==y;
}
return false;
}
@Override
public String toString()
{
return x + " "+ y + " "+i;
}
/*public int hashCode()
{
return new Long(x).hashCode() * 31 + new Long(y).hashCode();
}*/
}
static long add(long a,long b){
long x=(a+b);
while(x>=mod) x-=mod;
return x;
}
static long sub(long a,long b){
long x=(a-b);
while(x<0) x+=mod;
return x;
}
static long mul(long a,long b){
long x=(a*b);
while(x>=mod) x-=mod;
return x;
}
static String rev(String s){
StringBuilder sb=new StringBuilder(s);
sb.reverse();
return sb.toString();
}
static long gcd(long x,long y)
{
if(y==0)
return x;
else
return gcd(y,x%y);
}
static int gcd(int x,int y)
{
if(y==0)
return x;
else
return gcd(y,x%y);
}
static long pow(long n,long p,long m)
{
long result = 1;
if(p==0){
return n;
}
while(p!=0)
{
if(p%2==1)
result *= n;
if(result >= m)
result %= m;
p >>=1;
n*=n;
if(n >= m)
n%=m;
}
return result;
}
static long pow(long n,long p)
{
long result = 1;
if(p==0)
return 1;
while(p!=0)
{
if(p%2==1)
result *= n;
p >>=1;
n*=n;
}
return result;
}
static void debug(Object... o)
{
System.out.println(Arrays.deepToString(o));
}
static class InputReader
{
private final InputStream stream;
private final byte[] buf = new byte[8192];
private int curChar, snumChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream)
{
this.stream = stream;
}
public int snext()
{
if (snumChars == -1)
throw new InputMismatchException();
if (curChar >= snumChars)
{
curChar = 0;
try
{
snumChars = stream.read(buf);
} catch (IOException e)
{
throw new InputMismatchException();
}
if (snumChars <= 0)
return -1;
}
return buf[curChar++];
}
public int nextInt()
{
int c = snext();
while (isSpaceChar(c))
{
c = snext();
}
int sgn = 1;
if (c == '-')
{
sgn = -1;
c = snext();
}
int res = 0;
do
{
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = snext();
} while (!isSpaceChar(c));
return res * sgn;
}
public long nextLong()
{
int c = snext();
while (isSpaceChar(c))
{
c = snext();
}
int sgn = 1;
if (c == '-')
{
sgn = -1;
c = snext();
}
long res = 0;
do
{
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = snext();
} while (!isSpaceChar(c));
return res * sgn;
}
public int[] nextIntArray(int n)
{
int a[] = new int[n];
for (int i = 0; i < n; i++)
{
a[i] = nextInt();
}
return a;
}
public long[] nextLongArray(int n)
{
long a[] = new long[n];
for (int i = 0; i < n; i++)
{
a[i] = nextLong();
}
return a;
}
public String readString()
{
int c = snext();
while (isSpaceChar(c))
{
c = snext();
}
StringBuilder res = new StringBuilder();
do
{
res.appendCodePoint(c);
c = snext();
} while (!isSpaceChar(c));
return res.toString();
}
public String nextLine()
{
int c = snext();
while (isSpaceChar(c))
c = snext();
StringBuilder res = new StringBuilder();
do
{
res.appendCodePoint(c);
c = snext();
} while (!isEndOfLine(c));
return res.toString();
}
public boolean isSpaceChar(int c)
{
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
private boolean isEndOfLine(int c)
{
return c == '\n' || c == '\r' || c == -1;
}
public interface SpaceCharFilter
{
public boolean isSpaceChar(int ch);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
import java.math.BigInteger;
public class Problem
{
static int mod = (int) (1e9+7);
static InputReader in;
static PrintWriter out;
static int[] rt;
static int[] size;
static void initialize(int n){
rt = new int[n + 1];
size = new int[n + 1];
for(int i = 0; i < rt.length; i++){
rt[i] = i;
size[i] = 1;
}
}
static int root(int x){
while(rt[x] != x){
rt[x] = rt[rt[x]];
x = rt[x];
}
return x;
}
static long union(int x,int y){
int root_x = root(x);
int root_y = root(y);
if(root_x == root_y) return 0;
long val = size[root_x] *1l* size[root_y];
if(size[root_x]<size[root_y]){
rt[root_x] = rt[root_y];
size[root_y] += size[root_x];
}
else{
rt[root_y] = rt[root_x];
size[root_x] += size[root_y];
}
return val;
}
static void solve()
{
in = new InputReader(System.in);
out = new PrintWriter(System.out);
int t = 1;
while(t-- > 0){
int n = in.nextInt();
int[] arr = in.nextIntArray(n);
ArrayList<Pair> list = new ArrayList<>();
for(int i = 1; i < n; i++){
int u = in.nextInt() - 1;
int v = in.nextInt() - 1;
list.add(new Pair(u, v, Math.max(arr[u],arr[v])));
}
list.sort((p1,p2) -> Integer.compare(p1.i, p2.i));
initialize(n);
long s1 = 0;
for(int i = 0; i < list.size(); i++){
s1 += union(list.get(i).x, list.get(i).y) * list.get(i).i;
}
for(int i = 0; i < list.size(); i++){
Pair p = list.get(i);
p.i = Math.min(arr[p.x],arr[p.y]);
}
list.sort((p1,p2) -> -Integer.compare(p1.i, p2.i));
initialize(n);
long s2 = 0;
for(int i = 0; i < list.size(); i++){
s2 += union(list.get(i).x, list.get(i).y) * list.get(i).i;
}
out.println(s1 - s2);
}
out.close();
}
public static void main(String[] args)
{
new Thread(null ,new Runnable(){
public void run(){
try{
solve();
} catch(Exception e){
e.printStackTrace();
}
}
},"1",1<<26).start();
}
static class Pair implements Comparable<Pair>
{
int x,y;
int i;
Pair (int x,int y)
{
this.x = x;
this.y = y;
}
Pair (int x,int y, int i)
{
this.x = x;
this.y = y;
this.i = i;
}
public int compareTo(Pair o)
{
if(this.x != o.x)
return -Integer.compare(this.x, o.y);
return -Integer.compare(this.y,o.y);
//return 0;
}
public boolean equals(Object o)
{
if (o instanceof Pair)
{
Pair p = (Pair)o;
return p.x == x && p.y==y;
}
return false;
}
@Override
public String toString()
{
return x + " "+ y + " "+i;
}
/*public int hashCode()
{
return new Long(x).hashCode() * 31 + new Long(y).hashCode();
}*/
}
static long add(long a,long b){
long x=(a+b);
while(x>=mod) x-=mod;
return x;
}
static long sub(long a,long b){
long x=(a-b);
while(x<0) x+=mod;
return x;
}
static long mul(long a,long b){
long x=(a*b);
while(x>=mod) x-=mod;
return x;
}
static String rev(String s){
StringBuilder sb=new StringBuilder(s);
sb.reverse();
return sb.toString();
}
static long gcd(long x,long y)
{
if(y==0)
return x;
else
return gcd(y,x%y);
}
static int gcd(int x,int y)
{
if(y==0)
return x;
else
return gcd(y,x%y);
}
static long pow(long n,long p,long m)
{
long result = 1;
if(p==0){
return n;
}
while(p!=0)
{
if(p%2==1)
result *= n;
if(result >= m)
result %= m;
p >>=1;
n*=n;
if(n >= m)
n%=m;
}
return result;
}
static long pow(long n,long p)
{
long result = 1;
if(p==0)
return 1;
while(p!=0)
{
if(p%2==1)
result *= n;
p >>=1;
n*=n;
}
return result;
}
static void debug(Object... o)
{
System.out.println(Arrays.deepToString(o));
}
static class InputReader
{
private final InputStream stream;
private final byte[] buf = new byte[8192];
private int curChar, snumChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream)
{
this.stream = stream;
}
public int snext()
{
if (snumChars == -1)
throw new InputMismatchException();
if (curChar >= snumChars)
{
curChar = 0;
try
{
snumChars = stream.read(buf);
} catch (IOException e)
{
throw new InputMismatchException();
}
if (snumChars <= 0)
return -1;
}
return buf[curChar++];
}
public int nextInt()
{
int c = snext();
while (isSpaceChar(c))
{
c = snext();
}
int sgn = 1;
if (c == '-')
{
sgn = -1;
c = snext();
}
int res = 0;
do
{
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = snext();
} while (!isSpaceChar(c));
return res * sgn;
}
public long nextLong()
{
int c = snext();
while (isSpaceChar(c))
{
c = snext();
}
int sgn = 1;
if (c == '-')
{
sgn = -1;
c = snext();
}
long res = 0;
do
{
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = snext();
} while (!isSpaceChar(c));
return res * sgn;
}
public int[] nextIntArray(int n)
{
int a[] = new int[n];
for (int i = 0; i < n; i++)
{
a[i] = nextInt();
}
return a;
}
public long[] nextLongArray(int n)
{
long a[] = new long[n];
for (int i = 0; i < n; i++)
{
a[i] = nextLong();
}
return a;
}
public String readString()
{
int c = snext();
while (isSpaceChar(c))
{
c = snext();
}
StringBuilder res = new StringBuilder();
do
{
res.appendCodePoint(c);
c = snext();
} while (!isSpaceChar(c));
return res.toString();
}
public String nextLine()
{
int c = snext();
while (isSpaceChar(c))
c = snext();
StringBuilder res = new StringBuilder();
do
{
res.appendCodePoint(c);
c = snext();
} while (!isEndOfLine(c));
return res.toString();
}
public boolean isSpaceChar(int c)
{
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
private boolean isEndOfLine(int c)
{
return c == '\n' || c == '\r' || c == -1;
}
public interface SpaceCharFilter
{
public boolean isSpaceChar(int ch);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(1): The time complexity is constant to the input size n.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 2,407 | 2,107 |
3,075 |
import java.util.Scanner;
public class ToyArmy {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
long n = sc.nextLong();
System.out.println(n / 2 + n);
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class ToyArmy {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
long n = sc.nextLong();
System.out.println(n / 2 + n);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(1): The time complexity is constant to the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.Scanner;
public class ToyArmy {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
long n = sc.nextLong();
System.out.println(n / 2 + n);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 379 | 3,069 |
1,951 |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintStream;
import java.util.Arrays;
import java.util.Comparator;
import java.util.StringTokenizer;
import java.util.logging.Level;
import java.util.logging.Logger;
public class ProblemA {
private final BufferedReader in;
private final PrintStream out;
private StringTokenizer tok = new StringTokenizer("");
private String nextLine = null;
public static void main(String[] args) throws Exception {
new ProblemA();
}
private ProblemA() throws Exception {
in = new BufferedReader(new InputStreamReader(System.in));
out = System.out;
start();
end();
}
private int nextInt() {
return Integer.parseInt(nextWord());
}
private String nextWord() {
if (tok.hasMoreTokens()) {
return tok.nextToken();
} else {
while (!tok.hasMoreTokens()) {
try {
nextLine = in.readLine();
if (nextLine == null) {
return null;
} else {
tok = new StringTokenizer(nextLine);
}
} catch (IOException ex) {
Logger.getLogger(ProblemA.class.getName()).log(Level.SEVERE, null, ex);
}
}
return tok.nextToken();
}
}
private void start() {
int n = nextInt();
int k = nextInt();
T[] ts = new T[n];
for (int i = 0; i < n; i++) {
ts[i] = new T(nextInt(), nextInt());
}
Arrays.sort(ts, new Comparator<T>() {
@Override
public int compare(T o1, T o2) {
if (o1.p > o2.p) {
return -1;
}
if (o1.p < o2.p) {
return 1;
}
if (o1.t < o2.t) {
return -1;
}
if (o1.t > o2.t) {
return 1;
}
return 0;
}
});
int t = ts[k - 1].t;
int p = ts[k - 1].p;
int res = 0;
for (int i = 0; i < n; i++) {
if (ts[i].p == p && ts[i].t == t) {
res++;
}
}
out.println(res);
}
class T {
int p;
int t;
public T(int p, int t) {
this.p = p;
this.t = t;
}
}
private void end() {
out.close();
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintStream;
import java.util.Arrays;
import java.util.Comparator;
import java.util.StringTokenizer;
import java.util.logging.Level;
import java.util.logging.Logger;
public class ProblemA {
private final BufferedReader in;
private final PrintStream out;
private StringTokenizer tok = new StringTokenizer("");
private String nextLine = null;
public static void main(String[] args) throws Exception {
new ProblemA();
}
private ProblemA() throws Exception {
in = new BufferedReader(new InputStreamReader(System.in));
out = System.out;
start();
end();
}
private int nextInt() {
return Integer.parseInt(nextWord());
}
private String nextWord() {
if (tok.hasMoreTokens()) {
return tok.nextToken();
} else {
while (!tok.hasMoreTokens()) {
try {
nextLine = in.readLine();
if (nextLine == null) {
return null;
} else {
tok = new StringTokenizer(nextLine);
}
} catch (IOException ex) {
Logger.getLogger(ProblemA.class.getName()).log(Level.SEVERE, null, ex);
}
}
return tok.nextToken();
}
}
private void start() {
int n = nextInt();
int k = nextInt();
T[] ts = new T[n];
for (int i = 0; i < n; i++) {
ts[i] = new T(nextInt(), nextInt());
}
Arrays.sort(ts, new Comparator<T>() {
@Override
public int compare(T o1, T o2) {
if (o1.p > o2.p) {
return -1;
}
if (o1.p < o2.p) {
return 1;
}
if (o1.t < o2.t) {
return -1;
}
if (o1.t > o2.t) {
return 1;
}
return 0;
}
});
int t = ts[k - 1].t;
int p = ts[k - 1].p;
int res = 0;
for (int i = 0; i < n; i++) {
if (ts[i].p == p && ts[i].t == t) {
res++;
}
}
out.println(res);
}
class T {
int p;
int t;
public T(int p, int t) {
this.p = p;
this.t = t;
}
}
private void end() {
out.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintStream;
import java.util.Arrays;
import java.util.Comparator;
import java.util.StringTokenizer;
import java.util.logging.Level;
import java.util.logging.Logger;
public class ProblemA {
private final BufferedReader in;
private final PrintStream out;
private StringTokenizer tok = new StringTokenizer("");
private String nextLine = null;
public static void main(String[] args) throws Exception {
new ProblemA();
}
private ProblemA() throws Exception {
in = new BufferedReader(new InputStreamReader(System.in));
out = System.out;
start();
end();
}
private int nextInt() {
return Integer.parseInt(nextWord());
}
private String nextWord() {
if (tok.hasMoreTokens()) {
return tok.nextToken();
} else {
while (!tok.hasMoreTokens()) {
try {
nextLine = in.readLine();
if (nextLine == null) {
return null;
} else {
tok = new StringTokenizer(nextLine);
}
} catch (IOException ex) {
Logger.getLogger(ProblemA.class.getName()).log(Level.SEVERE, null, ex);
}
}
return tok.nextToken();
}
}
private void start() {
int n = nextInt();
int k = nextInt();
T[] ts = new T[n];
for (int i = 0; i < n; i++) {
ts[i] = new T(nextInt(), nextInt());
}
Arrays.sort(ts, new Comparator<T>() {
@Override
public int compare(T o1, T o2) {
if (o1.p > o2.p) {
return -1;
}
if (o1.p < o2.p) {
return 1;
}
if (o1.t < o2.t) {
return -1;
}
if (o1.t > o2.t) {
return 1;
}
return 0;
}
});
int t = ts[k - 1].t;
int p = ts[k - 1].p;
int res = 0;
for (int i = 0; i < n; i++) {
if (ts[i].p == p && ts[i].t == t) {
res++;
}
}
out.println(res);
}
class T {
int p;
int t;
public T(int p, int t) {
this.p = p;
this.t = t;
}
}
private void end() {
out.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 910 | 1,947 |
641 |
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.io.StreamTokenizer;
public class Main {
private static StreamTokenizer in;
private static PrintWriter out;
private static int nextInt() throws Exception {
in.nextToken();
return (int)in.nval;
}
private static String nextString() throws Exception {
in.nextToken();
return in.sval;
}
public static void main(String[] args) throws Exception {
in = new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in)));
out = new PrintWriter(System.out);
int n = nextInt();
byte f = (byte)nextInt();
byte s = (byte)nextInt();
byte t = (byte)nextInt();
boolean bf = false;
boolean bs = false;
boolean bt = false;
if((f&1) == 0){bf = true;}
if((s&1) == 0){bs = true;}
if((t&1) == 0){bt = true;}
//System.out.println(bf+""+bs+""+bt);
if((!bf)&&bs&&bt){System.out.println(1);return;}
if(bf&&(!bs)&&bt){System.out.println(2);return;}
if(bf&&bs&&(!bt)){System.out.println(3);return;}
if(bf&&!bs&&!bt){System.out.println(1);return;}
if(!bf&&bs&&!bt){System.out.println(2);return;}
if(!bf&&!bs&&bt){System.out.println(3);return;}
for(int i = 4; i<=n; i++){
byte g = (byte) nextInt();
if(((g+f)&1) == 1){System.out.println(i); return;}
}
out.flush();
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.io.StreamTokenizer;
public class Main {
private static StreamTokenizer in;
private static PrintWriter out;
private static int nextInt() throws Exception {
in.nextToken();
return (int)in.nval;
}
private static String nextString() throws Exception {
in.nextToken();
return in.sval;
}
public static void main(String[] args) throws Exception {
in = new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in)));
out = new PrintWriter(System.out);
int n = nextInt();
byte f = (byte)nextInt();
byte s = (byte)nextInt();
byte t = (byte)nextInt();
boolean bf = false;
boolean bs = false;
boolean bt = false;
if((f&1) == 0){bf = true;}
if((s&1) == 0){bs = true;}
if((t&1) == 0){bt = true;}
//System.out.println(bf+""+bs+""+bt);
if((!bf)&&bs&&bt){System.out.println(1);return;}
if(bf&&(!bs)&&bt){System.out.println(2);return;}
if(bf&&bs&&(!bt)){System.out.println(3);return;}
if(bf&&!bs&&!bt){System.out.println(1);return;}
if(!bf&&bs&&!bt){System.out.println(2);return;}
if(!bf&&!bs&&bt){System.out.println(3);return;}
for(int i = 4; i<=n; i++){
byte g = (byte) nextInt();
if(((g+f)&1) == 1){System.out.println(i); return;}
}
out.flush();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.io.StreamTokenizer;
public class Main {
private static StreamTokenizer in;
private static PrintWriter out;
private static int nextInt() throws Exception {
in.nextToken();
return (int)in.nval;
}
private static String nextString() throws Exception {
in.nextToken();
return in.sval;
}
public static void main(String[] args) throws Exception {
in = new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in)));
out = new PrintWriter(System.out);
int n = nextInt();
byte f = (byte)nextInt();
byte s = (byte)nextInt();
byte t = (byte)nextInt();
boolean bf = false;
boolean bs = false;
boolean bt = false;
if((f&1) == 0){bf = true;}
if((s&1) == 0){bs = true;}
if((t&1) == 0){bt = true;}
//System.out.println(bf+""+bs+""+bt);
if((!bf)&&bs&&bt){System.out.println(1);return;}
if(bf&&(!bs)&&bt){System.out.println(2);return;}
if(bf&&bs&&(!bt)){System.out.println(3);return;}
if(bf&&!bs&&!bt){System.out.println(1);return;}
if(!bf&&bs&&!bt){System.out.println(2);return;}
if(!bf&&!bs&&bt){System.out.println(3);return;}
for(int i = 4; i<=n; i++){
byte g = (byte) nextInt();
if(((g+f)&1) == 1){System.out.println(i); return;}
}
out.flush();
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(1): The time complexity is constant to the input size n.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 681 | 640 |
977 |
import java.io.*;
import java.math.BigInteger;
import java.util.*;
import java.lang.*;
import static java.lang.Math.*;
public class Main implements Runnable {
public static void main(String[] args) {
new Thread(null, new Main(), "Check2", 1 << 28).start();// to increse stack size in java
}
static long mod = (long) (1e9 + 7);
public void run() {
InputReader in = new InputReader(System.in);
PrintWriter w = new PrintWriter(System.out);
long n = in.nextLong();
long k = in.nextLong();
long ans= 0;
for (long i=1;i<=Math.min(100000,n);i++){
long left = i;
long right = n-i;
long sum = left * (left + 1);
sum /= 2;
if (sum - right ==k){
ans = right;
}
}
w.println(ans);
w.close();
}
void debug(Object...args) {
System.out.println(Arrays.deepToString(args));
}
static class pair implements Comparable<pair>{
int a;
int b;
pair(int a,int b){
this.a = a;
this.b = b;
}
public int compareTo(pair o){
if(this.b != o.b)return this.b - o.b;
return this.a - o.a;
}
}
long modinv(long a,long b) {
long p=power(b,mod-2,mod);
p=a%mod*p%mod;
p%=mod;
return p;
}
long power(long x,long y,long mod){
if(y==0)return 1%mod;
if(y==1)return x%mod;
long res=1;
x=x%mod;
while(y>0)
{
if((y%2)!=0){
res=(res*x)%mod;
}
y=y/2;
x=(x*x)%mod;
}
return res;
}
long gcd(long a,long b){
if(b==0)return a;
return gcd(b,a%b);
}
void sev(int a[],int n){
for(int i=2;i<=n;i++)a[i]=i;
for(int i=2;i<=n;i++){
if(a[i]!=0){
for(int j=2*i;j<=n;){
a[j]=0;
j=j+i;
}
}
}
}
static class InputReader
{
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream)
{
this.stream = stream;
}
public int read()
{
if (numChars==-1)
throw new InputMismatchException();
if (curChar >= numChars){
curChar = 0;
try
{
numChars = stream.read(buf);
}
catch (IOException e)
{
throw new InputMismatchException();
}
if(numChars <= 0)
return -1;
}
return buf[curChar++];
}
public String nextLine()
{
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
String stock = "";
try
{
stock = br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return stock;
}
public int nextInt()
{
int c = read();
while(isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-')
{
sgn = -1;
c = read();
}
int res = 0;
do
{
if(c<'0'||c>'9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
while (!isSpaceChar(c));
return res * sgn;
}
public long nextLong()
{
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-')
{
sgn = -1;
c = read();
}
long res = 0;
do
{
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
while (!isSpaceChar(c));
return res * sgn;
}
public double nextDouble()
{
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-')
{
sgn = -1;
c = read();
}
double res = 0;
while (!isSpaceChar(c) && c != '.')
{
if (c == 'e' || c == 'E')
return res * Math.pow(10, nextInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
if (c == '.')
{
c = read();
double m = 1;
while (!isSpaceChar(c))
{
if (c == 'e' || c == 'E')
return res * Math.pow(10, nextInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
m /= 10;
res += (c - '0') * m;
c = read();
}
}
return res * sgn;
}
public String readString()
{
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do
{
res.appendCodePoint(c);
c = read();
}
while (!isSpaceChar(c));
return res.toString();
}
public boolean isSpaceChar(int c)
{
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public String next()
{
return readString();
}
public interface SpaceCharFilter
{
public boolean isSpaceChar(int ch);
}
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.math.BigInteger;
import java.util.*;
import java.lang.*;
import static java.lang.Math.*;
public class Main implements Runnable {
public static void main(String[] args) {
new Thread(null, new Main(), "Check2", 1 << 28).start();// to increse stack size in java
}
static long mod = (long) (1e9 + 7);
public void run() {
InputReader in = new InputReader(System.in);
PrintWriter w = new PrintWriter(System.out);
long n = in.nextLong();
long k = in.nextLong();
long ans= 0;
for (long i=1;i<=Math.min(100000,n);i++){
long left = i;
long right = n-i;
long sum = left * (left + 1);
sum /= 2;
if (sum - right ==k){
ans = right;
}
}
w.println(ans);
w.close();
}
void debug(Object...args) {
System.out.println(Arrays.deepToString(args));
}
static class pair implements Comparable<pair>{
int a;
int b;
pair(int a,int b){
this.a = a;
this.b = b;
}
public int compareTo(pair o){
if(this.b != o.b)return this.b - o.b;
return this.a - o.a;
}
}
long modinv(long a,long b) {
long p=power(b,mod-2,mod);
p=a%mod*p%mod;
p%=mod;
return p;
}
long power(long x,long y,long mod){
if(y==0)return 1%mod;
if(y==1)return x%mod;
long res=1;
x=x%mod;
while(y>0)
{
if((y%2)!=0){
res=(res*x)%mod;
}
y=y/2;
x=(x*x)%mod;
}
return res;
}
long gcd(long a,long b){
if(b==0)return a;
return gcd(b,a%b);
}
void sev(int a[],int n){
for(int i=2;i<=n;i++)a[i]=i;
for(int i=2;i<=n;i++){
if(a[i]!=0){
for(int j=2*i;j<=n;){
a[j]=0;
j=j+i;
}
}
}
}
static class InputReader
{
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream)
{
this.stream = stream;
}
public int read()
{
if (numChars==-1)
throw new InputMismatchException();
if (curChar >= numChars){
curChar = 0;
try
{
numChars = stream.read(buf);
}
catch (IOException e)
{
throw new InputMismatchException();
}
if(numChars <= 0)
return -1;
}
return buf[curChar++];
}
public String nextLine()
{
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
String stock = "";
try
{
stock = br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return stock;
}
public int nextInt()
{
int c = read();
while(isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-')
{
sgn = -1;
c = read();
}
int res = 0;
do
{
if(c<'0'||c>'9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
while (!isSpaceChar(c));
return res * sgn;
}
public long nextLong()
{
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-')
{
sgn = -1;
c = read();
}
long res = 0;
do
{
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
while (!isSpaceChar(c));
return res * sgn;
}
public double nextDouble()
{
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-')
{
sgn = -1;
c = read();
}
double res = 0;
while (!isSpaceChar(c) && c != '.')
{
if (c == 'e' || c == 'E')
return res * Math.pow(10, nextInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
if (c == '.')
{
c = read();
double m = 1;
while (!isSpaceChar(c))
{
if (c == 'e' || c == 'E')
return res * Math.pow(10, nextInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
m /= 10;
res += (c - '0') * m;
c = read();
}
}
return res * sgn;
}
public String readString()
{
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do
{
res.appendCodePoint(c);
c = read();
}
while (!isSpaceChar(c));
return res.toString();
}
public boolean isSpaceChar(int c)
{
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public String next()
{
return readString();
}
public interface SpaceCharFilter
{
public boolean isSpaceChar(int ch);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The running time increases with the square of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.math.BigInteger;
import java.util.*;
import java.lang.*;
import static java.lang.Math.*;
public class Main implements Runnable {
public static void main(String[] args) {
new Thread(null, new Main(), "Check2", 1 << 28).start();// to increse stack size in java
}
static long mod = (long) (1e9 + 7);
public void run() {
InputReader in = new InputReader(System.in);
PrintWriter w = new PrintWriter(System.out);
long n = in.nextLong();
long k = in.nextLong();
long ans= 0;
for (long i=1;i<=Math.min(100000,n);i++){
long left = i;
long right = n-i;
long sum = left * (left + 1);
sum /= 2;
if (sum - right ==k){
ans = right;
}
}
w.println(ans);
w.close();
}
void debug(Object...args) {
System.out.println(Arrays.deepToString(args));
}
static class pair implements Comparable<pair>{
int a;
int b;
pair(int a,int b){
this.a = a;
this.b = b;
}
public int compareTo(pair o){
if(this.b != o.b)return this.b - o.b;
return this.a - o.a;
}
}
long modinv(long a,long b) {
long p=power(b,mod-2,mod);
p=a%mod*p%mod;
p%=mod;
return p;
}
long power(long x,long y,long mod){
if(y==0)return 1%mod;
if(y==1)return x%mod;
long res=1;
x=x%mod;
while(y>0)
{
if((y%2)!=0){
res=(res*x)%mod;
}
y=y/2;
x=(x*x)%mod;
}
return res;
}
long gcd(long a,long b){
if(b==0)return a;
return gcd(b,a%b);
}
void sev(int a[],int n){
for(int i=2;i<=n;i++)a[i]=i;
for(int i=2;i<=n;i++){
if(a[i]!=0){
for(int j=2*i;j<=n;){
a[j]=0;
j=j+i;
}
}
}
}
static class InputReader
{
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream)
{
this.stream = stream;
}
public int read()
{
if (numChars==-1)
throw new InputMismatchException();
if (curChar >= numChars){
curChar = 0;
try
{
numChars = stream.read(buf);
}
catch (IOException e)
{
throw new InputMismatchException();
}
if(numChars <= 0)
return -1;
}
return buf[curChar++];
}
public String nextLine()
{
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
String stock = "";
try
{
stock = br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return stock;
}
public int nextInt()
{
int c = read();
while(isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-')
{
sgn = -1;
c = read();
}
int res = 0;
do
{
if(c<'0'||c>'9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
while (!isSpaceChar(c));
return res * sgn;
}
public long nextLong()
{
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-')
{
sgn = -1;
c = read();
}
long res = 0;
do
{
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
while (!isSpaceChar(c));
return res * sgn;
}
public double nextDouble()
{
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-')
{
sgn = -1;
c = read();
}
double res = 0;
while (!isSpaceChar(c) && c != '.')
{
if (c == 'e' || c == 'E')
return res * Math.pow(10, nextInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
if (c == '.')
{
c = read();
double m = 1;
while (!isSpaceChar(c))
{
if (c == 'e' || c == 'E')
return res * Math.pow(10, nextInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
m /= 10;
res += (c - '0') * m;
c = read();
}
}
return res * sgn;
}
public String readString()
{
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do
{
res.appendCodePoint(c);
c = read();
}
while (!isSpaceChar(c));
return res.toString();
}
public boolean isSpaceChar(int c)
{
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public String next()
{
return readString();
}
public interface SpaceCharFilter
{
public boolean isSpaceChar(int ch);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The running time increases with the square of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^3): The running time increases with the cube of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,769 | 976 |
203 |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
public class AnnoyingPresent {
//UPSOLVED
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer(br.readLine());
long n = Long.parseLong(st.nextToken()) , m = Long.parseLong(st.nextToken());
long sum = 0;
for(int i=0;i<m;i++){
StringTokenizer st1 = new StringTokenizer(br.readLine());
sum+= n* Long.parseLong(st1.nextToken());
Long a= Long.parseLong(st1.nextToken());
if(a < 0){
if(n % 2 == 0)
sum += n*n / 4*a;
else{
sum += (n/2) * (n/2+1) * a;
}
}
else
sum += (a*(n) * (n-1) / 2);
}
System.out.println((double)sum/n);
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
public class AnnoyingPresent {
//UPSOLVED
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer(br.readLine());
long n = Long.parseLong(st.nextToken()) , m = Long.parseLong(st.nextToken());
long sum = 0;
for(int i=0;i<m;i++){
StringTokenizer st1 = new StringTokenizer(br.readLine());
sum+= n* Long.parseLong(st1.nextToken());
Long a= Long.parseLong(st1.nextToken());
if(a < 0){
if(n % 2 == 0)
sum += n*n / 4*a;
else{
sum += (n/2) * (n/2+1) * a;
}
}
else
sum += (a*(n) * (n-1) / 2);
}
System.out.println((double)sum/n);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The running time does not change regardless of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(log(n)): The running time increases with the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
public class AnnoyingPresent {
//UPSOLVED
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer(br.readLine());
long n = Long.parseLong(st.nextToken()) , m = Long.parseLong(st.nextToken());
long sum = 0;
for(int i=0;i<m;i++){
StringTokenizer st1 = new StringTokenizer(br.readLine());
sum+= n* Long.parseLong(st1.nextToken());
Long a= Long.parseLong(st1.nextToken());
if(a < 0){
if(n % 2 == 0)
sum += n*n / 4*a;
else{
sum += (n/2) * (n/2+1) * a;
}
}
else
sum += (a*(n) * (n-1) / 2);
}
System.out.println((double)sum/n);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The running time increases with the logarithm of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 557 | 203 |
4,380 |
import java.awt.List;
import java.io.BufferedReader;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Scanner;
import java.util.StringTokenizer;
public class T {
static Scanner in = new Scanner();
static PrintWriter out = new PrintWriter(System.out);
static boolean adj[][];
static int n, m, from;
static long memo[][];
static long Num_Cycle;
public static void main(String[] args) throws IOException {
n = in.nextInt();
m = in.nextInt();
adj = new boolean[n][n];
memo = new long[n][1 << n];
for (int i = 0; i < m; i++) {
int u = in.nextInt() - 1;
int v = in.nextInt() - 1;
adj[u][v] = adj[v][u] = true;
}
for (long arr[] : memo) {
Arrays.fill(arr, -1);
}
Num_Cycle = 0L;
for (int i = 0; i < n; i++) {
from = i;
Num_Cycle += dp(from, (1 << i));
}
out.println(Num_Cycle / 2);
out.flush();
out.close();
}
static long dp(int start, int mask) {
if (memo[start][mask] != -1) {
return (memo[start][mask]);
}
long ans = 0L;
if (adj[start][from] && Integer.bitCount(mask) >= 3) {// Cycle has
// atleast 3
// node and 3
// edges
ans++;
}
for (int i = from + 1; i < n; i++) {
if (adj[start][i] && ((mask & (1 << i)) == 0)) {
ans += dp(i, mask | (1 << i));
}
}
return memo[start][mask] = ans;
}
static class Scanner {
BufferedReader br;
StringTokenizer st;
Scanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
Scanner(String file) throws FileNotFoundException {
br = new BufferedReader(new FileReader(file));
}
String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
int nextInt() throws NumberFormatException, IOException {
return Integer.parseInt(next());
}
String nextLine() throws IOException {
return br.readLine();
}
long nextLong() throws NumberFormatException, IOException {
return Long.parseLong(next());
}
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.awt.List;
import java.io.BufferedReader;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Scanner;
import java.util.StringTokenizer;
public class T {
static Scanner in = new Scanner();
static PrintWriter out = new PrintWriter(System.out);
static boolean adj[][];
static int n, m, from;
static long memo[][];
static long Num_Cycle;
public static void main(String[] args) throws IOException {
n = in.nextInt();
m = in.nextInt();
adj = new boolean[n][n];
memo = new long[n][1 << n];
for (int i = 0; i < m; i++) {
int u = in.nextInt() - 1;
int v = in.nextInt() - 1;
adj[u][v] = adj[v][u] = true;
}
for (long arr[] : memo) {
Arrays.fill(arr, -1);
}
Num_Cycle = 0L;
for (int i = 0; i < n; i++) {
from = i;
Num_Cycle += dp(from, (1 << i));
}
out.println(Num_Cycle / 2);
out.flush();
out.close();
}
static long dp(int start, int mask) {
if (memo[start][mask] != -1) {
return (memo[start][mask]);
}
long ans = 0L;
if (adj[start][from] && Integer.bitCount(mask) >= 3) {// Cycle has
// atleast 3
// node and 3
// edges
ans++;
}
for (int i = from + 1; i < n; i++) {
if (adj[start][i] && ((mask & (1 << i)) == 0)) {
ans += dp(i, mask | (1 << i));
}
}
return memo[start][mask] = ans;
}
static class Scanner {
BufferedReader br;
StringTokenizer st;
Scanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
Scanner(String file) throws FileNotFoundException {
br = new BufferedReader(new FileReader(file));
}
String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
int nextInt() throws NumberFormatException, IOException {
return Integer.parseInt(next());
}
String nextLine() throws IOException {
return br.readLine();
}
long nextLong() throws NumberFormatException, IOException {
return Long.parseLong(next());
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.awt.List;
import java.io.BufferedReader;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Scanner;
import java.util.StringTokenizer;
public class T {
static Scanner in = new Scanner();
static PrintWriter out = new PrintWriter(System.out);
static boolean adj[][];
static int n, m, from;
static long memo[][];
static long Num_Cycle;
public static void main(String[] args) throws IOException {
n = in.nextInt();
m = in.nextInt();
adj = new boolean[n][n];
memo = new long[n][1 << n];
for (int i = 0; i < m; i++) {
int u = in.nextInt() - 1;
int v = in.nextInt() - 1;
adj[u][v] = adj[v][u] = true;
}
for (long arr[] : memo) {
Arrays.fill(arr, -1);
}
Num_Cycle = 0L;
for (int i = 0; i < n; i++) {
from = i;
Num_Cycle += dp(from, (1 << i));
}
out.println(Num_Cycle / 2);
out.flush();
out.close();
}
static long dp(int start, int mask) {
if (memo[start][mask] != -1) {
return (memo[start][mask]);
}
long ans = 0L;
if (adj[start][from] && Integer.bitCount(mask) >= 3) {// Cycle has
// atleast 3
// node and 3
// edges
ans++;
}
for (int i = from + 1; i < n; i++) {
if (adj[start][i] && ((mask & (1 << i)) == 0)) {
ans += dp(i, mask | (1 << i));
}
}
return memo[start][mask] = ans;
}
static class Scanner {
BufferedReader br;
StringTokenizer st;
Scanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
Scanner(String file) throws FileNotFoundException {
br = new BufferedReader(new FileReader(file));
}
String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
int nextInt() throws NumberFormatException, IOException {
return Integer.parseInt(next());
}
String nextLine() throws IOException {
return br.readLine();
}
long nextLong() throws NumberFormatException, IOException {
return Long.parseLong(next());
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 954 | 4,369 |
2,337 |
import java.util.*;
import java.text.*;
import java.io.*;
import java.math.*;
public class code5 {
InputStream is;
PrintWriter out;
static long mod=pow(10,9)+7;
static int dx[]={0,0,1,-1},dy[]={1,-1,0,0};
String arr[];
long dp[][];
void solve() throws IOException
{
int n=ni();
int a[]=na(n);
int q=ni();
boolean flag=false;
for(int i=0;i<n;i++)
{
for(int j=0;j<i;j++)
{
if(a[j]>a[i])
flag^=true;
}
}
while(q--!=0)
{
int l=ni()-1;
int r=ni()-1;
int num=(r-l+1);
int tot=num*(num-1)/2;
if(tot%2==1)
flag^=true;
if(flag)
out.println("odd");
else
out.println("even");
}
}
int sum(int i)
{
int sum=0;
while(i!=0)
{
if((i%10)%2==1)
sum+=i%10;
i/=10;
}
return sum;
}
ArrayList<Integer> al[];
void take(int n,int m)
{
al=new ArrayList[n];
for(int i=0;i<n;i++)
al[i]=new ArrayList<Integer>();
for(int i=0;i<m;i++)
{
int x=ni()-1;
int y=ni()-1;
al[x].add(y);
al[y].add(x);
}
}
int check(long n)
{
int count=0;
while(n!=0)
{
if(n%10!=0)
break;
n/=10;
count++;
}
return count;
}
public static int count(int x)
{
int num=0;
while(x!=0)
{
x=x&(x-1);
num++;
}
return num;
}
static long d, x, y;
void extendedEuclid(long A, long B) {
if(B == 0) {
d = A;
x = 1;
y = 0;
}
else {
extendedEuclid(B, A%B);
long temp = x;
x = y;
y = temp - (A/B)*y;
}
}
long modInverse(long A,long M) //A and M are coprime
{
extendedEuclid(A,M);
return (x%M+M)%M; //x may be negative
}
public static void mergeSort(int[] arr, int l ,int r){
if((r-l)>=1){
int mid = (l+r)/2;
mergeSort(arr,l,mid);
mergeSort(arr,mid+1,r);
merge(arr,l,r,mid);
}
}
public static void merge(int arr[], int l, int r, int mid){
int n1 = (mid-l+1), n2 = (r-mid);
int left[] = new int[n1];
int right[] = new int[n2];
for(int i =0 ;i<n1;i++) left[i] = arr[l+i];
for(int i =0 ;i<n2;i++) right[i] = arr[mid+1+i];
int i =0, j =0, k = l;
while(i<n1 && j<n2){
if(left[i]>right[j]){
arr[k++] = right[j++];
}
else{
arr[k++] = left[i++];
}
}
while(i<n1) arr[k++] = left[i++];
while(j<n2) arr[k++] = right[j++];
}
public static void mergeSort(long[] arr, int l ,int r){
if((r-l)>=1){
int mid = (l+r)/2;
mergeSort(arr,l,mid);
mergeSort(arr,mid+1,r);
merge(arr,l,r,mid);
}
}
public static void merge(long arr[], int l, int r, int mid){
int n1 = (mid-l+1), n2 = (r-mid);
long left[] = new long[n1];
long right[] = new long[n2];
for(int i =0 ;i<n1;i++) left[i] = arr[l+i];
for(int i =0 ;i<n2;i++) right[i] = arr[mid+1+i];
int i =0, j =0, k = l;
while(i<n1 && j<n2){
if(left[i]>right[j]){
arr[k++] = right[j++];
}
else{
arr[k++] = left[i++];
}
}
while(i<n1) arr[k++] = left[i++];
while(j<n2) arr[k++] = right[j++];
}
static class Pair implements Comparable<Pair>{
int x,y,k;
int i,dir;
long val;
Pair (int x,int y){
this.x=x;
this.y=y;
}
public int compareTo(Pair o) {
if(this.x!=o.x)
return this.x-o.x;
return this.y-o.y;
}
public String toString(){
return x+" "+y+" "+k+" "+i;}
public boolean equals(Object o) {
if (o instanceof Pair) {
Pair p = (Pair)o;
return p.x == x && p.y == y;
}
return false;
}
public int hashCode() {
return new Long(x).hashCode()*31 + new Long(y).hashCode() ;
}
}
public static boolean isPal(String s){
for(int i=0, j=s.length()-1;i<=j;i++,j--){
if(s.charAt(i)!=s.charAt(j)) return false;
}
return true;
}
public static String rev(String s){
StringBuilder sb=new StringBuilder(s);
sb.reverse();
return sb.toString();
}
public static long gcd(long x,long y){
if(y==0)
return x;
else
return gcd(y,x%y);
}
public static int gcd(int x,int y){
if(y==0)
return x;
return gcd(y,x%y);
}
public static long gcdExtended(long a,long b,long[] x){
if(a==0){
x[0]=0;
x[1]=1;
return b;
}
long[] y=new long[2];
long gcd=gcdExtended(b%a, a, y);
x[0]=y[1]-(b/a)*y[0];
x[1]=y[0];
return gcd;
}
public static int abs(int a,int b){
return (int)Math.abs(a-b);
}
public static long abs(long a,long b){
return (long)Math.abs(a-b);
}
public static int max(int a,int b){
if(a>b)
return a;
else
return b;
}
public static int min(int a,int b){
if(a>b)
return b;
else
return a;
}
public static long max(long a,long b){
if(a>b)
return a;
else
return b;
}
public static long min(long a,long b){
if(a>b)
return b;
else
return a;
}
public static long pow(long n,long p,long m){
long result = 1;
if(p==0)
return 1;
if (p==1)
return n;
while(p!=0)
{
if(p%2==1)
result *= n;
if(result>=m)
result%=m;
p >>=1;
n*=n;
if(n>=m)
n%=m;
}
return result;
}
public static long pow(long n,long p){
long result = 1;
if(p==0)
return 1;
if (p==1)
return n;
while(p!=0)
{
if(p%2==1)
result *= n;
p >>=1;
n*=n;
}
return result;
}
public static void debug(Object... o) {
System.out.println(Arrays.deepToString(o));
}
void run() throws Exception {
is = System.in;
out = new PrintWriter(System.out);
solve();
out.flush();
}
public static void main(String[] args) throws Exception {
new Thread(null, new Runnable() {
public void run() {
try {
new code5().run();
} catch (Exception e) {
e.printStackTrace();
}
}
}, "1", 1 << 26).start();
//new code5().run();
}
private byte[] inbuf = new byte[1024];
public int lenbuf = 0, ptrbuf = 0;
private int readByte() {
if (lenbuf == -1)
throw new InputMismatchException();
if (ptrbuf >= lenbuf) {
ptrbuf = 0;
try {
lenbuf = is.read(inbuf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (lenbuf <= 0)
return -1;
}
return inbuf[ptrbuf++];
}
private boolean isSpaceChar(int c) {
return !(c >= 33 && c <= 126);
}
private int skip() {
int b;
while ((b = readByte()) != -1 && isSpaceChar(b));
return b;
}
private double nd() {
return Double.parseDouble(ns());
}
private char nc() {
return (char) skip();
}
private String ns() {
int b = skip();
StringBuilder sb = new StringBuilder();
while (!(isSpaceChar(b))) { // when nextLine, (isSpaceChar(b) && b != ' ')
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
private char[] ns(int n) {
char[] buf = new char[n];
int b = skip(), p = 0;
while (p < n && !(isSpaceChar(b))) {
buf[p++] = (char) b;
b = readByte();
}
return n == p ? buf : Arrays.copyOf(buf, p);
}
private char[][] nm(int n, int m) {
char[][] map = new char[n][];
for (int i = 0; i < n; i++)
map[i] = ns(m);
return map;
}
private int[] na(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = ni();
return a;
}
private long[] nl(int n) {
long[] a = new long[n];
for (int i = 0; i < n; i++)
a[i] = nl();
return a;
}
private int ni() {
int num = 0, b;
boolean minus = false;
while ((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'))
;
if (b == '-') {
minus = true;
b = readByte();
}
while (true) {
if (b >= '0' && b <= '9') {
num = num * 10 + (b - '0');
} else {
return minus ? -num : num;
}
b = readByte();
}
}
private long nl() {
long num = 0;
int b;
boolean minus = false;
while ((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'))
;
if (b == '-') {
minus = true;
b = readByte();
}
while (true) {
if (b >= '0' && b <= '9') {
num = num * 10 + (b - '0');
} else {
return minus ? -num : num;
}
b = readByte();
}
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
import java.text.*;
import java.io.*;
import java.math.*;
public class code5 {
InputStream is;
PrintWriter out;
static long mod=pow(10,9)+7;
static int dx[]={0,0,1,-1},dy[]={1,-1,0,0};
String arr[];
long dp[][];
void solve() throws IOException
{
int n=ni();
int a[]=na(n);
int q=ni();
boolean flag=false;
for(int i=0;i<n;i++)
{
for(int j=0;j<i;j++)
{
if(a[j]>a[i])
flag^=true;
}
}
while(q--!=0)
{
int l=ni()-1;
int r=ni()-1;
int num=(r-l+1);
int tot=num*(num-1)/2;
if(tot%2==1)
flag^=true;
if(flag)
out.println("odd");
else
out.println("even");
}
}
int sum(int i)
{
int sum=0;
while(i!=0)
{
if((i%10)%2==1)
sum+=i%10;
i/=10;
}
return sum;
}
ArrayList<Integer> al[];
void take(int n,int m)
{
al=new ArrayList[n];
for(int i=0;i<n;i++)
al[i]=new ArrayList<Integer>();
for(int i=0;i<m;i++)
{
int x=ni()-1;
int y=ni()-1;
al[x].add(y);
al[y].add(x);
}
}
int check(long n)
{
int count=0;
while(n!=0)
{
if(n%10!=0)
break;
n/=10;
count++;
}
return count;
}
public static int count(int x)
{
int num=0;
while(x!=0)
{
x=x&(x-1);
num++;
}
return num;
}
static long d, x, y;
void extendedEuclid(long A, long B) {
if(B == 0) {
d = A;
x = 1;
y = 0;
}
else {
extendedEuclid(B, A%B);
long temp = x;
x = y;
y = temp - (A/B)*y;
}
}
long modInverse(long A,long M) //A and M are coprime
{
extendedEuclid(A,M);
return (x%M+M)%M; //x may be negative
}
public static void mergeSort(int[] arr, int l ,int r){
if((r-l)>=1){
int mid = (l+r)/2;
mergeSort(arr,l,mid);
mergeSort(arr,mid+1,r);
merge(arr,l,r,mid);
}
}
public static void merge(int arr[], int l, int r, int mid){
int n1 = (mid-l+1), n2 = (r-mid);
int left[] = new int[n1];
int right[] = new int[n2];
for(int i =0 ;i<n1;i++) left[i] = arr[l+i];
for(int i =0 ;i<n2;i++) right[i] = arr[mid+1+i];
int i =0, j =0, k = l;
while(i<n1 && j<n2){
if(left[i]>right[j]){
arr[k++] = right[j++];
}
else{
arr[k++] = left[i++];
}
}
while(i<n1) arr[k++] = left[i++];
while(j<n2) arr[k++] = right[j++];
}
public static void mergeSort(long[] arr, int l ,int r){
if((r-l)>=1){
int mid = (l+r)/2;
mergeSort(arr,l,mid);
mergeSort(arr,mid+1,r);
merge(arr,l,r,mid);
}
}
public static void merge(long arr[], int l, int r, int mid){
int n1 = (mid-l+1), n2 = (r-mid);
long left[] = new long[n1];
long right[] = new long[n2];
for(int i =0 ;i<n1;i++) left[i] = arr[l+i];
for(int i =0 ;i<n2;i++) right[i] = arr[mid+1+i];
int i =0, j =0, k = l;
while(i<n1 && j<n2){
if(left[i]>right[j]){
arr[k++] = right[j++];
}
else{
arr[k++] = left[i++];
}
}
while(i<n1) arr[k++] = left[i++];
while(j<n2) arr[k++] = right[j++];
}
static class Pair implements Comparable<Pair>{
int x,y,k;
int i,dir;
long val;
Pair (int x,int y){
this.x=x;
this.y=y;
}
public int compareTo(Pair o) {
if(this.x!=o.x)
return this.x-o.x;
return this.y-o.y;
}
public String toString(){
return x+" "+y+" "+k+" "+i;}
public boolean equals(Object o) {
if (o instanceof Pair) {
Pair p = (Pair)o;
return p.x == x && p.y == y;
}
return false;
}
public int hashCode() {
return new Long(x).hashCode()*31 + new Long(y).hashCode() ;
}
}
public static boolean isPal(String s){
for(int i=0, j=s.length()-1;i<=j;i++,j--){
if(s.charAt(i)!=s.charAt(j)) return false;
}
return true;
}
public static String rev(String s){
StringBuilder sb=new StringBuilder(s);
sb.reverse();
return sb.toString();
}
public static long gcd(long x,long y){
if(y==0)
return x;
else
return gcd(y,x%y);
}
public static int gcd(int x,int y){
if(y==0)
return x;
return gcd(y,x%y);
}
public static long gcdExtended(long a,long b,long[] x){
if(a==0){
x[0]=0;
x[1]=1;
return b;
}
long[] y=new long[2];
long gcd=gcdExtended(b%a, a, y);
x[0]=y[1]-(b/a)*y[0];
x[1]=y[0];
return gcd;
}
public static int abs(int a,int b){
return (int)Math.abs(a-b);
}
public static long abs(long a,long b){
return (long)Math.abs(a-b);
}
public static int max(int a,int b){
if(a>b)
return a;
else
return b;
}
public static int min(int a,int b){
if(a>b)
return b;
else
return a;
}
public static long max(long a,long b){
if(a>b)
return a;
else
return b;
}
public static long min(long a,long b){
if(a>b)
return b;
else
return a;
}
public static long pow(long n,long p,long m){
long result = 1;
if(p==0)
return 1;
if (p==1)
return n;
while(p!=0)
{
if(p%2==1)
result *= n;
if(result>=m)
result%=m;
p >>=1;
n*=n;
if(n>=m)
n%=m;
}
return result;
}
public static long pow(long n,long p){
long result = 1;
if(p==0)
return 1;
if (p==1)
return n;
while(p!=0)
{
if(p%2==1)
result *= n;
p >>=1;
n*=n;
}
return result;
}
public static void debug(Object... o) {
System.out.println(Arrays.deepToString(o));
}
void run() throws Exception {
is = System.in;
out = new PrintWriter(System.out);
solve();
out.flush();
}
public static void main(String[] args) throws Exception {
new Thread(null, new Runnable() {
public void run() {
try {
new code5().run();
} catch (Exception e) {
e.printStackTrace();
}
}
}, "1", 1 << 26).start();
//new code5().run();
}
private byte[] inbuf = new byte[1024];
public int lenbuf = 0, ptrbuf = 0;
private int readByte() {
if (lenbuf == -1)
throw new InputMismatchException();
if (ptrbuf >= lenbuf) {
ptrbuf = 0;
try {
lenbuf = is.read(inbuf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (lenbuf <= 0)
return -1;
}
return inbuf[ptrbuf++];
}
private boolean isSpaceChar(int c) {
return !(c >= 33 && c <= 126);
}
private int skip() {
int b;
while ((b = readByte()) != -1 && isSpaceChar(b));
return b;
}
private double nd() {
return Double.parseDouble(ns());
}
private char nc() {
return (char) skip();
}
private String ns() {
int b = skip();
StringBuilder sb = new StringBuilder();
while (!(isSpaceChar(b))) { // when nextLine, (isSpaceChar(b) && b != ' ')
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
private char[] ns(int n) {
char[] buf = new char[n];
int b = skip(), p = 0;
while (p < n && !(isSpaceChar(b))) {
buf[p++] = (char) b;
b = readByte();
}
return n == p ? buf : Arrays.copyOf(buf, p);
}
private char[][] nm(int n, int m) {
char[][] map = new char[n][];
for (int i = 0; i < n; i++)
map[i] = ns(m);
return map;
}
private int[] na(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = ni();
return a;
}
private long[] nl(int n) {
long[] a = new long[n];
for (int i = 0; i < n; i++)
a[i] = nl();
return a;
}
private int ni() {
int num = 0, b;
boolean minus = false;
while ((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'))
;
if (b == '-') {
minus = true;
b = readByte();
}
while (true) {
if (b >= '0' && b <= '9') {
num = num * 10 + (b - '0');
} else {
return minus ? -num : num;
}
b = readByte();
}
}
private long nl() {
long num = 0;
int b;
boolean minus = false;
while ((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'))
;
if (b == '-') {
minus = true;
b = readByte();
}
while (true) {
if (b >= '0' && b <= '9') {
num = num * 10 + (b - '0');
} else {
return minus ? -num : num;
}
b = readByte();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
import java.text.*;
import java.io.*;
import java.math.*;
public class code5 {
InputStream is;
PrintWriter out;
static long mod=pow(10,9)+7;
static int dx[]={0,0,1,-1},dy[]={1,-1,0,0};
String arr[];
long dp[][];
void solve() throws IOException
{
int n=ni();
int a[]=na(n);
int q=ni();
boolean flag=false;
for(int i=0;i<n;i++)
{
for(int j=0;j<i;j++)
{
if(a[j]>a[i])
flag^=true;
}
}
while(q--!=0)
{
int l=ni()-1;
int r=ni()-1;
int num=(r-l+1);
int tot=num*(num-1)/2;
if(tot%2==1)
flag^=true;
if(flag)
out.println("odd");
else
out.println("even");
}
}
int sum(int i)
{
int sum=0;
while(i!=0)
{
if((i%10)%2==1)
sum+=i%10;
i/=10;
}
return sum;
}
ArrayList<Integer> al[];
void take(int n,int m)
{
al=new ArrayList[n];
for(int i=0;i<n;i++)
al[i]=new ArrayList<Integer>();
for(int i=0;i<m;i++)
{
int x=ni()-1;
int y=ni()-1;
al[x].add(y);
al[y].add(x);
}
}
int check(long n)
{
int count=0;
while(n!=0)
{
if(n%10!=0)
break;
n/=10;
count++;
}
return count;
}
public static int count(int x)
{
int num=0;
while(x!=0)
{
x=x&(x-1);
num++;
}
return num;
}
static long d, x, y;
void extendedEuclid(long A, long B) {
if(B == 0) {
d = A;
x = 1;
y = 0;
}
else {
extendedEuclid(B, A%B);
long temp = x;
x = y;
y = temp - (A/B)*y;
}
}
long modInverse(long A,long M) //A and M are coprime
{
extendedEuclid(A,M);
return (x%M+M)%M; //x may be negative
}
public static void mergeSort(int[] arr, int l ,int r){
if((r-l)>=1){
int mid = (l+r)/2;
mergeSort(arr,l,mid);
mergeSort(arr,mid+1,r);
merge(arr,l,r,mid);
}
}
public static void merge(int arr[], int l, int r, int mid){
int n1 = (mid-l+1), n2 = (r-mid);
int left[] = new int[n1];
int right[] = new int[n2];
for(int i =0 ;i<n1;i++) left[i] = arr[l+i];
for(int i =0 ;i<n2;i++) right[i] = arr[mid+1+i];
int i =0, j =0, k = l;
while(i<n1 && j<n2){
if(left[i]>right[j]){
arr[k++] = right[j++];
}
else{
arr[k++] = left[i++];
}
}
while(i<n1) arr[k++] = left[i++];
while(j<n2) arr[k++] = right[j++];
}
public static void mergeSort(long[] arr, int l ,int r){
if((r-l)>=1){
int mid = (l+r)/2;
mergeSort(arr,l,mid);
mergeSort(arr,mid+1,r);
merge(arr,l,r,mid);
}
}
public static void merge(long arr[], int l, int r, int mid){
int n1 = (mid-l+1), n2 = (r-mid);
long left[] = new long[n1];
long right[] = new long[n2];
for(int i =0 ;i<n1;i++) left[i] = arr[l+i];
for(int i =0 ;i<n2;i++) right[i] = arr[mid+1+i];
int i =0, j =0, k = l;
while(i<n1 && j<n2){
if(left[i]>right[j]){
arr[k++] = right[j++];
}
else{
arr[k++] = left[i++];
}
}
while(i<n1) arr[k++] = left[i++];
while(j<n2) arr[k++] = right[j++];
}
static class Pair implements Comparable<Pair>{
int x,y,k;
int i,dir;
long val;
Pair (int x,int y){
this.x=x;
this.y=y;
}
public int compareTo(Pair o) {
if(this.x!=o.x)
return this.x-o.x;
return this.y-o.y;
}
public String toString(){
return x+" "+y+" "+k+" "+i;}
public boolean equals(Object o) {
if (o instanceof Pair) {
Pair p = (Pair)o;
return p.x == x && p.y == y;
}
return false;
}
public int hashCode() {
return new Long(x).hashCode()*31 + new Long(y).hashCode() ;
}
}
public static boolean isPal(String s){
for(int i=0, j=s.length()-1;i<=j;i++,j--){
if(s.charAt(i)!=s.charAt(j)) return false;
}
return true;
}
public static String rev(String s){
StringBuilder sb=new StringBuilder(s);
sb.reverse();
return sb.toString();
}
public static long gcd(long x,long y){
if(y==0)
return x;
else
return gcd(y,x%y);
}
public static int gcd(int x,int y){
if(y==0)
return x;
return gcd(y,x%y);
}
public static long gcdExtended(long a,long b,long[] x){
if(a==0){
x[0]=0;
x[1]=1;
return b;
}
long[] y=new long[2];
long gcd=gcdExtended(b%a, a, y);
x[0]=y[1]-(b/a)*y[0];
x[1]=y[0];
return gcd;
}
public static int abs(int a,int b){
return (int)Math.abs(a-b);
}
public static long abs(long a,long b){
return (long)Math.abs(a-b);
}
public static int max(int a,int b){
if(a>b)
return a;
else
return b;
}
public static int min(int a,int b){
if(a>b)
return b;
else
return a;
}
public static long max(long a,long b){
if(a>b)
return a;
else
return b;
}
public static long min(long a,long b){
if(a>b)
return b;
else
return a;
}
public static long pow(long n,long p,long m){
long result = 1;
if(p==0)
return 1;
if (p==1)
return n;
while(p!=0)
{
if(p%2==1)
result *= n;
if(result>=m)
result%=m;
p >>=1;
n*=n;
if(n>=m)
n%=m;
}
return result;
}
public static long pow(long n,long p){
long result = 1;
if(p==0)
return 1;
if (p==1)
return n;
while(p!=0)
{
if(p%2==1)
result *= n;
p >>=1;
n*=n;
}
return result;
}
public static void debug(Object... o) {
System.out.println(Arrays.deepToString(o));
}
void run() throws Exception {
is = System.in;
out = new PrintWriter(System.out);
solve();
out.flush();
}
public static void main(String[] args) throws Exception {
new Thread(null, new Runnable() {
public void run() {
try {
new code5().run();
} catch (Exception e) {
e.printStackTrace();
}
}
}, "1", 1 << 26).start();
//new code5().run();
}
private byte[] inbuf = new byte[1024];
public int lenbuf = 0, ptrbuf = 0;
private int readByte() {
if (lenbuf == -1)
throw new InputMismatchException();
if (ptrbuf >= lenbuf) {
ptrbuf = 0;
try {
lenbuf = is.read(inbuf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (lenbuf <= 0)
return -1;
}
return inbuf[ptrbuf++];
}
private boolean isSpaceChar(int c) {
return !(c >= 33 && c <= 126);
}
private int skip() {
int b;
while ((b = readByte()) != -1 && isSpaceChar(b));
return b;
}
private double nd() {
return Double.parseDouble(ns());
}
private char nc() {
return (char) skip();
}
private String ns() {
int b = skip();
StringBuilder sb = new StringBuilder();
while (!(isSpaceChar(b))) { // when nextLine, (isSpaceChar(b) && b != ' ')
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
private char[] ns(int n) {
char[] buf = new char[n];
int b = skip(), p = 0;
while (p < n && !(isSpaceChar(b))) {
buf[p++] = (char) b;
b = readByte();
}
return n == p ? buf : Arrays.copyOf(buf, p);
}
private char[][] nm(int n, int m) {
char[][] map = new char[n][];
for (int i = 0; i < n; i++)
map[i] = ns(m);
return map;
}
private int[] na(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = ni();
return a;
}
private long[] nl(int n) {
long[] a = new long[n];
for (int i = 0; i < n; i++)
a[i] = nl();
return a;
}
private int ni() {
int num = 0, b;
boolean minus = false;
while ((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'))
;
if (b == '-') {
minus = true;
b = readByte();
}
while (true) {
if (b >= '0' && b <= '9') {
num = num * 10 + (b - '0');
} else {
return minus ? -num : num;
}
b = readByte();
}
}
private long nl() {
long num = 0;
int b;
boolean minus = false;
while ((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'))
;
if (b == '-') {
minus = true;
b = readByte();
}
while (true) {
if (b >= '0' && b <= '9') {
num = num * 10 + (b - '0');
} else {
return minus ? -num : num;
}
b = readByte();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(1): The time complexity is constant to the input size n.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 3,181 | 2,332 |
430 |
import java.io.*;
import java.util.*;
public class Main {
private static void solve(InputReader in, OutputWriter out) {
int n = in.nextInt();
List<List<Integer>> g = new ArrayList<>(n + 1);
for (int i = 0; i < n + 1; i++) {
g.add(new LinkedList<>());
}
int degree1 = 0, degree2 = 0, root = 0;
for (int i = 0; i < n - 1; i++) {
int a = in.nextInt();
int b = in.nextInt();
g.get(a).add(b);
g.get(b).add(a);
if (g.get(a).size() > degree1) {
if (a == root) {
degree1 = g.get(a).size();
} else {
degree2 = degree1;
degree1 = g.get(a).size();
root = a;
}
} else if (g.get(a).size() > degree2) {
degree2 = g.get(a).size();
}
if (g.get(b).size() > degree1) {
if (b == root) {
degree1 = g.get(b).size();
} else {
degree2 = degree1;
degree1 = g.get(b).size();
root = b;
}
} else if (g.get(b).size() > degree2) {
degree2 = g.get(b).size();
}
}
if (degree2 > 2) {
out.print("No");
} else {
out.println("Yes");
List<Integer> leaves = new LinkedList<>();
for (int i = 1; i <= n; i++) {
if (i != root) {
if (g.get(i).size() == 1) {
leaves.add(i);
}
}
}
out.println(leaves.size());
for (int i : leaves) {
out.println(root + " " + i);
}
}
}
private static void shuffleArray(int[] array) {
int index;
Random random = new Random();
for (int i = array.length - 1; i > 0; i--) {
index = random.nextInt(i + 1);
if (index != i) {
array[index] ^= array[i];
array[i] ^= array[index];
array[index] ^= array[i];
}
}
}
public static void main(String[] args) {
InputReader in = new InputReader(System.in);
OutputWriter out = new OutputWriter(System.out);
solve(in, out);
in.close();
out.close();
}
private static class InputReader {
private BufferedReader br;
private StringTokenizer st;
InputReader(InputStream is) {
br = new BufferedReader(new InputStreamReader(is));
st = null;
}
String nextLine() {
String line = null;
try {
line = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return line;
}
String next() {
while (st == null || !st.hasMoreTokens()) {
String line = nextLine();
if (line == null) return null;
st = new StringTokenizer(line);
}
return st.nextToken();
}
byte nextByte() {
return Byte.parseByte(next());
}
short nextShort() {
return Short.parseShort(next());
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
void close() {
try {
br.close();
} catch (IOException e) {
e.printStackTrace();
}
}
}
private static class OutputWriter {
BufferedWriter bw;
OutputWriter(OutputStream os) {
bw = new BufferedWriter(new OutputStreamWriter(os));
}
void print(int i) {
print(Integer.toString(i));
}
void println(int i) {
println(Integer.toString(i));
}
void print(long l) {
print(Long.toString(l));
}
void println(long l) {
println(Long.toString(l));
}
void print(double d) {
print(Double.toString(d));
}
void println(double d) {
println(Double.toString(d));
}
void print(boolean b) {
print(Boolean.toString(b));
}
void println(boolean b) {
println(Boolean.toString(b));
}
void print(char c) {
try {
bw.write(c);
} catch (IOException e) {
e.printStackTrace();
}
}
void println(char c) {
println(Character.toString(c));
}
void print(String s) {
try {
bw.write(s);
} catch (IOException e) {
e.printStackTrace();
}
}
void println(String s) {
print(s);
print('\n');
}
void close() {
try {
bw.close();
} catch (IOException e) {
e.printStackTrace();
}
}
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Main {
private static void solve(InputReader in, OutputWriter out) {
int n = in.nextInt();
List<List<Integer>> g = new ArrayList<>(n + 1);
for (int i = 0; i < n + 1; i++) {
g.add(new LinkedList<>());
}
int degree1 = 0, degree2 = 0, root = 0;
for (int i = 0; i < n - 1; i++) {
int a = in.nextInt();
int b = in.nextInt();
g.get(a).add(b);
g.get(b).add(a);
if (g.get(a).size() > degree1) {
if (a == root) {
degree1 = g.get(a).size();
} else {
degree2 = degree1;
degree1 = g.get(a).size();
root = a;
}
} else if (g.get(a).size() > degree2) {
degree2 = g.get(a).size();
}
if (g.get(b).size() > degree1) {
if (b == root) {
degree1 = g.get(b).size();
} else {
degree2 = degree1;
degree1 = g.get(b).size();
root = b;
}
} else if (g.get(b).size() > degree2) {
degree2 = g.get(b).size();
}
}
if (degree2 > 2) {
out.print("No");
} else {
out.println("Yes");
List<Integer> leaves = new LinkedList<>();
for (int i = 1; i <= n; i++) {
if (i != root) {
if (g.get(i).size() == 1) {
leaves.add(i);
}
}
}
out.println(leaves.size());
for (int i : leaves) {
out.println(root + " " + i);
}
}
}
private static void shuffleArray(int[] array) {
int index;
Random random = new Random();
for (int i = array.length - 1; i > 0; i--) {
index = random.nextInt(i + 1);
if (index != i) {
array[index] ^= array[i];
array[i] ^= array[index];
array[index] ^= array[i];
}
}
}
public static void main(String[] args) {
InputReader in = new InputReader(System.in);
OutputWriter out = new OutputWriter(System.out);
solve(in, out);
in.close();
out.close();
}
private static class InputReader {
private BufferedReader br;
private StringTokenizer st;
InputReader(InputStream is) {
br = new BufferedReader(new InputStreamReader(is));
st = null;
}
String nextLine() {
String line = null;
try {
line = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return line;
}
String next() {
while (st == null || !st.hasMoreTokens()) {
String line = nextLine();
if (line == null) return null;
st = new StringTokenizer(line);
}
return st.nextToken();
}
byte nextByte() {
return Byte.parseByte(next());
}
short nextShort() {
return Short.parseShort(next());
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
void close() {
try {
br.close();
} catch (IOException e) {
e.printStackTrace();
}
}
}
private static class OutputWriter {
BufferedWriter bw;
OutputWriter(OutputStream os) {
bw = new BufferedWriter(new OutputStreamWriter(os));
}
void print(int i) {
print(Integer.toString(i));
}
void println(int i) {
println(Integer.toString(i));
}
void print(long l) {
print(Long.toString(l));
}
void println(long l) {
println(Long.toString(l));
}
void print(double d) {
print(Double.toString(d));
}
void println(double d) {
println(Double.toString(d));
}
void print(boolean b) {
print(Boolean.toString(b));
}
void println(boolean b) {
println(Boolean.toString(b));
}
void print(char c) {
try {
bw.write(c);
} catch (IOException e) {
e.printStackTrace();
}
}
void println(char c) {
println(Character.toString(c));
}
void print(String s) {
try {
bw.write(s);
} catch (IOException e) {
e.printStackTrace();
}
}
void println(String s) {
print(s);
print('\n');
}
void close() {
try {
bw.close();
} catch (IOException e) {
e.printStackTrace();
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Main {
private static void solve(InputReader in, OutputWriter out) {
int n = in.nextInt();
List<List<Integer>> g = new ArrayList<>(n + 1);
for (int i = 0; i < n + 1; i++) {
g.add(new LinkedList<>());
}
int degree1 = 0, degree2 = 0, root = 0;
for (int i = 0; i < n - 1; i++) {
int a = in.nextInt();
int b = in.nextInt();
g.get(a).add(b);
g.get(b).add(a);
if (g.get(a).size() > degree1) {
if (a == root) {
degree1 = g.get(a).size();
} else {
degree2 = degree1;
degree1 = g.get(a).size();
root = a;
}
} else if (g.get(a).size() > degree2) {
degree2 = g.get(a).size();
}
if (g.get(b).size() > degree1) {
if (b == root) {
degree1 = g.get(b).size();
} else {
degree2 = degree1;
degree1 = g.get(b).size();
root = b;
}
} else if (g.get(b).size() > degree2) {
degree2 = g.get(b).size();
}
}
if (degree2 > 2) {
out.print("No");
} else {
out.println("Yes");
List<Integer> leaves = new LinkedList<>();
for (int i = 1; i <= n; i++) {
if (i != root) {
if (g.get(i).size() == 1) {
leaves.add(i);
}
}
}
out.println(leaves.size());
for (int i : leaves) {
out.println(root + " " + i);
}
}
}
private static void shuffleArray(int[] array) {
int index;
Random random = new Random();
for (int i = array.length - 1; i > 0; i--) {
index = random.nextInt(i + 1);
if (index != i) {
array[index] ^= array[i];
array[i] ^= array[index];
array[index] ^= array[i];
}
}
}
public static void main(String[] args) {
InputReader in = new InputReader(System.in);
OutputWriter out = new OutputWriter(System.out);
solve(in, out);
in.close();
out.close();
}
private static class InputReader {
private BufferedReader br;
private StringTokenizer st;
InputReader(InputStream is) {
br = new BufferedReader(new InputStreamReader(is));
st = null;
}
String nextLine() {
String line = null;
try {
line = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return line;
}
String next() {
while (st == null || !st.hasMoreTokens()) {
String line = nextLine();
if (line == null) return null;
st = new StringTokenizer(line);
}
return st.nextToken();
}
byte nextByte() {
return Byte.parseByte(next());
}
short nextShort() {
return Short.parseShort(next());
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
void close() {
try {
br.close();
} catch (IOException e) {
e.printStackTrace();
}
}
}
private static class OutputWriter {
BufferedWriter bw;
OutputWriter(OutputStream os) {
bw = new BufferedWriter(new OutputStreamWriter(os));
}
void print(int i) {
print(Integer.toString(i));
}
void println(int i) {
println(Integer.toString(i));
}
void print(long l) {
print(Long.toString(l));
}
void println(long l) {
println(Long.toString(l));
}
void print(double d) {
print(Double.toString(d));
}
void println(double d) {
println(Double.toString(d));
}
void print(boolean b) {
print(Boolean.toString(b));
}
void println(boolean b) {
println(Boolean.toString(b));
}
void print(char c) {
try {
bw.write(c);
} catch (IOException e) {
e.printStackTrace();
}
}
void println(char c) {
println(Character.toString(c));
}
void print(String s) {
try {
bw.write(s);
} catch (IOException e) {
e.printStackTrace();
}
}
void println(String s) {
print(s);
print('\n');
}
void close() {
try {
bw.close();
} catch (IOException e) {
e.printStackTrace();
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The running time increases with the cube of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n): The running time grows linearly with the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,438 | 429 |
3,200 |
import java.util.Scanner;
public class A {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
String ns = sc.next();
sc.close();
int n1 = Integer.parseInt(ns);
int n2 = Integer.parseInt(ns.substring(0, ns.length() - 1));
int n3 = Integer.parseInt(ns.substring(0, ns.length() - 2) + ns.substring(ns.length() - 1));
int max = n1;
max = (n2 > max) ? (n2) : (max);
max = (n3 > max) ? (n3) : (max);
System.out.println(max);
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class A {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
String ns = sc.next();
sc.close();
int n1 = Integer.parseInt(ns);
int n2 = Integer.parseInt(ns.substring(0, ns.length() - 1));
int n3 = Integer.parseInt(ns.substring(0, ns.length() - 2) + ns.substring(ns.length() - 1));
int max = n1;
max = (n2 > max) ? (n2) : (max);
max = (n3 > max) ? (n3) : (max);
System.out.println(max);
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The running time increases with the square of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class A {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
String ns = sc.next();
sc.close();
int n1 = Integer.parseInt(ns);
int n2 = Integer.parseInt(ns.substring(0, ns.length() - 1));
int n3 = Integer.parseInt(ns.substring(0, ns.length() - 2) + ns.substring(ns.length() - 1));
int max = n1;
max = (n2 > max) ? (n2) : (max);
max = (n3 > max) ? (n3) : (max);
System.out.println(max);
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The running time increases with the logarithm of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 483 | 3,194 |
4,168 |
import java.util.*;
import java.lang.*;
import java.io.*;
/* Name of the class has to be "Main" only if the class is public. */
public class Ideone
{
static double p[][];
static double dp[];
static int n;
public static int BitCount(int u) {
int uCount;
uCount = u - ((u >> 1) & 033333333333) - ((u >> 2) & 011111111111);
return ((uCount + (uCount >> 3)) & 030707070707) % 63;
}
public static double f(int mask) {
if (dp[mask] > -0.5)
return dp[mask];
dp[mask] = 0;
int ones = BitCount(mask);
double pairs = (((ones * (ones + 1))) >> 1);
//System.out.println(pairs);
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
if ((mask & (1 << i)) != 0 && (mask & (1 << j)) == 0)
dp[mask] += f(mask | (1 << j)) * p[i][j] / pairs;
}
}
return dp[mask];
}
public static void main(String[] args) throws NumberFormatException,
IOException {
BufferedReader bf = new BufferedReader(new InputStreamReader(System.in));
n = Integer.parseInt(bf.readLine());
p = new double[n][n];
for (int i = 0; i < n; i++) {
StringTokenizer st = new StringTokenizer(bf.readLine());
for (int j = 0; j < n; j++) {
p[i][j] = Double.parseDouble(st.nextToken());
}
}
dp = new double[1 << n];
Arrays.fill(dp, -1.0);
dp[(1 << n) - 1] = 1.;
for (int i = 0; i < n - 1; i++) {
System.out.print(f(1 << i) + " ");
}
System.out.println(f((1 << (n - 1))));
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.lang.*;
import java.io.*;
/* Name of the class has to be "Main" only if the class is public. */
public class Ideone
{
static double p[][];
static double dp[];
static int n;
public static int BitCount(int u) {
int uCount;
uCount = u - ((u >> 1) & 033333333333) - ((u >> 2) & 011111111111);
return ((uCount + (uCount >> 3)) & 030707070707) % 63;
}
public static double f(int mask) {
if (dp[mask] > -0.5)
return dp[mask];
dp[mask] = 0;
int ones = BitCount(mask);
double pairs = (((ones * (ones + 1))) >> 1);
//System.out.println(pairs);
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
if ((mask & (1 << i)) != 0 && (mask & (1 << j)) == 0)
dp[mask] += f(mask | (1 << j)) * p[i][j] / pairs;
}
}
return dp[mask];
}
public static void main(String[] args) throws NumberFormatException,
IOException {
BufferedReader bf = new BufferedReader(new InputStreamReader(System.in));
n = Integer.parseInt(bf.readLine());
p = new double[n][n];
for (int i = 0; i < n; i++) {
StringTokenizer st = new StringTokenizer(bf.readLine());
for (int j = 0; j < n; j++) {
p[i][j] = Double.parseDouble(st.nextToken());
}
}
dp = new double[1 << n];
Arrays.fill(dp, -1.0);
dp[(1 << n) - 1] = 1.;
for (int i = 0; i < n - 1; i++) {
System.out.print(f(1 << i) + " ");
}
System.out.println(f((1 << (n - 1))));
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
import java.lang.*;
import java.io.*;
/* Name of the class has to be "Main" only if the class is public. */
public class Ideone
{
static double p[][];
static double dp[];
static int n;
public static int BitCount(int u) {
int uCount;
uCount = u - ((u >> 1) & 033333333333) - ((u >> 2) & 011111111111);
return ((uCount + (uCount >> 3)) & 030707070707) % 63;
}
public static double f(int mask) {
if (dp[mask] > -0.5)
return dp[mask];
dp[mask] = 0;
int ones = BitCount(mask);
double pairs = (((ones * (ones + 1))) >> 1);
//System.out.println(pairs);
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
if ((mask & (1 << i)) != 0 && (mask & (1 << j)) == 0)
dp[mask] += f(mask | (1 << j)) * p[i][j] / pairs;
}
}
return dp[mask];
}
public static void main(String[] args) throws NumberFormatException,
IOException {
BufferedReader bf = new BufferedReader(new InputStreamReader(System.in));
n = Integer.parseInt(bf.readLine());
p = new double[n][n];
for (int i = 0; i < n; i++) {
StringTokenizer st = new StringTokenizer(bf.readLine());
for (int j = 0; j < n; j++) {
p[i][j] = Double.parseDouble(st.nextToken());
}
}
dp = new double[1 << n];
Arrays.fill(dp, -1.0);
dp[(1 << n) - 1] = 1.;
for (int i = 0; i < n - 1; i++) {
System.out.print(f(1 << i) + " ");
}
System.out.println(f((1 << (n - 1))));
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 845 | 4,157 |
1,581 |
import java.awt.geom.*;
import java.io.*;
import java.math.*;
import java.util.*;
import java.util.regex.*;
import static java.lang.Math.*;
public class A {
public A() throws Exception {
int n = in.nextInt();
int[] arr = new int[n];
for (int i=0; i<n; i++) arr[i] = in.nextInt();
int[] arr2 = arr.clone();
Arrays.sort(arr2);
int diff = 0;
for (int i=0; i<n; i++) {
if (arr2[i]!=arr[i]) diff++;
}
if (diff<=2) System.out.println("YES");
else System.out.println("NO");
}
Scanner in = new Scanner(System.in);
StringBuilder buf = new StringBuilder();
public static void main(String[] args) throws Exception { // {{{
new A();
} // }}}
public static void debug(Object... arr) { // {{{
System.err.println(Arrays.deepToString(arr));
} // }}}
public static class Scanner { // {{{
BufferedReader br;
String line;
StringTokenizer st;
public Scanner(InputStream in) {
br = new BufferedReader(new InputStreamReader(in));
}
public boolean hasNext() throws IOException {
while ((st==null||!st.hasMoreTokens())&&(line=br.readLine())!=null)
st = new StringTokenizer(line);
return st.hasMoreTokens();
}
public String next() throws IOException {
if (hasNext()) return st.nextToken();
throw new NoSuchElementException();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public long nextLong() throws IOException {
return Long.parseLong(next());
}
public double nextDouble() throws IOException {
return Double.parseDouble(next());
}
} // }}}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.awt.geom.*;
import java.io.*;
import java.math.*;
import java.util.*;
import java.util.regex.*;
import static java.lang.Math.*;
public class A {
public A() throws Exception {
int n = in.nextInt();
int[] arr = new int[n];
for (int i=0; i<n; i++) arr[i] = in.nextInt();
int[] arr2 = arr.clone();
Arrays.sort(arr2);
int diff = 0;
for (int i=0; i<n; i++) {
if (arr2[i]!=arr[i]) diff++;
}
if (diff<=2) System.out.println("YES");
else System.out.println("NO");
}
Scanner in = new Scanner(System.in);
StringBuilder buf = new StringBuilder();
public static void main(String[] args) throws Exception { // {{{
new A();
} // }}}
public static void debug(Object... arr) { // {{{
System.err.println(Arrays.deepToString(arr));
} // }}}
public static class Scanner { // {{{
BufferedReader br;
String line;
StringTokenizer st;
public Scanner(InputStream in) {
br = new BufferedReader(new InputStreamReader(in));
}
public boolean hasNext() throws IOException {
while ((st==null||!st.hasMoreTokens())&&(line=br.readLine())!=null)
st = new StringTokenizer(line);
return st.hasMoreTokens();
}
public String next() throws IOException {
if (hasNext()) return st.nextToken();
throw new NoSuchElementException();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public long nextLong() throws IOException {
return Long.parseLong(next());
}
public double nextDouble() throws IOException {
return Double.parseDouble(next());
}
} // }}}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.awt.geom.*;
import java.io.*;
import java.math.*;
import java.util.*;
import java.util.regex.*;
import static java.lang.Math.*;
public class A {
public A() throws Exception {
int n = in.nextInt();
int[] arr = new int[n];
for (int i=0; i<n; i++) arr[i] = in.nextInt();
int[] arr2 = arr.clone();
Arrays.sort(arr2);
int diff = 0;
for (int i=0; i<n; i++) {
if (arr2[i]!=arr[i]) diff++;
}
if (diff<=2) System.out.println("YES");
else System.out.println("NO");
}
Scanner in = new Scanner(System.in);
StringBuilder buf = new StringBuilder();
public static void main(String[] args) throws Exception { // {{{
new A();
} // }}}
public static void debug(Object... arr) { // {{{
System.err.println(Arrays.deepToString(arr));
} // }}}
public static class Scanner { // {{{
BufferedReader br;
String line;
StringTokenizer st;
public Scanner(InputStream in) {
br = new BufferedReader(new InputStreamReader(in));
}
public boolean hasNext() throws IOException {
while ((st==null||!st.hasMoreTokens())&&(line=br.readLine())!=null)
st = new StringTokenizer(line);
return st.hasMoreTokens();
}
public String next() throws IOException {
if (hasNext()) return st.nextToken();
throw new NoSuchElementException();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public long nextLong() throws IOException {
return Long.parseLong(next());
}
public double nextDouble() throws IOException {
return Double.parseDouble(next());
}
} // }}}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(1): The time complexity is constant to the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 732 | 1,578 |
1,320 |
import java.math.BigInteger;
import java.util.*;
import java.io.*;
public class Contest {
public static void main(String[] args)throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
String[] s=br.readLine().split(" ");
BigInteger x = new BigInteger(s[0]);
BigInteger k = new BigInteger(s[1]);
BigInteger mod = new BigInteger(String.valueOf((int) (Math.pow(10, 9) + 7)));
BigInteger two = new BigInteger("2");
BigInteger interm = two.modPow(k, mod);
BigInteger res = interm.multiply(x).add(interm.multiply(x)).subtract(interm).add(BigInteger.ONE).mod(mod);
if(x.equals(BigInteger.ZERO)) {
System.out.println("0");
return;
}
System.out.println(res);
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.math.BigInteger;
import java.util.*;
import java.io.*;
public class Contest {
public static void main(String[] args)throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
String[] s=br.readLine().split(" ");
BigInteger x = new BigInteger(s[0]);
BigInteger k = new BigInteger(s[1]);
BigInteger mod = new BigInteger(String.valueOf((int) (Math.pow(10, 9) + 7)));
BigInteger two = new BigInteger("2");
BigInteger interm = two.modPow(k, mod);
BigInteger res = interm.multiply(x).add(interm.multiply(x)).subtract(interm).add(BigInteger.ONE).mod(mod);
if(x.equals(BigInteger.ZERO)) {
System.out.println("0");
return;
}
System.out.println(res);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.math.BigInteger;
import java.util.*;
import java.io.*;
public class Contest {
public static void main(String[] args)throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
String[] s=br.readLine().split(" ");
BigInteger x = new BigInteger(s[0]);
BigInteger k = new BigInteger(s[1]);
BigInteger mod = new BigInteger(String.valueOf((int) (Math.pow(10, 9) + 7)));
BigInteger two = new BigInteger("2");
BigInteger interm = two.modPow(k, mod);
BigInteger res = interm.multiply(x).add(interm.multiply(x)).subtract(interm).add(BigInteger.ONE).mod(mod);
if(x.equals(BigInteger.ZERO)) {
System.out.println("0");
return;
}
System.out.println(res);
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 509 | 1,318 |
351 |
import java.io.*;
import java.util.*;
public class Solution {
static BufferedReader br=null;
static PrintWriter pw=null;
static StringTokenizer st=null;
static String FILENAME="";
void nline(){
try {
st=new StringTokenizer(br.readLine());
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
int ni(){
while(st==null || !st.hasMoreTokens()) nline();
return Integer.parseInt(st.nextToken());
}
long nl(){
while(st==null || !st.hasMoreTokens()) nline();
return Long.parseLong(st.nextToken());
}
double nd(){
while(st==null || !st.hasMoreTokens()) nline();
return Double.parseDouble(st.nextToken());
}
String ns(){
while(st==null || !st.hasMoreTokens()) nline();
return st.nextToken();
}
String nstr(){
String s="";
try {
s=br.readLine();
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
return s;
}
public void solve(){
int n = ni();
String s = nstr();
int[] a = new int[n];
for (int i=0;i<n;i++)
a[i]=s.charAt(i)=='H'?0:1;
int hc = 0;
for (int i=0;i<n;i++)
if (a[i]==0) hc++;
int min = 1000000;
for (int ss=0;ss<n;ss++) {
int rc = 0;
for (int i=0;i<hc;i++)
if (a[(i+ss)%n]==0) rc++;
if (hc-rc<min) min=hc-rc;
}
pw.print(min);
}
public void run(){
solve();
pw.close();
}
public static void main(String[] args) {
br = new BufferedReader(new InputStreamReader(System.in));
pw = new PrintWriter(System.out);
new Solution().run();
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Solution {
static BufferedReader br=null;
static PrintWriter pw=null;
static StringTokenizer st=null;
static String FILENAME="";
void nline(){
try {
st=new StringTokenizer(br.readLine());
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
int ni(){
while(st==null || !st.hasMoreTokens()) nline();
return Integer.parseInt(st.nextToken());
}
long nl(){
while(st==null || !st.hasMoreTokens()) nline();
return Long.parseLong(st.nextToken());
}
double nd(){
while(st==null || !st.hasMoreTokens()) nline();
return Double.parseDouble(st.nextToken());
}
String ns(){
while(st==null || !st.hasMoreTokens()) nline();
return st.nextToken();
}
String nstr(){
String s="";
try {
s=br.readLine();
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
return s;
}
public void solve(){
int n = ni();
String s = nstr();
int[] a = new int[n];
for (int i=0;i<n;i++)
a[i]=s.charAt(i)=='H'?0:1;
int hc = 0;
for (int i=0;i<n;i++)
if (a[i]==0) hc++;
int min = 1000000;
for (int ss=0;ss<n;ss++) {
int rc = 0;
for (int i=0;i<hc;i++)
if (a[(i+ss)%n]==0) rc++;
if (hc-rc<min) min=hc-rc;
}
pw.print(min);
}
public void run(){
solve();
pw.close();
}
public static void main(String[] args) {
br = new BufferedReader(new InputStreamReader(System.in));
pw = new PrintWriter(System.out);
new Solution().run();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Solution {
static BufferedReader br=null;
static PrintWriter pw=null;
static StringTokenizer st=null;
static String FILENAME="";
void nline(){
try {
st=new StringTokenizer(br.readLine());
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
int ni(){
while(st==null || !st.hasMoreTokens()) nline();
return Integer.parseInt(st.nextToken());
}
long nl(){
while(st==null || !st.hasMoreTokens()) nline();
return Long.parseLong(st.nextToken());
}
double nd(){
while(st==null || !st.hasMoreTokens()) nline();
return Double.parseDouble(st.nextToken());
}
String ns(){
while(st==null || !st.hasMoreTokens()) nline();
return st.nextToken();
}
String nstr(){
String s="";
try {
s=br.readLine();
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
return s;
}
public void solve(){
int n = ni();
String s = nstr();
int[] a = new int[n];
for (int i=0;i<n;i++)
a[i]=s.charAt(i)=='H'?0:1;
int hc = 0;
for (int i=0;i<n;i++)
if (a[i]==0) hc++;
int min = 1000000;
for (int ss=0;ss<n;ss++) {
int rc = 0;
for (int i=0;i<hc;i++)
if (a[(i+ss)%n]==0) rc++;
if (hc-rc<min) min=hc-rc;
}
pw.print(min);
}
public void run(){
solve();
pw.close();
}
public static void main(String[] args) {
br = new BufferedReader(new InputStreamReader(System.in));
pw = new PrintWriter(System.out);
new Solution().run();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 777 | 350 |
3,262 |
import java.io.PrintWriter;
import java.util.Scanner;
public class HexadecimalTheorem {
/**
* @param args
*/
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int n = in.nextInt();
PrintWriter out = new PrintWriter(System.out);
out.printf("%d %d %d%n", 0, 0, n);
out.flush();
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.PrintWriter;
import java.util.Scanner;
public class HexadecimalTheorem {
/**
* @param args
*/
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int n = in.nextInt();
PrintWriter out = new PrintWriter(System.out);
out.printf("%d %d %d%n", 0, 0, n);
out.flush();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.PrintWriter;
import java.util.Scanner;
public class HexadecimalTheorem {
/**
* @param args
*/
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int n = in.nextInt();
PrintWriter out = new PrintWriter(System.out);
out.printf("%d %d %d%n", 0, 0, n);
out.flush();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(1): The running time does not change regardless of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 439 | 3,256 |
2,292 |
//package round455;
import java.io.ByteArrayInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.InputMismatchException;
public class C {
InputStream is;
PrintWriter out;
String INPUT = "";
void solve()
{
int n = ni();
int mod = 1000000007;
long[] dp = new long[5005];
dp[0] = 1;
for(int i = 0;i < n;i++){
char c = nc();
if(c == 's'){
if(i < n-1){
for(int j = 5003;j >= 0;j--){
dp[j] += dp[j+1];
if(dp[j] >= mod)dp[j] -= mod;
}
}
}else{
for(int j = 5003;j >= 0;j--){
dp[j+1] = dp[j];
}
dp[0] = 0;
}
}
long ans = 0;
for(int i = 0;i < 5005;i++)ans += dp[i];
out.println(ans % mod);
}
void run() throws Exception
{
is = oj ? System.in : new ByteArrayInputStream(INPUT.getBytes());
out = new PrintWriter(System.out);
long s = System.currentTimeMillis();
solve();
out.flush();
tr(System.currentTimeMillis()-s+"ms");
}
public static void main(String[] args) throws Exception { new C().run(); }
private byte[] inbuf = new byte[1024];
public int lenbuf = 0, ptrbuf = 0;
private int readByte()
{
if(lenbuf == -1)throw new InputMismatchException();
if(ptrbuf >= lenbuf){
ptrbuf = 0;
try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); }
if(lenbuf <= 0)return -1;
}
return inbuf[ptrbuf++];
}
private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); }
private int skip() { int b; while((b = readByte()) != -1 && isSpaceChar(b)); return b; }
private double nd() { return Double.parseDouble(ns()); }
private char nc() { return (char)skip(); }
private String ns()
{
int b = skip();
StringBuilder sb = new StringBuilder();
while(!(isSpaceChar(b))){ // when nextLine, (isSpaceChar(b) && b != ' ')
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
private char[] ns(int n)
{
char[] buf = new char[n];
int b = skip(), p = 0;
while(p < n && !(isSpaceChar(b))){
buf[p++] = (char)b;
b = readByte();
}
return n == p ? buf : Arrays.copyOf(buf, p);
}
private char[][] nm(int n, int m)
{
char[][] map = new char[n][];
for(int i = 0;i < n;i++)map[i] = ns(m);
return map;
}
private int[] na(int n)
{
int[] a = new int[n];
for(int i = 0;i < n;i++)a[i] = ni();
return a;
}
private int ni()
{
int num = 0, b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private long nl()
{
long num = 0;
int b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private boolean oj = System.getProperty("ONLINE_JUDGE") != null;
private void tr(Object... o) { if(!oj)System.out.println(Arrays.deepToString(o)); }
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
//package round455;
import java.io.ByteArrayInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.InputMismatchException;
public class C {
InputStream is;
PrintWriter out;
String INPUT = "";
void solve()
{
int n = ni();
int mod = 1000000007;
long[] dp = new long[5005];
dp[0] = 1;
for(int i = 0;i < n;i++){
char c = nc();
if(c == 's'){
if(i < n-1){
for(int j = 5003;j >= 0;j--){
dp[j] += dp[j+1];
if(dp[j] >= mod)dp[j] -= mod;
}
}
}else{
for(int j = 5003;j >= 0;j--){
dp[j+1] = dp[j];
}
dp[0] = 0;
}
}
long ans = 0;
for(int i = 0;i < 5005;i++)ans += dp[i];
out.println(ans % mod);
}
void run() throws Exception
{
is = oj ? System.in : new ByteArrayInputStream(INPUT.getBytes());
out = new PrintWriter(System.out);
long s = System.currentTimeMillis();
solve();
out.flush();
tr(System.currentTimeMillis()-s+"ms");
}
public static void main(String[] args) throws Exception { new C().run(); }
private byte[] inbuf = new byte[1024];
public int lenbuf = 0, ptrbuf = 0;
private int readByte()
{
if(lenbuf == -1)throw new InputMismatchException();
if(ptrbuf >= lenbuf){
ptrbuf = 0;
try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); }
if(lenbuf <= 0)return -1;
}
return inbuf[ptrbuf++];
}
private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); }
private int skip() { int b; while((b = readByte()) != -1 && isSpaceChar(b)); return b; }
private double nd() { return Double.parseDouble(ns()); }
private char nc() { return (char)skip(); }
private String ns()
{
int b = skip();
StringBuilder sb = new StringBuilder();
while(!(isSpaceChar(b))){ // when nextLine, (isSpaceChar(b) && b != ' ')
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
private char[] ns(int n)
{
char[] buf = new char[n];
int b = skip(), p = 0;
while(p < n && !(isSpaceChar(b))){
buf[p++] = (char)b;
b = readByte();
}
return n == p ? buf : Arrays.copyOf(buf, p);
}
private char[][] nm(int n, int m)
{
char[][] map = new char[n][];
for(int i = 0;i < n;i++)map[i] = ns(m);
return map;
}
private int[] na(int n)
{
int[] a = new int[n];
for(int i = 0;i < n;i++)a[i] = ni();
return a;
}
private int ni()
{
int num = 0, b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private long nl()
{
long num = 0;
int b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private boolean oj = System.getProperty("ONLINE_JUDGE") != null;
private void tr(Object... o) { if(!oj)System.out.println(Arrays.deepToString(o)); }
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
//package round455;
import java.io.ByteArrayInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.InputMismatchException;
public class C {
InputStream is;
PrintWriter out;
String INPUT = "";
void solve()
{
int n = ni();
int mod = 1000000007;
long[] dp = new long[5005];
dp[0] = 1;
for(int i = 0;i < n;i++){
char c = nc();
if(c == 's'){
if(i < n-1){
for(int j = 5003;j >= 0;j--){
dp[j] += dp[j+1];
if(dp[j] >= mod)dp[j] -= mod;
}
}
}else{
for(int j = 5003;j >= 0;j--){
dp[j+1] = dp[j];
}
dp[0] = 0;
}
}
long ans = 0;
for(int i = 0;i < 5005;i++)ans += dp[i];
out.println(ans % mod);
}
void run() throws Exception
{
is = oj ? System.in : new ByteArrayInputStream(INPUT.getBytes());
out = new PrintWriter(System.out);
long s = System.currentTimeMillis();
solve();
out.flush();
tr(System.currentTimeMillis()-s+"ms");
}
public static void main(String[] args) throws Exception { new C().run(); }
private byte[] inbuf = new byte[1024];
public int lenbuf = 0, ptrbuf = 0;
private int readByte()
{
if(lenbuf == -1)throw new InputMismatchException();
if(ptrbuf >= lenbuf){
ptrbuf = 0;
try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); }
if(lenbuf <= 0)return -1;
}
return inbuf[ptrbuf++];
}
private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); }
private int skip() { int b; while((b = readByte()) != -1 && isSpaceChar(b)); return b; }
private double nd() { return Double.parseDouble(ns()); }
private char nc() { return (char)skip(); }
private String ns()
{
int b = skip();
StringBuilder sb = new StringBuilder();
while(!(isSpaceChar(b))){ // when nextLine, (isSpaceChar(b) && b != ' ')
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
private char[] ns(int n)
{
char[] buf = new char[n];
int b = skip(), p = 0;
while(p < n && !(isSpaceChar(b))){
buf[p++] = (char)b;
b = readByte();
}
return n == p ? buf : Arrays.copyOf(buf, p);
}
private char[][] nm(int n, int m)
{
char[][] map = new char[n][];
for(int i = 0;i < n;i++)map[i] = ns(m);
return map;
}
private int[] na(int n)
{
int[] a = new int[n];
for(int i = 0;i < n;i++)a[i] = ni();
return a;
}
private int ni()
{
int num = 0, b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private long nl()
{
long num = 0;
int b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private boolean oj = System.getProperty("ONLINE_JUDGE") != null;
private void tr(Object... o) { if(!oj)System.out.println(Arrays.deepToString(o)); }
}
</CODE>
<EVALUATION_RUBRIC>
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,431 | 2,287 |
4,066 |
import java.awt.Point;
import java.util.Arrays;
import java.util.Scanner;
public class C {
static int[] DP;
static Point[] Next;
static int[][] pair;
static int[] single;
static int n;
public static int get(int mask) {
if (mask + 1 == (1 << n))
return 0;
if (DP[mask] != -1)
return DP[mask];
int x = 0;
for (;; x++)
if ((mask & (1 << x)) == 0)
break;
int min = Integer.MAX_VALUE;
for (int i = 0; i < n; i++) {
if ((mask & (1 << i)) != 0 || i == x)
continue;
int temp = pair[x][i] + get(mask | (1 << i) | (1 << x));
if (temp < min) {
min = temp;
Next[mask] = new Point(x, i);
}
}
int temp = single[x] + get(mask | (1 << x));
if (temp < min) {
min = temp;
Next[mask] = new Point(x, -1);
}
return DP[mask] = min;
}
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
Point start = new Point(in.nextInt(), in.nextInt());
n = in.nextInt();
Point[] A = new Point[n];
for (int i = 0; i < n; i++)
A[i] = new Point(in.nextInt(), in.nextInt());
DP = new int[1 << n];
Next = new Point[1 << n];
Arrays.fill(DP, -1);
pair = new int[n][n];
single = new int[n];
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++) {
int dx1 = A[i].x - start.x;
int dy1 = A[i].y - start.y;
int dx2 = A[j].x - A[i].x;
int dy2 = A[j].y - A[i].y;
int dx3 = A[j].x - start.x;
int dy3 = A[j].y - start.y;
pair[i][j] = dx1 * dx1 + dy1 * dy1 + dx2 * dx2 + dy2 * dy2
+ dx3 * dx3 + dy3 * dy3;
single[i] = 2 * (dx1 * dx1 + dy1 * dy1);
}
int ans = get(0);
System.out.println(ans);
int mask = 0;
while (mask + 1 != (1 << n)) {
Point temp = Next[mask];
if (temp.y == -1)
System.out.print("0 " + (temp.x + 1) + " ");
else {
System.out
.print("0 " + (temp.x + 1) + " " + (temp.y + 1) + " ");
mask |= (1 << temp.y);
}
mask |= (1 << temp.x);
}
System.out.println("0");
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.awt.Point;
import java.util.Arrays;
import java.util.Scanner;
public class C {
static int[] DP;
static Point[] Next;
static int[][] pair;
static int[] single;
static int n;
public static int get(int mask) {
if (mask + 1 == (1 << n))
return 0;
if (DP[mask] != -1)
return DP[mask];
int x = 0;
for (;; x++)
if ((mask & (1 << x)) == 0)
break;
int min = Integer.MAX_VALUE;
for (int i = 0; i < n; i++) {
if ((mask & (1 << i)) != 0 || i == x)
continue;
int temp = pair[x][i] + get(mask | (1 << i) | (1 << x));
if (temp < min) {
min = temp;
Next[mask] = new Point(x, i);
}
}
int temp = single[x] + get(mask | (1 << x));
if (temp < min) {
min = temp;
Next[mask] = new Point(x, -1);
}
return DP[mask] = min;
}
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
Point start = new Point(in.nextInt(), in.nextInt());
n = in.nextInt();
Point[] A = new Point[n];
for (int i = 0; i < n; i++)
A[i] = new Point(in.nextInt(), in.nextInt());
DP = new int[1 << n];
Next = new Point[1 << n];
Arrays.fill(DP, -1);
pair = new int[n][n];
single = new int[n];
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++) {
int dx1 = A[i].x - start.x;
int dy1 = A[i].y - start.y;
int dx2 = A[j].x - A[i].x;
int dy2 = A[j].y - A[i].y;
int dx3 = A[j].x - start.x;
int dy3 = A[j].y - start.y;
pair[i][j] = dx1 * dx1 + dy1 * dy1 + dx2 * dx2 + dy2 * dy2
+ dx3 * dx3 + dy3 * dy3;
single[i] = 2 * (dx1 * dx1 + dy1 * dy1);
}
int ans = get(0);
System.out.println(ans);
int mask = 0;
while (mask + 1 != (1 << n)) {
Point temp = Next[mask];
if (temp.y == -1)
System.out.print("0 " + (temp.x + 1) + " ");
else {
System.out
.print("0 " + (temp.x + 1) + " " + (temp.y + 1) + " ");
mask |= (1 << temp.y);
}
mask |= (1 << temp.x);
}
System.out.println("0");
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.awt.Point;
import java.util.Arrays;
import java.util.Scanner;
public class C {
static int[] DP;
static Point[] Next;
static int[][] pair;
static int[] single;
static int n;
public static int get(int mask) {
if (mask + 1 == (1 << n))
return 0;
if (DP[mask] != -1)
return DP[mask];
int x = 0;
for (;; x++)
if ((mask & (1 << x)) == 0)
break;
int min = Integer.MAX_VALUE;
for (int i = 0; i < n; i++) {
if ((mask & (1 << i)) != 0 || i == x)
continue;
int temp = pair[x][i] + get(mask | (1 << i) | (1 << x));
if (temp < min) {
min = temp;
Next[mask] = new Point(x, i);
}
}
int temp = single[x] + get(mask | (1 << x));
if (temp < min) {
min = temp;
Next[mask] = new Point(x, -1);
}
return DP[mask] = min;
}
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
Point start = new Point(in.nextInt(), in.nextInt());
n = in.nextInt();
Point[] A = new Point[n];
for (int i = 0; i < n; i++)
A[i] = new Point(in.nextInt(), in.nextInt());
DP = new int[1 << n];
Next = new Point[1 << n];
Arrays.fill(DP, -1);
pair = new int[n][n];
single = new int[n];
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++) {
int dx1 = A[i].x - start.x;
int dy1 = A[i].y - start.y;
int dx2 = A[j].x - A[i].x;
int dy2 = A[j].y - A[i].y;
int dx3 = A[j].x - start.x;
int dy3 = A[j].y - start.y;
pair[i][j] = dx1 * dx1 + dy1 * dy1 + dx2 * dx2 + dy2 * dy2
+ dx3 * dx3 + dy3 * dy3;
single[i] = 2 * (dx1 * dx1 + dy1 * dy1);
}
int ans = get(0);
System.out.println(ans);
int mask = 0;
while (mask + 1 != (1 << n)) {
Point temp = Next[mask];
if (temp.y == -1)
System.out.print("0 " + (temp.x + 1) + " ");
else {
System.out
.print("0 " + (temp.x + 1) + " " + (temp.y + 1) + " ");
mask |= (1 << temp.y);
}
mask |= (1 << temp.x);
}
System.out.println("0");
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,037 | 4,055 |
2,548 |
import java.io.BufferedOutputStream;
import java.io.PrintWriter;
import java.util.*;
public class E1180D {
public static void main(String args[]) {
Scanner sc = new Scanner(System.in);
PrintWriter pw = new PrintWriter(new BufferedOutputStream(System.out));
int n = sc.nextInt();
int m = sc.nextInt();
// Move from both ends, Time limit exceeded on test 6
for (int i= 1; i<= m/2; i++) {
// String s = "";
int i2 = m -i + 1; // the other end of i
// i is left row, i2 is right row
for (int j = 1; j <= n ; j++) {
int j2 = n - j + 1;
// start with (i,j), then go thru all the cell with (,i) and (,i2)
pw.println(j + " " + i);
pw.println(j2+ " " + i2);
// s += j + " " + i + "\n" + j2+ " " + i2 + "\n";
}
// out.print(s);
}
// if n is odd, there is one line in the middle
if (m % 2 == 1) {
int i2 = m /2 + 1; // this is the middle column
for (int j = 1; j <= n/2 ; j++) {
int j2 = n - j + 1;
// start with (i,j), then go thru all the cell with (,i) and (,i2)
pw.println(j + " " + i2);
pw.println(j2+ " " + i2);
}
if (n %2 == 1) {
int j = n /2 + 1;
pw.println(j + " " + i2);
}
}
pw.flush();
pw.close();
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedOutputStream;
import java.io.PrintWriter;
import java.util.*;
public class E1180D {
public static void main(String args[]) {
Scanner sc = new Scanner(System.in);
PrintWriter pw = new PrintWriter(new BufferedOutputStream(System.out));
int n = sc.nextInt();
int m = sc.nextInt();
// Move from both ends, Time limit exceeded on test 6
for (int i= 1; i<= m/2; i++) {
// String s = "";
int i2 = m -i + 1; // the other end of i
// i is left row, i2 is right row
for (int j = 1; j <= n ; j++) {
int j2 = n - j + 1;
// start with (i,j), then go thru all the cell with (,i) and (,i2)
pw.println(j + " " + i);
pw.println(j2+ " " + i2);
// s += j + " " + i + "\n" + j2+ " " + i2 + "\n";
}
// out.print(s);
}
// if n is odd, there is one line in the middle
if (m % 2 == 1) {
int i2 = m /2 + 1; // this is the middle column
for (int j = 1; j <= n/2 ; j++) {
int j2 = n - j + 1;
// start with (i,j), then go thru all the cell with (,i) and (,i2)
pw.println(j + " " + i2);
pw.println(j2+ " " + i2);
}
if (n %2 == 1) {
int j = n /2 + 1;
pw.println(j + " " + i2);
}
}
pw.flush();
pw.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedOutputStream;
import java.io.PrintWriter;
import java.util.*;
public class E1180D {
public static void main(String args[]) {
Scanner sc = new Scanner(System.in);
PrintWriter pw = new PrintWriter(new BufferedOutputStream(System.out));
int n = sc.nextInt();
int m = sc.nextInt();
// Move from both ends, Time limit exceeded on test 6
for (int i= 1; i<= m/2; i++) {
// String s = "";
int i2 = m -i + 1; // the other end of i
// i is left row, i2 is right row
for (int j = 1; j <= n ; j++) {
int j2 = n - j + 1;
// start with (i,j), then go thru all the cell with (,i) and (,i2)
pw.println(j + " " + i);
pw.println(j2+ " " + i2);
// s += j + " " + i + "\n" + j2+ " " + i2 + "\n";
}
// out.print(s);
}
// if n is odd, there is one line in the middle
if (m % 2 == 1) {
int i2 = m /2 + 1; // this is the middle column
for (int j = 1; j <= n/2 ; j++) {
int j2 = n - j + 1;
// start with (i,j), then go thru all the cell with (,i) and (,i2)
pw.println(j + " " + i2);
pw.println(j2+ " " + i2);
}
if (n %2 == 1) {
int j = n /2 + 1;
pw.println(j + " " + i2);
}
}
pw.flush();
pw.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 778 | 2,542 |
900 |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
public class B {
public static void main(String[] args) throws IOException {
InputReader in = new InputReader();
int n = in.nextInt();
int k = in.nextInt();
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = in.nextInt();
if (k > n) {
System.out.println(-1 + " " + -1);
return;
}
int[] v = new int[100010];
int cnt = 0;
for (int i = 0; i < k; i++) {
if (v[a[i]] == 0) {
cnt++;
}
v[a[i]]++;
}
int i = k;
while (cnt < k && i < n) {
if (v[a[i]] == 0) {
cnt++;
}
v[a[i]]++;
i++;
}
if (cnt != k) {
System.out.println(-1 + " " + -1);
} else {
int st = 0;
while (st < n && st < i && v[a[st]] > 1) {
v[a[st]]--;
st++;
}
System.out.println((st+1) + " " + (i));
}
}
static class InputReader {
BufferedReader in;
StringTokenizer st;
public InputReader() throws IOException {
in = new BufferedReader(new InputStreamReader(System.in));
st = new StringTokenizer(in.readLine());
}
public String next() throws IOException {
while (!st.hasMoreElements())
st = new StringTokenizer(in.readLine());
return st.nextToken();
}
public int nextInt() throws NumberFormatException, IOException {
return Integer.parseInt(next());
}
public long nextLong() throws NumberFormatException, IOException {
return Long.parseLong(next());
}
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
public class B {
public static void main(String[] args) throws IOException {
InputReader in = new InputReader();
int n = in.nextInt();
int k = in.nextInt();
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = in.nextInt();
if (k > n) {
System.out.println(-1 + " " + -1);
return;
}
int[] v = new int[100010];
int cnt = 0;
for (int i = 0; i < k; i++) {
if (v[a[i]] == 0) {
cnt++;
}
v[a[i]]++;
}
int i = k;
while (cnt < k && i < n) {
if (v[a[i]] == 0) {
cnt++;
}
v[a[i]]++;
i++;
}
if (cnt != k) {
System.out.println(-1 + " " + -1);
} else {
int st = 0;
while (st < n && st < i && v[a[st]] > 1) {
v[a[st]]--;
st++;
}
System.out.println((st+1) + " " + (i));
}
}
static class InputReader {
BufferedReader in;
StringTokenizer st;
public InputReader() throws IOException {
in = new BufferedReader(new InputStreamReader(System.in));
st = new StringTokenizer(in.readLine());
}
public String next() throws IOException {
while (!st.hasMoreElements())
st = new StringTokenizer(in.readLine());
return st.nextToken();
}
public int nextInt() throws NumberFormatException, IOException {
return Integer.parseInt(next());
}
public long nextLong() throws NumberFormatException, IOException {
return Long.parseLong(next());
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The running time increases with the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The running time increases with the cube of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
public class B {
public static void main(String[] args) throws IOException {
InputReader in = new InputReader();
int n = in.nextInt();
int k = in.nextInt();
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = in.nextInt();
if (k > n) {
System.out.println(-1 + " " + -1);
return;
}
int[] v = new int[100010];
int cnt = 0;
for (int i = 0; i < k; i++) {
if (v[a[i]] == 0) {
cnt++;
}
v[a[i]]++;
}
int i = k;
while (cnt < k && i < n) {
if (v[a[i]] == 0) {
cnt++;
}
v[a[i]]++;
i++;
}
if (cnt != k) {
System.out.println(-1 + " " + -1);
} else {
int st = 0;
while (st < n && st < i && v[a[st]] > 1) {
v[a[st]]--;
st++;
}
System.out.println((st+1) + " " + (i));
}
}
static class InputReader {
BufferedReader in;
StringTokenizer st;
public InputReader() throws IOException {
in = new BufferedReader(new InputStreamReader(System.in));
st = new StringTokenizer(in.readLine());
}
public String next() throws IOException {
while (!st.hasMoreElements())
st = new StringTokenizer(in.readLine());
return st.nextToken();
}
public int nextInt() throws NumberFormatException, IOException {
return Integer.parseInt(next());
}
public long nextLong() throws NumberFormatException, IOException {
return Long.parseLong(next());
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The execution time is unaffected by the size of the input n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 759 | 899 |
2,558 |
import java.io.*;
import java.util.*;
public class Main
{
public static void main(String[] args) throws Exception
{
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
int n=Integer.parseInt(br.readLine());
String s=br.readLine();
String ss[]=s.split(" ");
int arr[]=new int[n];
for(int i=0;i<n;i++)
arr[i]=Integer.parseInt(ss[i]);
Arrays.sort(arr);
int coun=0,coun2=0;
for(int i=arr[0],k=0;k<n;)
{
for(int j=k;j<n;j++)
{
if(arr[j]%i==0)
{
arr[j]=-1;
coun2++;
}
}
Arrays.sort(arr);
k=coun2;
coun++;
if(coun2<n)
i=arr[coun2];
else
break;
}
System.out.println(coun);
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Main
{
public static void main(String[] args) throws Exception
{
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
int n=Integer.parseInt(br.readLine());
String s=br.readLine();
String ss[]=s.split(" ");
int arr[]=new int[n];
for(int i=0;i<n;i++)
arr[i]=Integer.parseInt(ss[i]);
Arrays.sort(arr);
int coun=0,coun2=0;
for(int i=arr[0],k=0;k<n;)
{
for(int j=k;j<n;j++)
{
if(arr[j]%i==0)
{
arr[j]=-1;
coun2++;
}
}
Arrays.sort(arr);
k=coun2;
coun++;
if(coun2<n)
i=arr[coun2];
else
break;
}
System.out.println(coun);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Main
{
public static void main(String[] args) throws Exception
{
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
int n=Integer.parseInt(br.readLine());
String s=br.readLine();
String ss[]=s.split(" ");
int arr[]=new int[n];
for(int i=0;i<n;i++)
arr[i]=Integer.parseInt(ss[i]);
Arrays.sort(arr);
int coun=0,coun2=0;
for(int i=arr[0],k=0;k<n;)
{
for(int j=k;j<n;j++)
{
if(arr[j]%i==0)
{
arr[j]=-1;
coun2++;
}
}
Arrays.sort(arr);
k=coun2;
coun++;
if(coun2<n)
i=arr[coun2];
else
break;
}
System.out.println(coun);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(1): The time complexity is constant to the input size n.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 536 | 2,552 |
421 |
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import java.util.Scanner;
import java.util.Set;
import java.util.TreeSet;
public class Main {
int work(int x){
if(x%2==0)return x+1;
else return x-1;
}
static int N = 200050;
class Node implements Comparable <Node>{
int x, id;
Node(int x, int id){
this.x = x; this.id = id;
}
public int compareTo(Node o){
return Integer.compare(x, o.x);
}
public String toString(){
return id + "=" + x;
}
}
class Edge{
int from, to, nex;
Edge (int from, int to, int nex){
this.from = from;
this.to = to;
this.nex = nex;
}
}
Edge[] edge = new Edge[N*10];
int[] head = new int[N];
int edgenum;
void addedge(int u, int v){
Edge E = new Edge(u, v, head[u]);
edge[edgenum] = E;
head[u] = edgenum ++;
}
int n;
int[] p = new int[N], ans = new int[N];
int a, b, max;
Map<Integer, Integer> map = new HashMap();
boolean match(int x, int y, int col){
int P = map.get(x);
if(map.containsKey(y-x) == false)
return false;
int Q = map.get(y - x);
if(ans[Q] == -1 || x * 2 == y){
ans[Q] = ans[P] = col;
}
else {
if(match(a+b-2*y+x, y, col))
ans[Q] = ans[P] = col;
else return false;
}
return true;
}
boolean solve(){
if(max >= a && max >= b)return false;
for(int i = 1; i <= n; i++)
if(ans[i] == -1)
{
if(match(p[i], a, 0)==false && match(p[i], b, 1) == false)
return false;
}
return true;
}
void init(){
n = cin.nextInt();
a = cin.nextInt(); b = cin.nextInt();
max = 0;
for(int i = 1; i <= n; i++){
ans[i] = -1;
p[i] = cin.nextInt();
map.put(p[i], i);
if(p[i] > max) max = p[i];
}
}
public void work(){
init();
if(solve()){
out.println("YES");
for(int i = 1; i <= n; i++)out.print(ans[i]+" "); out.println();
}
else
out.println("NO");
}
Main() {
cin = new Scanner(System.in);
out = new PrintWriter(System.out);
}
public static void main(String[] args) {
Main e = new Main();
e.work();
out.close();
}
public Scanner cin;
public static PrintWriter out;
}
/*
http://blog.csdn.net/keshuai19940722/article/details/39528801
*/
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import java.util.Scanner;
import java.util.Set;
import java.util.TreeSet;
public class Main {
int work(int x){
if(x%2==0)return x+1;
else return x-1;
}
static int N = 200050;
class Node implements Comparable <Node>{
int x, id;
Node(int x, int id){
this.x = x; this.id = id;
}
public int compareTo(Node o){
return Integer.compare(x, o.x);
}
public String toString(){
return id + "=" + x;
}
}
class Edge{
int from, to, nex;
Edge (int from, int to, int nex){
this.from = from;
this.to = to;
this.nex = nex;
}
}
Edge[] edge = new Edge[N*10];
int[] head = new int[N];
int edgenum;
void addedge(int u, int v){
Edge E = new Edge(u, v, head[u]);
edge[edgenum] = E;
head[u] = edgenum ++;
}
int n;
int[] p = new int[N], ans = new int[N];
int a, b, max;
Map<Integer, Integer> map = new HashMap();
boolean match(int x, int y, int col){
int P = map.get(x);
if(map.containsKey(y-x) == false)
return false;
int Q = map.get(y - x);
if(ans[Q] == -1 || x * 2 == y){
ans[Q] = ans[P] = col;
}
else {
if(match(a+b-2*y+x, y, col))
ans[Q] = ans[P] = col;
else return false;
}
return true;
}
boolean solve(){
if(max >= a && max >= b)return false;
for(int i = 1; i <= n; i++)
if(ans[i] == -1)
{
if(match(p[i], a, 0)==false && match(p[i], b, 1) == false)
return false;
}
return true;
}
void init(){
n = cin.nextInt();
a = cin.nextInt(); b = cin.nextInt();
max = 0;
for(int i = 1; i <= n; i++){
ans[i] = -1;
p[i] = cin.nextInt();
map.put(p[i], i);
if(p[i] > max) max = p[i];
}
}
public void work(){
init();
if(solve()){
out.println("YES");
for(int i = 1; i <= n; i++)out.print(ans[i]+" "); out.println();
}
else
out.println("NO");
}
Main() {
cin = new Scanner(System.in);
out = new PrintWriter(System.out);
}
public static void main(String[] args) {
Main e = new Main();
e.work();
out.close();
}
public Scanner cin;
public static PrintWriter out;
}
/*
http://blog.csdn.net/keshuai19940722/article/details/39528801
*/
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import java.util.Scanner;
import java.util.Set;
import java.util.TreeSet;
public class Main {
int work(int x){
if(x%2==0)return x+1;
else return x-1;
}
static int N = 200050;
class Node implements Comparable <Node>{
int x, id;
Node(int x, int id){
this.x = x; this.id = id;
}
public int compareTo(Node o){
return Integer.compare(x, o.x);
}
public String toString(){
return id + "=" + x;
}
}
class Edge{
int from, to, nex;
Edge (int from, int to, int nex){
this.from = from;
this.to = to;
this.nex = nex;
}
}
Edge[] edge = new Edge[N*10];
int[] head = new int[N];
int edgenum;
void addedge(int u, int v){
Edge E = new Edge(u, v, head[u]);
edge[edgenum] = E;
head[u] = edgenum ++;
}
int n;
int[] p = new int[N], ans = new int[N];
int a, b, max;
Map<Integer, Integer> map = new HashMap();
boolean match(int x, int y, int col){
int P = map.get(x);
if(map.containsKey(y-x) == false)
return false;
int Q = map.get(y - x);
if(ans[Q] == -1 || x * 2 == y){
ans[Q] = ans[P] = col;
}
else {
if(match(a+b-2*y+x, y, col))
ans[Q] = ans[P] = col;
else return false;
}
return true;
}
boolean solve(){
if(max >= a && max >= b)return false;
for(int i = 1; i <= n; i++)
if(ans[i] == -1)
{
if(match(p[i], a, 0)==false && match(p[i], b, 1) == false)
return false;
}
return true;
}
void init(){
n = cin.nextInt();
a = cin.nextInt(); b = cin.nextInt();
max = 0;
for(int i = 1; i <= n; i++){
ans[i] = -1;
p[i] = cin.nextInt();
map.put(p[i], i);
if(p[i] > max) max = p[i];
}
}
public void work(){
init();
if(solve()){
out.println("YES");
for(int i = 1; i <= n; i++)out.print(ans[i]+" "); out.println();
}
else
out.println("NO");
}
Main() {
cin = new Scanner(System.in);
out = new PrintWriter(System.out);
}
public static void main(String[] args) {
Main e = new Main();
e.work();
out.close();
}
public Scanner cin;
public static PrintWriter out;
}
/*
http://blog.csdn.net/keshuai19940722/article/details/39528801
*/
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,099 | 420 |
4,476 |
import java.io.*;
import java.util.*;
public class Sol2{
final public static int MXN = (1<<21);
public static int good[][];
public static void main(String[] args) throws IOException{
FastIO sc = new FastIO(System.in);
PrintWriter out = new PrintWriter(System.out);
int n = sc.nextInt();
int m = sc.nextInt();
int num[][] = new int[m][m];
String str = sc.next();
for(int i=0; i<str.length()-1; i++) {
int a = str.charAt(i)-'a';
int b = str.charAt(i+1)-'a';
num[a][b]++;
num[b][a]++;
}
int lowbit[] = new int[MXN];
int dp[] = new int[MXN];
for(int i=0; i<MXN; i++) {
dp[i] = Integer.MAX_VALUE;
}
dp[0] = 0;
good = new int[MXN][m];
for(int msk = 0; msk<(1<<m); msk++) {
for(int i=0; i<m; i++) {
int low = Integer.numberOfTrailingZeros(Integer.lowestOneBit(msk));
if(low==32) low = 0;
good[msk][i] = good[msk^(1<<low)][i] + num[i][low];
}
}
for(int msk = 0; msk<(1<<m); msk++) {
int bits = Integer.bitCount(msk)+1;
for(int i=0; i<m; i++) {
if((msk&(1<<i))!=0) continue;
int nxt = msk|(1<<i);
dp[nxt] = Math.min(dp[nxt], dp[msk] + bits*(good[msk][i]-good[((1<<m)-1)^nxt][i]));
}
}
out.println(dp[(1<<m)-1]);
out.close();
}
static void shuffle(int[] a) {
Random get = new Random();
for (int i = 0; i < a.length; i++) {
int r = get.nextInt(a.length);
int temp = a[i];
a[i] = a[r];
a[r] = temp;
}
}
static class FastIO {
// Is your Fast I/O being bad?
InputStream dis;
byte[] buffer = new byte[1 << 17];
int pointer = 0;
public FastIO(String fileName) throws IOException {
dis = new FileInputStream(fileName);
}
public FastIO(InputStream is) throws IOException {
dis = is;
}
int nextInt() throws IOException {
int ret = 0;
byte b;
do {
b = nextByte();
} while (b <= ' ');
boolean negative = false;
if (b == '-') {
negative = true;
b = nextByte();
}
while (b >= '0' && b <= '9') {
ret = 10 * ret + b - '0';
b = nextByte();
}
return (negative) ? -ret : ret;
}
long nextLong() throws IOException {
long ret = 0;
byte b;
do {
b = nextByte();
} while (b <= ' ');
boolean negative = false;
if (b == '-') {
negative = true;
b = nextByte();
}
while (b >= '0' && b <= '9') {
ret = 10 * ret + b - '0';
b = nextByte();
}
return (negative) ? -ret : ret;
}
byte nextByte() throws IOException {
if (pointer == buffer.length) {
dis.read(buffer, 0, buffer.length);
pointer = 0;
}
return buffer[pointer++];
}
String next() throws IOException {
StringBuffer ret = new StringBuffer();
byte b;
do {
b = nextByte();
} while (b <= ' ');
while (b > ' ') {
ret.appendCodePoint(b);
b = nextByte();
}
return ret.toString();
}
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Sol2{
final public static int MXN = (1<<21);
public static int good[][];
public static void main(String[] args) throws IOException{
FastIO sc = new FastIO(System.in);
PrintWriter out = new PrintWriter(System.out);
int n = sc.nextInt();
int m = sc.nextInt();
int num[][] = new int[m][m];
String str = sc.next();
for(int i=0; i<str.length()-1; i++) {
int a = str.charAt(i)-'a';
int b = str.charAt(i+1)-'a';
num[a][b]++;
num[b][a]++;
}
int lowbit[] = new int[MXN];
int dp[] = new int[MXN];
for(int i=0; i<MXN; i++) {
dp[i] = Integer.MAX_VALUE;
}
dp[0] = 0;
good = new int[MXN][m];
for(int msk = 0; msk<(1<<m); msk++) {
for(int i=0; i<m; i++) {
int low = Integer.numberOfTrailingZeros(Integer.lowestOneBit(msk));
if(low==32) low = 0;
good[msk][i] = good[msk^(1<<low)][i] + num[i][low];
}
}
for(int msk = 0; msk<(1<<m); msk++) {
int bits = Integer.bitCount(msk)+1;
for(int i=0; i<m; i++) {
if((msk&(1<<i))!=0) continue;
int nxt = msk|(1<<i);
dp[nxt] = Math.min(dp[nxt], dp[msk] + bits*(good[msk][i]-good[((1<<m)-1)^nxt][i]));
}
}
out.println(dp[(1<<m)-1]);
out.close();
}
static void shuffle(int[] a) {
Random get = new Random();
for (int i = 0; i < a.length; i++) {
int r = get.nextInt(a.length);
int temp = a[i];
a[i] = a[r];
a[r] = temp;
}
}
static class FastIO {
// Is your Fast I/O being bad?
InputStream dis;
byte[] buffer = new byte[1 << 17];
int pointer = 0;
public FastIO(String fileName) throws IOException {
dis = new FileInputStream(fileName);
}
public FastIO(InputStream is) throws IOException {
dis = is;
}
int nextInt() throws IOException {
int ret = 0;
byte b;
do {
b = nextByte();
} while (b <= ' ');
boolean negative = false;
if (b == '-') {
negative = true;
b = nextByte();
}
while (b >= '0' && b <= '9') {
ret = 10 * ret + b - '0';
b = nextByte();
}
return (negative) ? -ret : ret;
}
long nextLong() throws IOException {
long ret = 0;
byte b;
do {
b = nextByte();
} while (b <= ' ');
boolean negative = false;
if (b == '-') {
negative = true;
b = nextByte();
}
while (b >= '0' && b <= '9') {
ret = 10 * ret + b - '0';
b = nextByte();
}
return (negative) ? -ret : ret;
}
byte nextByte() throws IOException {
if (pointer == buffer.length) {
dis.read(buffer, 0, buffer.length);
pointer = 0;
}
return buffer[pointer++];
}
String next() throws IOException {
StringBuffer ret = new StringBuffer();
byte b;
do {
b = nextByte();
} while (b <= ' ');
while (b > ' ') {
ret.appendCodePoint(b);
b = nextByte();
}
return ret.toString();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Sol2{
final public static int MXN = (1<<21);
public static int good[][];
public static void main(String[] args) throws IOException{
FastIO sc = new FastIO(System.in);
PrintWriter out = new PrintWriter(System.out);
int n = sc.nextInt();
int m = sc.nextInt();
int num[][] = new int[m][m];
String str = sc.next();
for(int i=0; i<str.length()-1; i++) {
int a = str.charAt(i)-'a';
int b = str.charAt(i+1)-'a';
num[a][b]++;
num[b][a]++;
}
int lowbit[] = new int[MXN];
int dp[] = new int[MXN];
for(int i=0; i<MXN; i++) {
dp[i] = Integer.MAX_VALUE;
}
dp[0] = 0;
good = new int[MXN][m];
for(int msk = 0; msk<(1<<m); msk++) {
for(int i=0; i<m; i++) {
int low = Integer.numberOfTrailingZeros(Integer.lowestOneBit(msk));
if(low==32) low = 0;
good[msk][i] = good[msk^(1<<low)][i] + num[i][low];
}
}
for(int msk = 0; msk<(1<<m); msk++) {
int bits = Integer.bitCount(msk)+1;
for(int i=0; i<m; i++) {
if((msk&(1<<i))!=0) continue;
int nxt = msk|(1<<i);
dp[nxt] = Math.min(dp[nxt], dp[msk] + bits*(good[msk][i]-good[((1<<m)-1)^nxt][i]));
}
}
out.println(dp[(1<<m)-1]);
out.close();
}
static void shuffle(int[] a) {
Random get = new Random();
for (int i = 0; i < a.length; i++) {
int r = get.nextInt(a.length);
int temp = a[i];
a[i] = a[r];
a[r] = temp;
}
}
static class FastIO {
// Is your Fast I/O being bad?
InputStream dis;
byte[] buffer = new byte[1 << 17];
int pointer = 0;
public FastIO(String fileName) throws IOException {
dis = new FileInputStream(fileName);
}
public FastIO(InputStream is) throws IOException {
dis = is;
}
int nextInt() throws IOException {
int ret = 0;
byte b;
do {
b = nextByte();
} while (b <= ' ');
boolean negative = false;
if (b == '-') {
negative = true;
b = nextByte();
}
while (b >= '0' && b <= '9') {
ret = 10 * ret + b - '0';
b = nextByte();
}
return (negative) ? -ret : ret;
}
long nextLong() throws IOException {
long ret = 0;
byte b;
do {
b = nextByte();
} while (b <= ' ');
boolean negative = false;
if (b == '-') {
negative = true;
b = nextByte();
}
while (b >= '0' && b <= '9') {
ret = 10 * ret + b - '0';
b = nextByte();
}
return (negative) ? -ret : ret;
}
byte nextByte() throws IOException {
if (pointer == buffer.length) {
dis.read(buffer, 0, buffer.length);
pointer = 0;
}
return buffer[pointer++];
}
String next() throws IOException {
StringBuffer ret = new StringBuffer();
byte b;
do {
b = nextByte();
} while (b <= ' ');
while (b > ' ') {
ret.appendCodePoint(b);
b = nextByte();
}
return ret.toString();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(1): The time complexity is constant to the input size n.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,319 | 4,465 |
1,015 |
import java.util.Scanner;
public class DigitsSequence2 {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
long index = scanner.nextLong();
solution1(index);
}
static void solution1(Long index){
int i = 1; // group number
long len = 9; // the max length
long max = 9; // the max integer
while(len < index){
long tmp = 9 * (long) Math.pow(10, i);
i++;
len += i * tmp;
max += tmp;
}
long diff = len - index; // the digit number between index and len
long laterCount = diff / i; // the number after index
int remainder = (int) (diff % i);
long current = max - laterCount; // the number of the index
int k = i - 1 - remainder;
System.out.println(String.valueOf(current).charAt(k));
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class DigitsSequence2 {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
long index = scanner.nextLong();
solution1(index);
}
static void solution1(Long index){
int i = 1; // group number
long len = 9; // the max length
long max = 9; // the max integer
while(len < index){
long tmp = 9 * (long) Math.pow(10, i);
i++;
len += i * tmp;
max += tmp;
}
long diff = len - index; // the digit number between index and len
long laterCount = diff / i; // the number after index
int remainder = (int) (diff % i);
long current = max - laterCount; // the number of the index
int k = i - 1 - remainder;
System.out.println(String.valueOf(current).charAt(k));
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The running time increases with the square of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class DigitsSequence2 {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
long index = scanner.nextLong();
solution1(index);
}
static void solution1(Long index){
int i = 1; // group number
long len = 9; // the max length
long max = 9; // the max integer
while(len < index){
long tmp = 9 * (long) Math.pow(10, i);
i++;
len += i * tmp;
max += tmp;
}
long diff = len - index; // the digit number between index and len
long laterCount = diff / i; // the number after index
int remainder = (int) (diff % i);
long current = max - laterCount; // the number of the index
int k = i - 1 - remainder;
System.out.println(String.valueOf(current).charAt(k));
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 551 | 1,014 |
2,408 |
/*
Keep solving problems.
*/
import java.util.*;
import java.io.*;
public class CFA {
BufferedReader br;
PrintWriter out;
StringTokenizer st;
boolean eof;
final long MOD = 1000L * 1000L * 1000L + 7;
int[] dx = {0, -1, 0, 1};
int[] dy = {1, 0, -1, 0};
void solve() throws IOException {
int n = nextInt();
int[] arr = nextIntArr(n);
int cnt = 0;
for (int i = 0; i < n; i++) {
for (int j = i + 1; j < n; j++) {
if (arr[i] > arr[j]) {
cnt++;
}
}
}
int m = nextInt();
boolean[] vis = new boolean[n];
for (int i = 0; i < m; i++) {
int l = nextInt() - 1;
int r = nextInt() - 1;
int len = r - l + 1;
if (len * (len - 1) / 2 % 2 != 0) {
cnt++;
}
if (cnt % 2 != 0) {
outln("odd");
}
else {
outln("even");
}
}
}
void shuffle(int[] a) {
int n = a.length;
for(int i = 0; i < n; i++) {
int r = i + (int) (Math.random() * (n - i));
int tmp = a[i];
a[i] = a[r];
a[r] = tmp;
}
}
long gcd(long a, long b) {
while(a != 0 && b != 0) {
long c = b;
b = a % b;
a = c;
}
return a + b;
}
private void outln(Object o) {
out.println(o);
}
private void out(Object o) {
out.print(o);
}
public CFA() throws IOException {
br = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
solve();
out.close();
}
public static void main(String[] args) throws IOException {
new CFA();
}
public long[] nextLongArr(int n) throws IOException{
long[] res = new long[n];
for(int i = 0; i < n; i++)
res[i] = nextLong();
return res;
}
public int[] nextIntArr(int n) throws IOException {
int[] res = new int[n];
for(int i = 0; i < n; i++)
res[i] = nextInt();
return res;
}
public String nextToken() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (Exception e) {
eof = true;
return null;
}
}
return st.nextToken();
}
public String nextString() {
try {
return br.readLine();
} catch (IOException e) {
eof = true;
return null;
}
}
public int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
public long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
public double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
/*
Keep solving problems.
*/
import java.util.*;
import java.io.*;
public class CFA {
BufferedReader br;
PrintWriter out;
StringTokenizer st;
boolean eof;
final long MOD = 1000L * 1000L * 1000L + 7;
int[] dx = {0, -1, 0, 1};
int[] dy = {1, 0, -1, 0};
void solve() throws IOException {
int n = nextInt();
int[] arr = nextIntArr(n);
int cnt = 0;
for (int i = 0; i < n; i++) {
for (int j = i + 1; j < n; j++) {
if (arr[i] > arr[j]) {
cnt++;
}
}
}
int m = nextInt();
boolean[] vis = new boolean[n];
for (int i = 0; i < m; i++) {
int l = nextInt() - 1;
int r = nextInt() - 1;
int len = r - l + 1;
if (len * (len - 1) / 2 % 2 != 0) {
cnt++;
}
if (cnt % 2 != 0) {
outln("odd");
}
else {
outln("even");
}
}
}
void shuffle(int[] a) {
int n = a.length;
for(int i = 0; i < n; i++) {
int r = i + (int) (Math.random() * (n - i));
int tmp = a[i];
a[i] = a[r];
a[r] = tmp;
}
}
long gcd(long a, long b) {
while(a != 0 && b != 0) {
long c = b;
b = a % b;
a = c;
}
return a + b;
}
private void outln(Object o) {
out.println(o);
}
private void out(Object o) {
out.print(o);
}
public CFA() throws IOException {
br = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
solve();
out.close();
}
public static void main(String[] args) throws IOException {
new CFA();
}
public long[] nextLongArr(int n) throws IOException{
long[] res = new long[n];
for(int i = 0; i < n; i++)
res[i] = nextLong();
return res;
}
public int[] nextIntArr(int n) throws IOException {
int[] res = new int[n];
for(int i = 0; i < n; i++)
res[i] = nextInt();
return res;
}
public String nextToken() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (Exception e) {
eof = true;
return null;
}
}
return st.nextToken();
}
public String nextString() {
try {
return br.readLine();
} catch (IOException e) {
eof = true;
return null;
}
}
public int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
public long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
public double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
/*
Keep solving problems.
*/
import java.util.*;
import java.io.*;
public class CFA {
BufferedReader br;
PrintWriter out;
StringTokenizer st;
boolean eof;
final long MOD = 1000L * 1000L * 1000L + 7;
int[] dx = {0, -1, 0, 1};
int[] dy = {1, 0, -1, 0};
void solve() throws IOException {
int n = nextInt();
int[] arr = nextIntArr(n);
int cnt = 0;
for (int i = 0; i < n; i++) {
for (int j = i + 1; j < n; j++) {
if (arr[i] > arr[j]) {
cnt++;
}
}
}
int m = nextInt();
boolean[] vis = new boolean[n];
for (int i = 0; i < m; i++) {
int l = nextInt() - 1;
int r = nextInt() - 1;
int len = r - l + 1;
if (len * (len - 1) / 2 % 2 != 0) {
cnt++;
}
if (cnt % 2 != 0) {
outln("odd");
}
else {
outln("even");
}
}
}
void shuffle(int[] a) {
int n = a.length;
for(int i = 0; i < n; i++) {
int r = i + (int) (Math.random() * (n - i));
int tmp = a[i];
a[i] = a[r];
a[r] = tmp;
}
}
long gcd(long a, long b) {
while(a != 0 && b != 0) {
long c = b;
b = a % b;
a = c;
}
return a + b;
}
private void outln(Object o) {
out.println(o);
}
private void out(Object o) {
out.print(o);
}
public CFA() throws IOException {
br = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
solve();
out.close();
}
public static void main(String[] args) throws IOException {
new CFA();
}
public long[] nextLongArr(int n) throws IOException{
long[] res = new long[n];
for(int i = 0; i < n; i++)
res[i] = nextLong();
return res;
}
public int[] nextIntArr(int n) throws IOException {
int[] res = new int[n];
for(int i = 0; i < n; i++)
res[i] = nextInt();
return res;
}
public String nextToken() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (Exception e) {
eof = true;
return null;
}
}
return st.nextToken();
}
public String nextString() {
try {
return br.readLine();
} catch (IOException e) {
eof = true;
return null;
}
}
public int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
public long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
public double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(n): The running time grows linearly with the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,122 | 2,403 |
765 |
import java.io.*;
import java.util.*;
import java.text.*;
import java.math.*;
public class main {
public static BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
public static PrintWriter pw = new PrintWriter(System.out);
public static String line;
public static StringTokenizer st;
public static ArrayList<ArrayList<Integer>> adjList;
public static int[] dr = {-1, 0, 1, 0, -1, 1, 1, -1};
public static int[] dc = {0, 1, 0, -1, 1, 1, -1, -1};
public static void main(String[] args) throws Exception{
int N = Integer.parseInt(br.readLine());
char[] A = br.readLine().toCharArray();
HashSet<Character> cndD = new HashSet<Character>();
for(int i = 0; i < N; i++){
cndD.add(A[i]);
}
int cnt = cndD.size();
int a = 0;
int b = 0;
int ans = (1 << 30);
HashMap<Character, Integer> d = new HashMap<Character, Integer>();
while(b < N){
if(d.containsKey(A[b])){
if(A[a] == A[b]){
a++;
while(d.get(A[a]) > 1){
d.put(A[a], d.get(A[a])-1);
a++;
}
} else{
d.put(A[b], d.get(A[b])+1);
}
} else{
d.put(A[b], 1);
}
if(d.size() == cnt){
ans = Math.min(b-a+1, ans);
}
b++;
}
pw.print(ans + "\n");
pw.close();
br.close();
}
}
class Pair implements Comparable<Pair>{
public int a, b;
Pair(int a, int b){
this.a = a;
this.b = b;
}
@Override
public int compareTo(Pair P){
if(P.b != this.b){
return b - P.b;
} else if(P.a == this.a){
return a - P.a;
} else{
return 0;
}
}
public String toString(){
return a + " " + b;
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
import java.text.*;
import java.math.*;
public class main {
public static BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
public static PrintWriter pw = new PrintWriter(System.out);
public static String line;
public static StringTokenizer st;
public static ArrayList<ArrayList<Integer>> adjList;
public static int[] dr = {-1, 0, 1, 0, -1, 1, 1, -1};
public static int[] dc = {0, 1, 0, -1, 1, 1, -1, -1};
public static void main(String[] args) throws Exception{
int N = Integer.parseInt(br.readLine());
char[] A = br.readLine().toCharArray();
HashSet<Character> cndD = new HashSet<Character>();
for(int i = 0; i < N; i++){
cndD.add(A[i]);
}
int cnt = cndD.size();
int a = 0;
int b = 0;
int ans = (1 << 30);
HashMap<Character, Integer> d = new HashMap<Character, Integer>();
while(b < N){
if(d.containsKey(A[b])){
if(A[a] == A[b]){
a++;
while(d.get(A[a]) > 1){
d.put(A[a], d.get(A[a])-1);
a++;
}
} else{
d.put(A[b], d.get(A[b])+1);
}
} else{
d.put(A[b], 1);
}
if(d.size() == cnt){
ans = Math.min(b-a+1, ans);
}
b++;
}
pw.print(ans + "\n");
pw.close();
br.close();
}
}
class Pair implements Comparable<Pair>{
public int a, b;
Pair(int a, int b){
this.a = a;
this.b = b;
}
@Override
public int compareTo(Pair P){
if(P.b != this.b){
return b - P.b;
} else if(P.a == this.a){
return a - P.a;
} else{
return 0;
}
}
public String toString(){
return a + " " + b;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(1): The time complexity is constant to the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
import java.text.*;
import java.math.*;
public class main {
public static BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
public static PrintWriter pw = new PrintWriter(System.out);
public static String line;
public static StringTokenizer st;
public static ArrayList<ArrayList<Integer>> adjList;
public static int[] dr = {-1, 0, 1, 0, -1, 1, 1, -1};
public static int[] dc = {0, 1, 0, -1, 1, 1, -1, -1};
public static void main(String[] args) throws Exception{
int N = Integer.parseInt(br.readLine());
char[] A = br.readLine().toCharArray();
HashSet<Character> cndD = new HashSet<Character>();
for(int i = 0; i < N; i++){
cndD.add(A[i]);
}
int cnt = cndD.size();
int a = 0;
int b = 0;
int ans = (1 << 30);
HashMap<Character, Integer> d = new HashMap<Character, Integer>();
while(b < N){
if(d.containsKey(A[b])){
if(A[a] == A[b]){
a++;
while(d.get(A[a]) > 1){
d.put(A[a], d.get(A[a])-1);
a++;
}
} else{
d.put(A[b], d.get(A[b])+1);
}
} else{
d.put(A[b], 1);
}
if(d.size() == cnt){
ans = Math.min(b-a+1, ans);
}
b++;
}
pw.print(ans + "\n");
pw.close();
br.close();
}
}
class Pair implements Comparable<Pair>{
public int a, b;
Pair(int a, int b){
this.a = a;
this.b = b;
}
@Override
public int compareTo(Pair P){
if(P.b != this.b){
return b - P.b;
} else if(P.a == this.a){
return a - P.a;
} else{
return 0;
}
}
public String toString(){
return a + " " + b;
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(1): The time complexity is constant to the input size n.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 816 | 764 |
3,731 |
import java.io.*;
import java.util.*;
public class Main {
static final int primeCount = 452;
static final int[] prime = new int[primeCount];
static void build_prime() {
boolean[] notPrime = new boolean[3200];
for (int i = 2; i < 3200; i++) {
if (notPrime[i]) continue;
for (int j = i * i; j < 3200; j += i) {
notPrime[j] = true;
}
}
int count = 0;
for (int i = 2; i < 3200; i++) {
if (notPrime[i]) continue;
prime[count++] = i;
}
}
private static void run(Reader in, PrintWriter out) throws IOException {
int n = in.nextInt();
int m = in.nextInt();
int[] a = new int[n];
for (int i = 0; i < n; i++) {
a[i] = getReal(in.nextInt());
}
int[] pre = new int[n];
for (int i = 0; i < n; i++) pre[i] = -1;
TreeMap<Integer, Integer> exist = new TreeMap<>();
for (int i = 0; i < n; i++) {
Integer result = exist.get(a[i]);
if (result != null) {
pre[i] = result;
}
exist.put(a[i], i);
}
int[][] left = new int[m + 1][n];
for (int i = 0; i <= m; i++) {
int start = 0;
PriorityQueue<Integer> inSame = new PriorityQueue<>();
for (int j = 0; j < n; j++) {
if (pre[j] >= start) {
inSame.add(pre[j]);
if (inSame.size() > i) {
start = inSame.poll() + 1;
}
}
left[i][j] = start;
}
}
int[][] dp = new int[n][m + 1];
for (int i = 0; i < n; i++) {
for (int j = 0; j <= m; j++) {
if (j == 0) dp[i][0] = Integer.MAX_VALUE;
else dp[i][j] = dp[i][j - 1];
for (int k = 0; k <= j; k++) {
if (left[k][i] == 0) {
dp[i][j] = 1;
} else {
dp[i][j] = Math.min(dp[i][j], dp[left[k][i] - 1][j - k] + 1);
}
}
}
}
out.println(dp[n - 1][m]);
}
static int getReal(int x) {
int result = 1;
for (int i = 0; i < primeCount; i++) {
if (x % prime[i] == 0) {
int count = 0;
while (x % prime[i] == 0) {
count++;
x /= prime[i];
}
if (count % 2 == 1) {
result *= prime[i];
}
}
}
result *= x;
return result;
}
public static void main(String[] args) throws IOException {
Reader in = new Reader(new InputStreamReader(System.in));
PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out));
build_prime();
int t = in.nextInt();
for (int i = 0; i < t; i++) {
run(in, out);
}
out.flush();
in.close();
out.close();
}
static class Reader {
BufferedReader reader;
StringTokenizer st;
Reader(InputStreamReader stream) {
reader = new BufferedReader(stream, 32768);
st = null;
}
void close() throws IOException {
reader.close();
}
String next() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
String nextLine() throws IOException {
return reader.readLine();
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Main {
static final int primeCount = 452;
static final int[] prime = new int[primeCount];
static void build_prime() {
boolean[] notPrime = new boolean[3200];
for (int i = 2; i < 3200; i++) {
if (notPrime[i]) continue;
for (int j = i * i; j < 3200; j += i) {
notPrime[j] = true;
}
}
int count = 0;
for (int i = 2; i < 3200; i++) {
if (notPrime[i]) continue;
prime[count++] = i;
}
}
private static void run(Reader in, PrintWriter out) throws IOException {
int n = in.nextInt();
int m = in.nextInt();
int[] a = new int[n];
for (int i = 0; i < n; i++) {
a[i] = getReal(in.nextInt());
}
int[] pre = new int[n];
for (int i = 0; i < n; i++) pre[i] = -1;
TreeMap<Integer, Integer> exist = new TreeMap<>();
for (int i = 0; i < n; i++) {
Integer result = exist.get(a[i]);
if (result != null) {
pre[i] = result;
}
exist.put(a[i], i);
}
int[][] left = new int[m + 1][n];
for (int i = 0; i <= m; i++) {
int start = 0;
PriorityQueue<Integer> inSame = new PriorityQueue<>();
for (int j = 0; j < n; j++) {
if (pre[j] >= start) {
inSame.add(pre[j]);
if (inSame.size() > i) {
start = inSame.poll() + 1;
}
}
left[i][j] = start;
}
}
int[][] dp = new int[n][m + 1];
for (int i = 0; i < n; i++) {
for (int j = 0; j <= m; j++) {
if (j == 0) dp[i][0] = Integer.MAX_VALUE;
else dp[i][j] = dp[i][j - 1];
for (int k = 0; k <= j; k++) {
if (left[k][i] == 0) {
dp[i][j] = 1;
} else {
dp[i][j] = Math.min(dp[i][j], dp[left[k][i] - 1][j - k] + 1);
}
}
}
}
out.println(dp[n - 1][m]);
}
static int getReal(int x) {
int result = 1;
for (int i = 0; i < primeCount; i++) {
if (x % prime[i] == 0) {
int count = 0;
while (x % prime[i] == 0) {
count++;
x /= prime[i];
}
if (count % 2 == 1) {
result *= prime[i];
}
}
}
result *= x;
return result;
}
public static void main(String[] args) throws IOException {
Reader in = new Reader(new InputStreamReader(System.in));
PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out));
build_prime();
int t = in.nextInt();
for (int i = 0; i < t; i++) {
run(in, out);
}
out.flush();
in.close();
out.close();
}
static class Reader {
BufferedReader reader;
StringTokenizer st;
Reader(InputStreamReader stream) {
reader = new BufferedReader(stream, 32768);
st = null;
}
void close() throws IOException {
reader.close();
}
String next() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
String nextLine() throws IOException {
return reader.readLine();
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(1): The time complexity is constant to the input size n.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Main {
static final int primeCount = 452;
static final int[] prime = new int[primeCount];
static void build_prime() {
boolean[] notPrime = new boolean[3200];
for (int i = 2; i < 3200; i++) {
if (notPrime[i]) continue;
for (int j = i * i; j < 3200; j += i) {
notPrime[j] = true;
}
}
int count = 0;
for (int i = 2; i < 3200; i++) {
if (notPrime[i]) continue;
prime[count++] = i;
}
}
private static void run(Reader in, PrintWriter out) throws IOException {
int n = in.nextInt();
int m = in.nextInt();
int[] a = new int[n];
for (int i = 0; i < n; i++) {
a[i] = getReal(in.nextInt());
}
int[] pre = new int[n];
for (int i = 0; i < n; i++) pre[i] = -1;
TreeMap<Integer, Integer> exist = new TreeMap<>();
for (int i = 0; i < n; i++) {
Integer result = exist.get(a[i]);
if (result != null) {
pre[i] = result;
}
exist.put(a[i], i);
}
int[][] left = new int[m + 1][n];
for (int i = 0; i <= m; i++) {
int start = 0;
PriorityQueue<Integer> inSame = new PriorityQueue<>();
for (int j = 0; j < n; j++) {
if (pre[j] >= start) {
inSame.add(pre[j]);
if (inSame.size() > i) {
start = inSame.poll() + 1;
}
}
left[i][j] = start;
}
}
int[][] dp = new int[n][m + 1];
for (int i = 0; i < n; i++) {
for (int j = 0; j <= m; j++) {
if (j == 0) dp[i][0] = Integer.MAX_VALUE;
else dp[i][j] = dp[i][j - 1];
for (int k = 0; k <= j; k++) {
if (left[k][i] == 0) {
dp[i][j] = 1;
} else {
dp[i][j] = Math.min(dp[i][j], dp[left[k][i] - 1][j - k] + 1);
}
}
}
}
out.println(dp[n - 1][m]);
}
static int getReal(int x) {
int result = 1;
for (int i = 0; i < primeCount; i++) {
if (x % prime[i] == 0) {
int count = 0;
while (x % prime[i] == 0) {
count++;
x /= prime[i];
}
if (count % 2 == 1) {
result *= prime[i];
}
}
}
result *= x;
return result;
}
public static void main(String[] args) throws IOException {
Reader in = new Reader(new InputStreamReader(System.in));
PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out));
build_prime();
int t = in.nextInt();
for (int i = 0; i < t; i++) {
run(in, out);
}
out.flush();
in.close();
out.close();
}
static class Reader {
BufferedReader reader;
StringTokenizer st;
Reader(InputStreamReader stream) {
reader = new BufferedReader(stream, 32768);
st = null;
}
void close() throws IOException {
reader.close();
}
String next() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
String nextLine() throws IOException {
return reader.readLine();
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,317 | 3,723 |
550 |
import java.util.*;import java.io.*;import java.math.*;
public class Main
{
public static void process()throws IOException
{
long n=nl();
if(n%2==0)
{
long a1=(long)Math.sqrt(n);
long a2=(long)Math.sqrt(n/2);
if(a1*a1==n || a2*a2*2==n)
{pn("YES");return;}
}
pn("NO");
}
static AnotherReader sc;
static PrintWriter out;
public static void main(String[]args)throws IOException
{
boolean oj = System.getProperty("ONLINE_JUDGE") != null;
if(oj){sc=new AnotherReader();out=new PrintWriter(System.out);}
else{sc=new AnotherReader(100);out=new PrintWriter("output.txt");}
int t=1;
t=ni();
while(t-- > 0) {process();}
out.flush();out.close();
}
static void pn(Object o){out.println(o);}
static void p(Object o){out.print(o);}
static void pni(Object o){out.println(o);out.flush();}
static int ni()throws IOException{return sc.nextInt();}
static long nl()throws IOException{return sc.nextLong();}
static double nd()throws IOException{return sc.nextDouble();}
static String nln()throws IOException{return sc.nextLine();}
static int[] nai(int N)throws IOException{int[]A=new int[N];for(int i=0;i!=N;i++){A[i]=ni();}return A;}
static long[] nal(int N)throws IOException{long[]A=new long[N];for(int i=0;i!=N;i++){A[i]=nl();}return A;}
static long gcd(long a, long b)throws IOException{return (b==0)?a:gcd(b,a%b);}
static int gcd(int a, int b)throws IOException{return (b==0)?a:gcd(b,a%b);}
static int bit(long n)throws IOException{return (n==0)?0:(1+bit(n&(n-1)));}
/////////////////////////////////////////////////////////////////////////////////////////////////////////
static class AnotherReader{BufferedReader br; StringTokenizer st;
AnotherReader()throws FileNotFoundException{
br=new BufferedReader(new InputStreamReader(System.in));}
AnotherReader(int a)throws FileNotFoundException{
br = new BufferedReader(new FileReader("input.txt"));}
String next()throws IOException{
while (st == null || !st.hasMoreElements()) {try{
st = new StringTokenizer(br.readLine());}
catch (IOException e){ e.printStackTrace(); }}
return st.nextToken(); } int nextInt() throws IOException{
return Integer.parseInt(next());}
long nextLong() throws IOException
{return Long.parseLong(next());}
double nextDouble()throws IOException { return Double.parseDouble(next()); }
String nextLine() throws IOException{ String str = ""; try{
str = br.readLine();} catch (IOException e){
e.printStackTrace();} return str;}}
/////////////////////////////////////////////////////////////////////////////////////////////////////////////
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;import java.io.*;import java.math.*;
public class Main
{
public static void process()throws IOException
{
long n=nl();
if(n%2==0)
{
long a1=(long)Math.sqrt(n);
long a2=(long)Math.sqrt(n/2);
if(a1*a1==n || a2*a2*2==n)
{pn("YES");return;}
}
pn("NO");
}
static AnotherReader sc;
static PrintWriter out;
public static void main(String[]args)throws IOException
{
boolean oj = System.getProperty("ONLINE_JUDGE") != null;
if(oj){sc=new AnotherReader();out=new PrintWriter(System.out);}
else{sc=new AnotherReader(100);out=new PrintWriter("output.txt");}
int t=1;
t=ni();
while(t-- > 0) {process();}
out.flush();out.close();
}
static void pn(Object o){out.println(o);}
static void p(Object o){out.print(o);}
static void pni(Object o){out.println(o);out.flush();}
static int ni()throws IOException{return sc.nextInt();}
static long nl()throws IOException{return sc.nextLong();}
static double nd()throws IOException{return sc.nextDouble();}
static String nln()throws IOException{return sc.nextLine();}
static int[] nai(int N)throws IOException{int[]A=new int[N];for(int i=0;i!=N;i++){A[i]=ni();}return A;}
static long[] nal(int N)throws IOException{long[]A=new long[N];for(int i=0;i!=N;i++){A[i]=nl();}return A;}
static long gcd(long a, long b)throws IOException{return (b==0)?a:gcd(b,a%b);}
static int gcd(int a, int b)throws IOException{return (b==0)?a:gcd(b,a%b);}
static int bit(long n)throws IOException{return (n==0)?0:(1+bit(n&(n-1)));}
/////////////////////////////////////////////////////////////////////////////////////////////////////////
static class AnotherReader{BufferedReader br; StringTokenizer st;
AnotherReader()throws FileNotFoundException{
br=new BufferedReader(new InputStreamReader(System.in));}
AnotherReader(int a)throws FileNotFoundException{
br = new BufferedReader(new FileReader("input.txt"));}
String next()throws IOException{
while (st == null || !st.hasMoreElements()) {try{
st = new StringTokenizer(br.readLine());}
catch (IOException e){ e.printStackTrace(); }}
return st.nextToken(); } int nextInt() throws IOException{
return Integer.parseInt(next());}
long nextLong() throws IOException
{return Long.parseLong(next());}
double nextDouble()throws IOException { return Double.parseDouble(next()); }
String nextLine() throws IOException{ String str = ""; try{
str = br.readLine();} catch (IOException e){
e.printStackTrace();} return str;}}
/////////////////////////////////////////////////////////////////////////////////////////////////////////////
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;import java.io.*;import java.math.*;
public class Main
{
public static void process()throws IOException
{
long n=nl();
if(n%2==0)
{
long a1=(long)Math.sqrt(n);
long a2=(long)Math.sqrt(n/2);
if(a1*a1==n || a2*a2*2==n)
{pn("YES");return;}
}
pn("NO");
}
static AnotherReader sc;
static PrintWriter out;
public static void main(String[]args)throws IOException
{
boolean oj = System.getProperty("ONLINE_JUDGE") != null;
if(oj){sc=new AnotherReader();out=new PrintWriter(System.out);}
else{sc=new AnotherReader(100);out=new PrintWriter("output.txt");}
int t=1;
t=ni();
while(t-- > 0) {process();}
out.flush();out.close();
}
static void pn(Object o){out.println(o);}
static void p(Object o){out.print(o);}
static void pni(Object o){out.println(o);out.flush();}
static int ni()throws IOException{return sc.nextInt();}
static long nl()throws IOException{return sc.nextLong();}
static double nd()throws IOException{return sc.nextDouble();}
static String nln()throws IOException{return sc.nextLine();}
static int[] nai(int N)throws IOException{int[]A=new int[N];for(int i=0;i!=N;i++){A[i]=ni();}return A;}
static long[] nal(int N)throws IOException{long[]A=new long[N];for(int i=0;i!=N;i++){A[i]=nl();}return A;}
static long gcd(long a, long b)throws IOException{return (b==0)?a:gcd(b,a%b);}
static int gcd(int a, int b)throws IOException{return (b==0)?a:gcd(b,a%b);}
static int bit(long n)throws IOException{return (n==0)?0:(1+bit(n&(n-1)));}
/////////////////////////////////////////////////////////////////////////////////////////////////////////
static class AnotherReader{BufferedReader br; StringTokenizer st;
AnotherReader()throws FileNotFoundException{
br=new BufferedReader(new InputStreamReader(System.in));}
AnotherReader(int a)throws FileNotFoundException{
br = new BufferedReader(new FileReader("input.txt"));}
String next()throws IOException{
while (st == null || !st.hasMoreElements()) {try{
st = new StringTokenizer(br.readLine());}
catch (IOException e){ e.printStackTrace(); }}
return st.nextToken(); } int nextInt() throws IOException{
return Integer.parseInt(next());}
long nextLong() throws IOException
{return Long.parseLong(next());}
double nextDouble()throws IOException { return Double.parseDouble(next()); }
String nextLine() throws IOException{ String str = ""; try{
str = br.readLine();} catch (IOException e){
e.printStackTrace();} return str;}}
/////////////////////////////////////////////////////////////////////////////////////////////////////////////
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The running time increases with the square of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(1): The running time does not change regardless of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 979 | 549 |
3,339 |
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.IOException;
import java.util.LinkedList;
import java.util.StringTokenizer;
public class GeorgeAndInterestingGraph {
public static void main(String[] args) {
MyScanner sc = new MyScanner();
int N = sc.nextInt();
int M = sc.nextInt();
int[] edgeFrom = new int[M];
int[] edgeTo = new int[M];
for (int i = 0; i < M; i++) {
edgeFrom[i] = sc.nextInt();
edgeTo[i] = sc.nextInt();
}
int best = Integer.MAX_VALUE;
for (int i = 0; i < N; i++) {
boolean[][] mat = makeAdjMat(N, edgeFrom, edgeTo);
best = Math.min(best, count(mat, i, M));
}
System.out.println(best);
}
public static int count(boolean[][] mat, int center, int M) {
// int N = mat.length;
// int M = mat[0].length;
//
// int centerConnect = (mat[center][center]) ? 0 : 1;
// for (int i = 0; i < N; i++) {
// if (i != center) {
// if (!mat[i][center]) {
// centerConnect++;
// }
// if (!mat[center][i]) {
// centerConnect++;
// }
// }
// mat[i][center] = false;
// mat[center][i] = false;
// }
//
// int[][] adjMat = new int[2 * N + 2][2 * N + 2];
// for (int i = 0; i < N; i++) {
// for (int j = 0; j < N; j++) {
// int idx = N + j;
// adjMat[i][idx] = (mat[i][j]) ? 1 : 0;
// }
// }
// int s = 2 * N;
// int t = 2 * N + 1;
// for (int i = 0; i < N; i++) {
// adjMat[s][i] = 1;
// }
// for (int i = N; i < 2 * N; i++) {
// adjMat[i][t] = 1;
// }
//
// int matches = fordFulkerson(adjMat, s, t);
//
// return centerConnect + matches;
int N = mat.length;
// int M = mat[0].length;
int cntWithI = (mat[center][center]) ? 1 : 0;
for (int i = 0; i < N; i++) {
if (i != center) {
if (mat[i][center]) {
cntWithI++;
}
if (mat[center][i]) {
cntWithI++;
}
}
mat[i][center] = false;
mat[center][i] = false;
}
int other = M - cntWithI;
// int centerConnect = (mat[center][center]) ? 0 : 1;
//
// for (int i = 0; i < N; i++) {
// if (i != center) {
// if (!mat[i][center]) {
// centerConnect++;
// }
// if (!mat[center][i]) {
// centerConnect++;
// }
// }
// mat[i][center] = false;
// mat[center][i] = false;
// }
int matches = bipartiteMatching(mat);
return (2 * N - 1 - cntWithI + other - matches + N - 1 - matches);
// return (centerConnect + N - 1 - matches);
}
public static boolean[][] makeAdjMat(int N, int[] edgeFrom, int[] edgeTo) {
boolean[][] mat = new boolean[N][N];
for (int i = 0; i < edgeFrom.length; i++) {
int from = edgeFrom[i] - 1;
int to = edgeTo[i] - 1;
mat[from][to] = true;
}
return mat;
}
/**
* Returns true if there is a path from the source 's' to the sink 't' in the residual graph.
* Also fills parent[] to store the path.
* See here for more info: http://www.geeksforgeeks.org/ford-fulkerson-algorithm-for-maximum-flow-problem/
*/
public static boolean fordFulkersonHelper(int[][] resid, int s, int t, int[] parent) {
int V = resid.length;
boolean[] visited = new boolean[V];
LinkedList<Integer> q = new LinkedList<Integer>();
q.push(s);
visited[s] = true;
parent[s] = -1;
while (!q.isEmpty()) {
int u = q.pop();
for (int v = 0; v < V; v++) {
if (!visited[v] && resid[u][v] > 0) {
q.push(v);
parent[v] = u;
visited[v] = true;
}
}
}
return visited[t];
}
/**
* Returns the maximum flow from 's' to 't' in the given graph.
* See here for more info: http://www.geeksforgeeks.org/ford-fulkerson-algorithm-for-maximum-flow-problem/
*/
public static int fordFulkerson(int[][] graph, int s, int t) {
int V = graph.length;
int[][] resid = new int[V][V];
int[] parent = new int[V];
int maxFlow = 0;
for (int u = 0; u < V; u++) {
for (int v = 0; v < V; v++) {
resid[u][v] = graph[u][v];
}
}
while (fordFulkersonHelper(resid, s, t, parent)) {
int pathFlow = Integer.MAX_VALUE;
for (int v = t; v != s; v = parent[v]) {
int u = parent[v];
pathFlow = Math.min(pathFlow, resid[u][v]);
}
for (int v = t; v != s; v = parent[v]) {
int u = parent[v];
resid[u][v] -= pathFlow;
resid[v][u] += pathFlow;
}
maxFlow += pathFlow;
}
return maxFlow;
}
/**
* Returns true if a matching for vertex 'u' is possible.
* See here for more info: http://www.geeksforgeeks.org/maximum-bipartite-matching/
*/
public static boolean bipartiteMatchingHelper(boolean[][] bpGraph, int u, boolean[] seen, int[] matchR) {
int N = bpGraph[0].length;
for (int v = 0; v < N; v++) {
if (bpGraph[u][v] && !seen[v]) {
seen[v] = true;
if (matchR[v] < 0 || bipartiteMatchingHelper(bpGraph, matchR[v], seen, matchR)) {
matchR[v] = u;
return true;
}
}
}
return false;
}
/**
* Returns the maximum bipartite matching from an an adjacency matrix.
* Note: bpGraph[i][j] = true if there is an edge from i to j.
* Note: matchIJ (array of length M) is an output variable containing the matchings, such that matchIJ[i] = j means that there is a match from i to j.
* Note: matchJI (array of length N) is an output variable containing the matchings, such that matchJI[j] = i means that there is a match from i to j.
* See here for more info: http://www.geeksforgeeks.org/maximum-bipartite-matching/
*/
public static int bipartiteMatching(boolean[][] bpGraph, int[] matchIJ, int[] matchJI) {
int ans = bipartiteMatching(bpGraph, matchJI);
for (int i = 0; i < matchJI.length; i++) {
matchIJ[i] = -1;
}
for (int j = 0; j < matchJI.length; j++) {
int i = matchJI[j];
if (i >= 0) {
matchIJ[i] = j;
}
}
return ans;
}
/**
* Returns the maximum bipartite matching from an an adjacency matrix.
* Note: bpGraph[i][j] = true if there is an edge from i to j.
* Note: matchJI (array of length N) is an output variable containing the matchings, such that matchJI[j] = i means that there is a match from i to j.
* See here for more info: http://www.geeksforgeeks.org/maximum-bipartite-matching/
*/
public static int bipartiteMatching(boolean[][] bpGraph, int[] matchJI) {
int M = bpGraph.length;
int N = bpGraph[0].length;
for (int i = 0; i < N; i++) {
matchJI[i] = -1;
}
int ans = 0;
for (int u = 0; u < M; u++) {
boolean[] seen = new boolean[N];
if (bipartiteMatchingHelper(bpGraph, u, seen, matchJI)) {
ans++;
}
}
return ans;
}
/**
* Returns the maximum bipartite matching from an an adjacency matrix.
* Overload of the bipartiteMatching function without output parameters.
* See here for more info: http://www.geeksforgeeks.org/maximum-bipartite-matching/
*/
public static int bipartiteMatching(boolean[][] bpGraph) {
int N = bpGraph[0].length;
int[] matchJI = new int[N];
return bipartiteMatching(bpGraph, matchJI);
}
/**
* Overload of the bipartiteMatching function taking an adjacency matrix of int[][] instead of boolean[][].
*/
public static int bipartiteMatching(int[][] intGraph) {
boolean[][] bpGraph = intToBooleanAdjMat(intGraph);
return bipartiteMatching(bpGraph);
}
/**
* Overload of the bipartiteMatching function taking an adjacency matrix of int[][] instead of boolean[][].
* Note: matchJI (array of length N) is an output variable containing the matchings, such that matchJI[j] = i means that there is a match from i to j.
*/
public static int bipartiteMatching(int[][] intGraph, int[] matchJI) {
boolean[][] bpGraph = intToBooleanAdjMat(intGraph);
return bipartiteMatching(bpGraph, matchJI);
}
/**
* Overload of the bipartiteMatching function taking an adjacency matrix of int[][] instead of boolean[][].
* Note: matchIJ (array of length M) is an output variable containing the matchings, such that matchIJ[i] = j means that there is a match from i to j.
* Note: matchJI (array of length N) is an output variable containing the matchings, such that matchJI[j] = i means that there is a match from i to j.
*/
public static int bipartiteMatching(int[][] intGraph, int[] matchIJ, int[] matchJI) {
boolean[][] bpGraph = intToBooleanAdjMat(intGraph);
return bipartiteMatching(bpGraph, matchIJ, matchJI);
}
/**
* Converts an integer adjacency matrix of 1's and 0's to a boolean adjacency matrix.
* Useful with bipartiteMatching, which takes adjancency matrix of boolean[][] as input (instead of int[][]).
*/
public static boolean[][] intToBooleanAdjMat(int[][] mat) {
int M = mat.length;
int N = mat[0].length;
boolean[][] bMat = new boolean[M][N];
for (int i = 0; i < M; i++) {
for (int j = 0; j < N; j++) {
bMat[i][j] = (mat[i][j] != 0);
}
}
return bMat;
}
public static class MyScanner {
BufferedReader br;
StringTokenizer st;
public MyScanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
String nextLine() {
String str = "";
try { str = br.readLine(); }
catch (IOException e) { e.printStackTrace(); }
return str;
}
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.IOException;
import java.util.LinkedList;
import java.util.StringTokenizer;
public class GeorgeAndInterestingGraph {
public static void main(String[] args) {
MyScanner sc = new MyScanner();
int N = sc.nextInt();
int M = sc.nextInt();
int[] edgeFrom = new int[M];
int[] edgeTo = new int[M];
for (int i = 0; i < M; i++) {
edgeFrom[i] = sc.nextInt();
edgeTo[i] = sc.nextInt();
}
int best = Integer.MAX_VALUE;
for (int i = 0; i < N; i++) {
boolean[][] mat = makeAdjMat(N, edgeFrom, edgeTo);
best = Math.min(best, count(mat, i, M));
}
System.out.println(best);
}
public static int count(boolean[][] mat, int center, int M) {
// int N = mat.length;
// int M = mat[0].length;
//
// int centerConnect = (mat[center][center]) ? 0 : 1;
// for (int i = 0; i < N; i++) {
// if (i != center) {
// if (!mat[i][center]) {
// centerConnect++;
// }
// if (!mat[center][i]) {
// centerConnect++;
// }
// }
// mat[i][center] = false;
// mat[center][i] = false;
// }
//
// int[][] adjMat = new int[2 * N + 2][2 * N + 2];
// for (int i = 0; i < N; i++) {
// for (int j = 0; j < N; j++) {
// int idx = N + j;
// adjMat[i][idx] = (mat[i][j]) ? 1 : 0;
// }
// }
// int s = 2 * N;
// int t = 2 * N + 1;
// for (int i = 0; i < N; i++) {
// adjMat[s][i] = 1;
// }
// for (int i = N; i < 2 * N; i++) {
// adjMat[i][t] = 1;
// }
//
// int matches = fordFulkerson(adjMat, s, t);
//
// return centerConnect + matches;
int N = mat.length;
// int M = mat[0].length;
int cntWithI = (mat[center][center]) ? 1 : 0;
for (int i = 0; i < N; i++) {
if (i != center) {
if (mat[i][center]) {
cntWithI++;
}
if (mat[center][i]) {
cntWithI++;
}
}
mat[i][center] = false;
mat[center][i] = false;
}
int other = M - cntWithI;
// int centerConnect = (mat[center][center]) ? 0 : 1;
//
// for (int i = 0; i < N; i++) {
// if (i != center) {
// if (!mat[i][center]) {
// centerConnect++;
// }
// if (!mat[center][i]) {
// centerConnect++;
// }
// }
// mat[i][center] = false;
// mat[center][i] = false;
// }
int matches = bipartiteMatching(mat);
return (2 * N - 1 - cntWithI + other - matches + N - 1 - matches);
// return (centerConnect + N - 1 - matches);
}
public static boolean[][] makeAdjMat(int N, int[] edgeFrom, int[] edgeTo) {
boolean[][] mat = new boolean[N][N];
for (int i = 0; i < edgeFrom.length; i++) {
int from = edgeFrom[i] - 1;
int to = edgeTo[i] - 1;
mat[from][to] = true;
}
return mat;
}
/**
* Returns true if there is a path from the source 's' to the sink 't' in the residual graph.
* Also fills parent[] to store the path.
* See here for more info: http://www.geeksforgeeks.org/ford-fulkerson-algorithm-for-maximum-flow-problem/
*/
public static boolean fordFulkersonHelper(int[][] resid, int s, int t, int[] parent) {
int V = resid.length;
boolean[] visited = new boolean[V];
LinkedList<Integer> q = new LinkedList<Integer>();
q.push(s);
visited[s] = true;
parent[s] = -1;
while (!q.isEmpty()) {
int u = q.pop();
for (int v = 0; v < V; v++) {
if (!visited[v] && resid[u][v] > 0) {
q.push(v);
parent[v] = u;
visited[v] = true;
}
}
}
return visited[t];
}
/**
* Returns the maximum flow from 's' to 't' in the given graph.
* See here for more info: http://www.geeksforgeeks.org/ford-fulkerson-algorithm-for-maximum-flow-problem/
*/
public static int fordFulkerson(int[][] graph, int s, int t) {
int V = graph.length;
int[][] resid = new int[V][V];
int[] parent = new int[V];
int maxFlow = 0;
for (int u = 0; u < V; u++) {
for (int v = 0; v < V; v++) {
resid[u][v] = graph[u][v];
}
}
while (fordFulkersonHelper(resid, s, t, parent)) {
int pathFlow = Integer.MAX_VALUE;
for (int v = t; v != s; v = parent[v]) {
int u = parent[v];
pathFlow = Math.min(pathFlow, resid[u][v]);
}
for (int v = t; v != s; v = parent[v]) {
int u = parent[v];
resid[u][v] -= pathFlow;
resid[v][u] += pathFlow;
}
maxFlow += pathFlow;
}
return maxFlow;
}
/**
* Returns true if a matching for vertex 'u' is possible.
* See here for more info: http://www.geeksforgeeks.org/maximum-bipartite-matching/
*/
public static boolean bipartiteMatchingHelper(boolean[][] bpGraph, int u, boolean[] seen, int[] matchR) {
int N = bpGraph[0].length;
for (int v = 0; v < N; v++) {
if (bpGraph[u][v] && !seen[v]) {
seen[v] = true;
if (matchR[v] < 0 || bipartiteMatchingHelper(bpGraph, matchR[v], seen, matchR)) {
matchR[v] = u;
return true;
}
}
}
return false;
}
/**
* Returns the maximum bipartite matching from an an adjacency matrix.
* Note: bpGraph[i][j] = true if there is an edge from i to j.
* Note: matchIJ (array of length M) is an output variable containing the matchings, such that matchIJ[i] = j means that there is a match from i to j.
* Note: matchJI (array of length N) is an output variable containing the matchings, such that matchJI[j] = i means that there is a match from i to j.
* See here for more info: http://www.geeksforgeeks.org/maximum-bipartite-matching/
*/
public static int bipartiteMatching(boolean[][] bpGraph, int[] matchIJ, int[] matchJI) {
int ans = bipartiteMatching(bpGraph, matchJI);
for (int i = 0; i < matchJI.length; i++) {
matchIJ[i] = -1;
}
for (int j = 0; j < matchJI.length; j++) {
int i = matchJI[j];
if (i >= 0) {
matchIJ[i] = j;
}
}
return ans;
}
/**
* Returns the maximum bipartite matching from an an adjacency matrix.
* Note: bpGraph[i][j] = true if there is an edge from i to j.
* Note: matchJI (array of length N) is an output variable containing the matchings, such that matchJI[j] = i means that there is a match from i to j.
* See here for more info: http://www.geeksforgeeks.org/maximum-bipartite-matching/
*/
public static int bipartiteMatching(boolean[][] bpGraph, int[] matchJI) {
int M = bpGraph.length;
int N = bpGraph[0].length;
for (int i = 0; i < N; i++) {
matchJI[i] = -1;
}
int ans = 0;
for (int u = 0; u < M; u++) {
boolean[] seen = new boolean[N];
if (bipartiteMatchingHelper(bpGraph, u, seen, matchJI)) {
ans++;
}
}
return ans;
}
/**
* Returns the maximum bipartite matching from an an adjacency matrix.
* Overload of the bipartiteMatching function without output parameters.
* See here for more info: http://www.geeksforgeeks.org/maximum-bipartite-matching/
*/
public static int bipartiteMatching(boolean[][] bpGraph) {
int N = bpGraph[0].length;
int[] matchJI = new int[N];
return bipartiteMatching(bpGraph, matchJI);
}
/**
* Overload of the bipartiteMatching function taking an adjacency matrix of int[][] instead of boolean[][].
*/
public static int bipartiteMatching(int[][] intGraph) {
boolean[][] bpGraph = intToBooleanAdjMat(intGraph);
return bipartiteMatching(bpGraph);
}
/**
* Overload of the bipartiteMatching function taking an adjacency matrix of int[][] instead of boolean[][].
* Note: matchJI (array of length N) is an output variable containing the matchings, such that matchJI[j] = i means that there is a match from i to j.
*/
public static int bipartiteMatching(int[][] intGraph, int[] matchJI) {
boolean[][] bpGraph = intToBooleanAdjMat(intGraph);
return bipartiteMatching(bpGraph, matchJI);
}
/**
* Overload of the bipartiteMatching function taking an adjacency matrix of int[][] instead of boolean[][].
* Note: matchIJ (array of length M) is an output variable containing the matchings, such that matchIJ[i] = j means that there is a match from i to j.
* Note: matchJI (array of length N) is an output variable containing the matchings, such that matchJI[j] = i means that there is a match from i to j.
*/
public static int bipartiteMatching(int[][] intGraph, int[] matchIJ, int[] matchJI) {
boolean[][] bpGraph = intToBooleanAdjMat(intGraph);
return bipartiteMatching(bpGraph, matchIJ, matchJI);
}
/**
* Converts an integer adjacency matrix of 1's and 0's to a boolean adjacency matrix.
* Useful with bipartiteMatching, which takes adjancency matrix of boolean[][] as input (instead of int[][]).
*/
public static boolean[][] intToBooleanAdjMat(int[][] mat) {
int M = mat.length;
int N = mat[0].length;
boolean[][] bMat = new boolean[M][N];
for (int i = 0; i < M; i++) {
for (int j = 0; j < N; j++) {
bMat[i][j] = (mat[i][j] != 0);
}
}
return bMat;
}
public static class MyScanner {
BufferedReader br;
StringTokenizer st;
public MyScanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
String nextLine() {
String str = "";
try { str = br.readLine(); }
catch (IOException e) { e.printStackTrace(); }
return str;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The running time increases with the cube of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.IOException;
import java.util.LinkedList;
import java.util.StringTokenizer;
public class GeorgeAndInterestingGraph {
public static void main(String[] args) {
MyScanner sc = new MyScanner();
int N = sc.nextInt();
int M = sc.nextInt();
int[] edgeFrom = new int[M];
int[] edgeTo = new int[M];
for (int i = 0; i < M; i++) {
edgeFrom[i] = sc.nextInt();
edgeTo[i] = sc.nextInt();
}
int best = Integer.MAX_VALUE;
for (int i = 0; i < N; i++) {
boolean[][] mat = makeAdjMat(N, edgeFrom, edgeTo);
best = Math.min(best, count(mat, i, M));
}
System.out.println(best);
}
public static int count(boolean[][] mat, int center, int M) {
// int N = mat.length;
// int M = mat[0].length;
//
// int centerConnect = (mat[center][center]) ? 0 : 1;
// for (int i = 0; i < N; i++) {
// if (i != center) {
// if (!mat[i][center]) {
// centerConnect++;
// }
// if (!mat[center][i]) {
// centerConnect++;
// }
// }
// mat[i][center] = false;
// mat[center][i] = false;
// }
//
// int[][] adjMat = new int[2 * N + 2][2 * N + 2];
// for (int i = 0; i < N; i++) {
// for (int j = 0; j < N; j++) {
// int idx = N + j;
// adjMat[i][idx] = (mat[i][j]) ? 1 : 0;
// }
// }
// int s = 2 * N;
// int t = 2 * N + 1;
// for (int i = 0; i < N; i++) {
// adjMat[s][i] = 1;
// }
// for (int i = N; i < 2 * N; i++) {
// adjMat[i][t] = 1;
// }
//
// int matches = fordFulkerson(adjMat, s, t);
//
// return centerConnect + matches;
int N = mat.length;
// int M = mat[0].length;
int cntWithI = (mat[center][center]) ? 1 : 0;
for (int i = 0; i < N; i++) {
if (i != center) {
if (mat[i][center]) {
cntWithI++;
}
if (mat[center][i]) {
cntWithI++;
}
}
mat[i][center] = false;
mat[center][i] = false;
}
int other = M - cntWithI;
// int centerConnect = (mat[center][center]) ? 0 : 1;
//
// for (int i = 0; i < N; i++) {
// if (i != center) {
// if (!mat[i][center]) {
// centerConnect++;
// }
// if (!mat[center][i]) {
// centerConnect++;
// }
// }
// mat[i][center] = false;
// mat[center][i] = false;
// }
int matches = bipartiteMatching(mat);
return (2 * N - 1 - cntWithI + other - matches + N - 1 - matches);
// return (centerConnect + N - 1 - matches);
}
public static boolean[][] makeAdjMat(int N, int[] edgeFrom, int[] edgeTo) {
boolean[][] mat = new boolean[N][N];
for (int i = 0; i < edgeFrom.length; i++) {
int from = edgeFrom[i] - 1;
int to = edgeTo[i] - 1;
mat[from][to] = true;
}
return mat;
}
/**
* Returns true if there is a path from the source 's' to the sink 't' in the residual graph.
* Also fills parent[] to store the path.
* See here for more info: http://www.geeksforgeeks.org/ford-fulkerson-algorithm-for-maximum-flow-problem/
*/
public static boolean fordFulkersonHelper(int[][] resid, int s, int t, int[] parent) {
int V = resid.length;
boolean[] visited = new boolean[V];
LinkedList<Integer> q = new LinkedList<Integer>();
q.push(s);
visited[s] = true;
parent[s] = -1;
while (!q.isEmpty()) {
int u = q.pop();
for (int v = 0; v < V; v++) {
if (!visited[v] && resid[u][v] > 0) {
q.push(v);
parent[v] = u;
visited[v] = true;
}
}
}
return visited[t];
}
/**
* Returns the maximum flow from 's' to 't' in the given graph.
* See here for more info: http://www.geeksforgeeks.org/ford-fulkerson-algorithm-for-maximum-flow-problem/
*/
public static int fordFulkerson(int[][] graph, int s, int t) {
int V = graph.length;
int[][] resid = new int[V][V];
int[] parent = new int[V];
int maxFlow = 0;
for (int u = 0; u < V; u++) {
for (int v = 0; v < V; v++) {
resid[u][v] = graph[u][v];
}
}
while (fordFulkersonHelper(resid, s, t, parent)) {
int pathFlow = Integer.MAX_VALUE;
for (int v = t; v != s; v = parent[v]) {
int u = parent[v];
pathFlow = Math.min(pathFlow, resid[u][v]);
}
for (int v = t; v != s; v = parent[v]) {
int u = parent[v];
resid[u][v] -= pathFlow;
resid[v][u] += pathFlow;
}
maxFlow += pathFlow;
}
return maxFlow;
}
/**
* Returns true if a matching for vertex 'u' is possible.
* See here for more info: http://www.geeksforgeeks.org/maximum-bipartite-matching/
*/
public static boolean bipartiteMatchingHelper(boolean[][] bpGraph, int u, boolean[] seen, int[] matchR) {
int N = bpGraph[0].length;
for (int v = 0; v < N; v++) {
if (bpGraph[u][v] && !seen[v]) {
seen[v] = true;
if (matchR[v] < 0 || bipartiteMatchingHelper(bpGraph, matchR[v], seen, matchR)) {
matchR[v] = u;
return true;
}
}
}
return false;
}
/**
* Returns the maximum bipartite matching from an an adjacency matrix.
* Note: bpGraph[i][j] = true if there is an edge from i to j.
* Note: matchIJ (array of length M) is an output variable containing the matchings, such that matchIJ[i] = j means that there is a match from i to j.
* Note: matchJI (array of length N) is an output variable containing the matchings, such that matchJI[j] = i means that there is a match from i to j.
* See here for more info: http://www.geeksforgeeks.org/maximum-bipartite-matching/
*/
public static int bipartiteMatching(boolean[][] bpGraph, int[] matchIJ, int[] matchJI) {
int ans = bipartiteMatching(bpGraph, matchJI);
for (int i = 0; i < matchJI.length; i++) {
matchIJ[i] = -1;
}
for (int j = 0; j < matchJI.length; j++) {
int i = matchJI[j];
if (i >= 0) {
matchIJ[i] = j;
}
}
return ans;
}
/**
* Returns the maximum bipartite matching from an an adjacency matrix.
* Note: bpGraph[i][j] = true if there is an edge from i to j.
* Note: matchJI (array of length N) is an output variable containing the matchings, such that matchJI[j] = i means that there is a match from i to j.
* See here for more info: http://www.geeksforgeeks.org/maximum-bipartite-matching/
*/
public static int bipartiteMatching(boolean[][] bpGraph, int[] matchJI) {
int M = bpGraph.length;
int N = bpGraph[0].length;
for (int i = 0; i < N; i++) {
matchJI[i] = -1;
}
int ans = 0;
for (int u = 0; u < M; u++) {
boolean[] seen = new boolean[N];
if (bipartiteMatchingHelper(bpGraph, u, seen, matchJI)) {
ans++;
}
}
return ans;
}
/**
* Returns the maximum bipartite matching from an an adjacency matrix.
* Overload of the bipartiteMatching function without output parameters.
* See here for more info: http://www.geeksforgeeks.org/maximum-bipartite-matching/
*/
public static int bipartiteMatching(boolean[][] bpGraph) {
int N = bpGraph[0].length;
int[] matchJI = new int[N];
return bipartiteMatching(bpGraph, matchJI);
}
/**
* Overload of the bipartiteMatching function taking an adjacency matrix of int[][] instead of boolean[][].
*/
public static int bipartiteMatching(int[][] intGraph) {
boolean[][] bpGraph = intToBooleanAdjMat(intGraph);
return bipartiteMatching(bpGraph);
}
/**
* Overload of the bipartiteMatching function taking an adjacency matrix of int[][] instead of boolean[][].
* Note: matchJI (array of length N) is an output variable containing the matchings, such that matchJI[j] = i means that there is a match from i to j.
*/
public static int bipartiteMatching(int[][] intGraph, int[] matchJI) {
boolean[][] bpGraph = intToBooleanAdjMat(intGraph);
return bipartiteMatching(bpGraph, matchJI);
}
/**
* Overload of the bipartiteMatching function taking an adjacency matrix of int[][] instead of boolean[][].
* Note: matchIJ (array of length M) is an output variable containing the matchings, such that matchIJ[i] = j means that there is a match from i to j.
* Note: matchJI (array of length N) is an output variable containing the matchings, such that matchJI[j] = i means that there is a match from i to j.
*/
public static int bipartiteMatching(int[][] intGraph, int[] matchIJ, int[] matchJI) {
boolean[][] bpGraph = intToBooleanAdjMat(intGraph);
return bipartiteMatching(bpGraph, matchIJ, matchJI);
}
/**
* Converts an integer adjacency matrix of 1's and 0's to a boolean adjacency matrix.
* Useful with bipartiteMatching, which takes adjancency matrix of boolean[][] as input (instead of int[][]).
*/
public static boolean[][] intToBooleanAdjMat(int[][] mat) {
int M = mat.length;
int N = mat[0].length;
boolean[][] bMat = new boolean[M][N];
for (int i = 0; i < M; i++) {
for (int j = 0; j < N; j++) {
bMat[i][j] = (mat[i][j] != 0);
}
}
return bMat;
}
public static class MyScanner {
BufferedReader br;
StringTokenizer st;
public MyScanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
String nextLine() {
String str = "";
try { str = br.readLine(); }
catch (IOException e) { e.printStackTrace(); }
return str;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 3,319 | 3,333 |
2,242 |
/*
* PDPM IIITDM Jabalpur
* Asutosh Rana
*/
import java.util.*;
import java.io.*;
import java.math.*;
public class Main {
long MOD = 1000000007;
InputReader in;
BufferedReader br;
PrintWriter out;
public static void main(String[] args) throws java.lang.Exception {
Main solver = new Main();
solver.in = new InputReader(System.in);
solver.br = new BufferedReader(new InputStreamReader(System.in));
solver.out = new PrintWriter(System.out);
solver.solve();
solver.out.flush();
solver.out.close();
}
int[] A;
int N;
public void solve() {
int tc = 1;//in.readInt();
for (int cas = 1; cas <= tc; cas++) {
N = in.readInt();
A = new int[N];
for(int i =0;i<A.length;i++){
String str = in.readString();
if(str.equals("f"))
A[i] = 1;
}
long[][] dp = new long[N+1][N+1];
for(int i=0;i<N;i++){
if(i==0){
dp[i][0] = 1;
}
else if(A[i-1]!=1){
dp[i][N] = dp[i-1][N];
for(int j=N-1;j>=0;j--){
/* sum of all positions from */
dp[i][j] = (dp[i-1][j] + dp[i][j+1])%MOD;
}
}
else{
for(int j=1;j<=N;j++){
dp[i][j] = dp[i-1][j-1]%MOD;
}
}
}
long res = 0;
for(int i=0;i<=N;i++){
res = (res + dp[N-1][i])%MOD;
}
out.println(res);
}
}
}
class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int readInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public void readInt(int[] A) {
for (int i = 0; i < A.length; i++)
A[i] = readInt();
}
public long readLong() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public void readLong(long[] A) {
for (int i = 0; i < A.length; i++)
A[i] = readLong();
}
public double readDouble() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
double res = 0;
while (!isSpaceChar(c) && c != '.') {
if (c == 'e' || c == 'E')
return res * Math.pow(10, readInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
if (c == '.') {
c = read();
double m = 1;
while (!isSpaceChar(c)) {
if (c == 'e' || c == 'E')
return res * Math.pow(10, readInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
m /= 10;
res += (c - '0') * m;
c = read();
}
}
return res * sgn;
}
public char[] readCharA() {
return readString().toCharArray();
}
public String readString() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public String next() {
return readString();
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
/*
* PDPM IIITDM Jabalpur
* Asutosh Rana
*/
import java.util.*;
import java.io.*;
import java.math.*;
public class Main {
long MOD = 1000000007;
InputReader in;
BufferedReader br;
PrintWriter out;
public static void main(String[] args) throws java.lang.Exception {
Main solver = new Main();
solver.in = new InputReader(System.in);
solver.br = new BufferedReader(new InputStreamReader(System.in));
solver.out = new PrintWriter(System.out);
solver.solve();
solver.out.flush();
solver.out.close();
}
int[] A;
int N;
public void solve() {
int tc = 1;//in.readInt();
for (int cas = 1; cas <= tc; cas++) {
N = in.readInt();
A = new int[N];
for(int i =0;i<A.length;i++){
String str = in.readString();
if(str.equals("f"))
A[i] = 1;
}
long[][] dp = new long[N+1][N+1];
for(int i=0;i<N;i++){
if(i==0){
dp[i][0] = 1;
}
else if(A[i-1]!=1){
dp[i][N] = dp[i-1][N];
for(int j=N-1;j>=0;j--){
/* sum of all positions from */
dp[i][j] = (dp[i-1][j] + dp[i][j+1])%MOD;
}
}
else{
for(int j=1;j<=N;j++){
dp[i][j] = dp[i-1][j-1]%MOD;
}
}
}
long res = 0;
for(int i=0;i<=N;i++){
res = (res + dp[N-1][i])%MOD;
}
out.println(res);
}
}
}
class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int readInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public void readInt(int[] A) {
for (int i = 0; i < A.length; i++)
A[i] = readInt();
}
public long readLong() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public void readLong(long[] A) {
for (int i = 0; i < A.length; i++)
A[i] = readLong();
}
public double readDouble() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
double res = 0;
while (!isSpaceChar(c) && c != '.') {
if (c == 'e' || c == 'E')
return res * Math.pow(10, readInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
if (c == '.') {
c = read();
double m = 1;
while (!isSpaceChar(c)) {
if (c == 'e' || c == 'E')
return res * Math.pow(10, readInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
m /= 10;
res += (c - '0') * m;
c = read();
}
}
return res * sgn;
}
public char[] readCharA() {
return readString().toCharArray();
}
public String readString() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public String next() {
return readString();
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
/*
* PDPM IIITDM Jabalpur
* Asutosh Rana
*/
import java.util.*;
import java.io.*;
import java.math.*;
public class Main {
long MOD = 1000000007;
InputReader in;
BufferedReader br;
PrintWriter out;
public static void main(String[] args) throws java.lang.Exception {
Main solver = new Main();
solver.in = new InputReader(System.in);
solver.br = new BufferedReader(new InputStreamReader(System.in));
solver.out = new PrintWriter(System.out);
solver.solve();
solver.out.flush();
solver.out.close();
}
int[] A;
int N;
public void solve() {
int tc = 1;//in.readInt();
for (int cas = 1; cas <= tc; cas++) {
N = in.readInt();
A = new int[N];
for(int i =0;i<A.length;i++){
String str = in.readString();
if(str.equals("f"))
A[i] = 1;
}
long[][] dp = new long[N+1][N+1];
for(int i=0;i<N;i++){
if(i==0){
dp[i][0] = 1;
}
else if(A[i-1]!=1){
dp[i][N] = dp[i-1][N];
for(int j=N-1;j>=0;j--){
/* sum of all positions from */
dp[i][j] = (dp[i-1][j] + dp[i][j+1])%MOD;
}
}
else{
for(int j=1;j<=N;j++){
dp[i][j] = dp[i-1][j-1]%MOD;
}
}
}
long res = 0;
for(int i=0;i<=N;i++){
res = (res + dp[N-1][i])%MOD;
}
out.println(res);
}
}
}
class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int readInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public void readInt(int[] A) {
for (int i = 0; i < A.length; i++)
A[i] = readInt();
}
public long readLong() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public void readLong(long[] A) {
for (int i = 0; i < A.length; i++)
A[i] = readLong();
}
public double readDouble() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
double res = 0;
while (!isSpaceChar(c) && c != '.') {
if (c == 'e' || c == 'E')
return res * Math.pow(10, readInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
if (c == '.') {
c = read();
double m = 1;
while (!isSpaceChar(c)) {
if (c == 'e' || c == 'E')
return res * Math.pow(10, readInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
m /= 10;
res += (c - '0') * m;
c = read();
}
}
return res * sgn;
}
public char[] readCharA() {
return readString().toCharArray();
}
public String readString() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public String next() {
return readString();
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,657 | 2,238 |
607 |
import java.io.*;
import java.math.BigDecimal;
import java.math.BigInteger;
import java.math.RoundingMode;
import java.util.*;
import java.util.Map.Entry;
public class Main {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
private PrintWriter pw;
private long mod = 998244353;
private StringBuilder ans_sb;
private int sqrt;
private void soln() {
int n = nextInt();
int d = nextInt();
int[] arr = nextIntArray(n);
int cnt = 2;
for(int i=0;i<n-1;i++) {
int a1 = arr[i];
int a2 = arr[i+1];
a1 += d;
a2 -= d;
if(a1 < a2) {
cnt+=2;
}else if(a1==a2)
cnt++;
}
pw.println(cnt);
}
private class Pair implements Comparable<Pair>{
int x,i;
public Pair(int a, int b) {
x = a;
i = b;
}
@Override
public int compareTo(
Pair o)
{
return this.x - o.x;
}
}
private int cc = 0;
private void dfs(int c, int p, LinkedList<Integer>[] tree, int[] t, int[] tin, int[] tout, int[] arr) {
//debug(c);
t[cc] = arr[c];
tin[c] = cc++;
Iterator<Integer> it = tree[c].listIterator();
while(it.hasNext()) {
int x = it.next();
if(x != p) {
dfs(x, c, tree,t,tin,tout,arr);
}
}
tout[c] = cc;
}
public class Segment
{
private Node[] tree;
private int[] lazy;
private int size;
private int n;
private int[] base;
private class Node
{
private int on;
private int off;
}
public Segment(int n, int[] arr)
{
this.base=arr;
int x = (int) (Math.ceil(Math.log(n) / Math.log(2)));
size = 2 * (int) Math.pow(2, x) - 1;
tree = new Node[size];
lazy = new int[size];
this.n = n;
//this.set = set1;
build(0, 0, n - 1);
}
public void build(int id, int l, int r)
{
if (l == r)
{
tree[id] = new Node();
if(base[l] == 1)
tree[id].on++;
else
tree[id].off++;
return;
}
int mid = ((l + r)>>1);
build((id<<1)|1, l, mid);
build((id<<1)+2, mid + 1, r);
tree[id] = merge(tree[(id<<1)|1], tree[(id<<1)+2]);
//System.out.println(l+" "+r+" "+tree[id].l+" "+tree[id].r+" "+tree[id].ans);
}
public Node merge(Node n1, Node n2) {
Node ret = new Node();
if(n1 == null && n2 == null)
return null;
else if(n1 == null) {
ret.on = n2.on;
ret.off = n2.off;
}
else if(n2 == null) {
ret.on = n1.on;
ret.off = n1.off;
}
else {
ret.on = n1.on+n2.on;
ret.off = n2.off + n1.off;
}
return ret;
}
public int query(int l, int r)
{
Node ret = queryUtil(l, r, 0, 0, n - 1);
if(ret == null) {
return 0;
}
else
return ret.on;
}
private Node queryUtil(int x, int y, int id, int l, int r)
{
if (l > y || x > r)
return null;
if (x <= l && r <= y)
{
//shift(id,l,r);
return tree[id];
}
int mid = ((l + r)>>1);
shift(id,l,r);
Node q1 = queryUtil(x, y, (id<<1)|1, l, mid);
Node q2 = queryUtil(x, y, (id<<1)+2, mid + 1, r);
return merge(q1, q2);
}
public void update(int x, int y, int c) {
update1(x, y, c, 0, 0, n-1);
}
private void update1(int x, int y, int colour, int id, int l, int r)
{
//System.out.println(l+" "+r+" "+x);
if (x > r || y < l)
return;
if (x <= l && r <= y)
{
lazy[id]++;
// lazy[id] %= 2;
switchNode(tree[id]);
return;
}
int mid = ((l + r)>>1);
//shift(id);
if(y<=mid)
update1(x, y, colour, (id<<1)|1, l, mid);
else if(x>mid)
update1(x, y, colour, (id<<1)+2, mid + 1, r);
else {
update1(x, y, colour, (id<<1)|1, l, mid);
update1(x, y, colour, (id<<1)+2, mid + 1, r);
}
tree[id] = merge(tree[(id<<1)|1], tree[(id<<1)+2]);
}
private void shift(int id,int l, int r)
{
lazy[id] %= 2;
if(lazy[id] != 0) {
if(l != r) {
lazy[(id<<1)|1] += lazy[id];
lazy[(id<<1)+2] += lazy[id];
switchNode(tree[(id<<1)+2]);
switchNode(tree[(id<<1)|1]);
}
//switchNode(tree[(id<<1)+2]);
lazy[id] = 0;
}
}
private void switchNode(Node d) {
d.on ^= d.off;
d.off ^= d.on;
d.on ^= d.off;
}
}
private void debug(Object... o) {
System.out.println(Arrays.deepToString(o));
}
private long pow(long a, long b, long c) {
if (b == 0)
return 1;
long p = pow(a, b / 2, c);
p = (p * p) % c;
return (b % 2 == 0) ? p : (a * p) % c;
}
private long gcd(long n, long l) {
if (l == 0)
return n;
return gcd(l, n % l);
}
public static void main(String[] args) throws Exception {
new Thread(null, new Runnable() {
@Override
public void run() {
new Main().solve();
}
}, "1", 1 << 26).start();
//new Main().solve();
}
public StringBuilder solve() {
InputReader(System.in);
/*
* try { InputReader(new FileInputStream("C:\\Users\\hardik\\Desktop\\in.txt"));
* } catch(FileNotFoundException e) {}
*/
pw = new PrintWriter(System.out);
// ans_sb = new StringBuilder();
soln();
pw.close();
// System.out.println(ans_sb);
return ans_sb;
}
public void InputReader(InputStream stream1) {
stream = stream1;
}
private boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
private boolean isEndOfLine(int c) {
return c == '\n' || c == '\r' || c == -1;
}
private int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
private int nextInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
private long nextLong() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
private String nextToken() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
private String nextLine() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isEndOfLine(c));
return res.toString();
}
private int[] nextIntArray(int n) {
int[] arr = new int[n];
for (int i = 0; i < n; i++) {
arr[i] = nextInt();
}
return arr;
}
private long[] nextLongArray(int n) {
long[] arr = new long[n];
for (int i = 0; i < n; i++) {
arr[i] = nextLong();
}
return arr;
}
private void pArray(int[] arr) {
for (int i = 0; i < arr.length; i++) {
System.out.print(arr[i] + " ");
}
System.out.println();
return;
}
private void pArray(long[] arr) {
for (int i = 0; i < arr.length; i++) {
System.out.print(arr[i] + " ");
}
System.out.println();
return;
}
private boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return isWhitespace(c);
}
private char nextChar() {
int c = read();
while (isSpaceChar(c))
c = read();
char c1 = (char) c;
while (!isSpaceChar(c))
c = read();
return c1;
}
private interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.math.BigDecimal;
import java.math.BigInteger;
import java.math.RoundingMode;
import java.util.*;
import java.util.Map.Entry;
public class Main {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
private PrintWriter pw;
private long mod = 998244353;
private StringBuilder ans_sb;
private int sqrt;
private void soln() {
int n = nextInt();
int d = nextInt();
int[] arr = nextIntArray(n);
int cnt = 2;
for(int i=0;i<n-1;i++) {
int a1 = arr[i];
int a2 = arr[i+1];
a1 += d;
a2 -= d;
if(a1 < a2) {
cnt+=2;
}else if(a1==a2)
cnt++;
}
pw.println(cnt);
}
private class Pair implements Comparable<Pair>{
int x,i;
public Pair(int a, int b) {
x = a;
i = b;
}
@Override
public int compareTo(
Pair o)
{
return this.x - o.x;
}
}
private int cc = 0;
private void dfs(int c, int p, LinkedList<Integer>[] tree, int[] t, int[] tin, int[] tout, int[] arr) {
//debug(c);
t[cc] = arr[c];
tin[c] = cc++;
Iterator<Integer> it = tree[c].listIterator();
while(it.hasNext()) {
int x = it.next();
if(x != p) {
dfs(x, c, tree,t,tin,tout,arr);
}
}
tout[c] = cc;
}
public class Segment
{
private Node[] tree;
private int[] lazy;
private int size;
private int n;
private int[] base;
private class Node
{
private int on;
private int off;
}
public Segment(int n, int[] arr)
{
this.base=arr;
int x = (int) (Math.ceil(Math.log(n) / Math.log(2)));
size = 2 * (int) Math.pow(2, x) - 1;
tree = new Node[size];
lazy = new int[size];
this.n = n;
//this.set = set1;
build(0, 0, n - 1);
}
public void build(int id, int l, int r)
{
if (l == r)
{
tree[id] = new Node();
if(base[l] == 1)
tree[id].on++;
else
tree[id].off++;
return;
}
int mid = ((l + r)>>1);
build((id<<1)|1, l, mid);
build((id<<1)+2, mid + 1, r);
tree[id] = merge(tree[(id<<1)|1], tree[(id<<1)+2]);
//System.out.println(l+" "+r+" "+tree[id].l+" "+tree[id].r+" "+tree[id].ans);
}
public Node merge(Node n1, Node n2) {
Node ret = new Node();
if(n1 == null && n2 == null)
return null;
else if(n1 == null) {
ret.on = n2.on;
ret.off = n2.off;
}
else if(n2 == null) {
ret.on = n1.on;
ret.off = n1.off;
}
else {
ret.on = n1.on+n2.on;
ret.off = n2.off + n1.off;
}
return ret;
}
public int query(int l, int r)
{
Node ret = queryUtil(l, r, 0, 0, n - 1);
if(ret == null) {
return 0;
}
else
return ret.on;
}
private Node queryUtil(int x, int y, int id, int l, int r)
{
if (l > y || x > r)
return null;
if (x <= l && r <= y)
{
//shift(id,l,r);
return tree[id];
}
int mid = ((l + r)>>1);
shift(id,l,r);
Node q1 = queryUtil(x, y, (id<<1)|1, l, mid);
Node q2 = queryUtil(x, y, (id<<1)+2, mid + 1, r);
return merge(q1, q2);
}
public void update(int x, int y, int c) {
update1(x, y, c, 0, 0, n-1);
}
private void update1(int x, int y, int colour, int id, int l, int r)
{
//System.out.println(l+" "+r+" "+x);
if (x > r || y < l)
return;
if (x <= l && r <= y)
{
lazy[id]++;
// lazy[id] %= 2;
switchNode(tree[id]);
return;
}
int mid = ((l + r)>>1);
//shift(id);
if(y<=mid)
update1(x, y, colour, (id<<1)|1, l, mid);
else if(x>mid)
update1(x, y, colour, (id<<1)+2, mid + 1, r);
else {
update1(x, y, colour, (id<<1)|1, l, mid);
update1(x, y, colour, (id<<1)+2, mid + 1, r);
}
tree[id] = merge(tree[(id<<1)|1], tree[(id<<1)+2]);
}
private void shift(int id,int l, int r)
{
lazy[id] %= 2;
if(lazy[id] != 0) {
if(l != r) {
lazy[(id<<1)|1] += lazy[id];
lazy[(id<<1)+2] += lazy[id];
switchNode(tree[(id<<1)+2]);
switchNode(tree[(id<<1)|1]);
}
//switchNode(tree[(id<<1)+2]);
lazy[id] = 0;
}
}
private void switchNode(Node d) {
d.on ^= d.off;
d.off ^= d.on;
d.on ^= d.off;
}
}
private void debug(Object... o) {
System.out.println(Arrays.deepToString(o));
}
private long pow(long a, long b, long c) {
if (b == 0)
return 1;
long p = pow(a, b / 2, c);
p = (p * p) % c;
return (b % 2 == 0) ? p : (a * p) % c;
}
private long gcd(long n, long l) {
if (l == 0)
return n;
return gcd(l, n % l);
}
public static void main(String[] args) throws Exception {
new Thread(null, new Runnable() {
@Override
public void run() {
new Main().solve();
}
}, "1", 1 << 26).start();
//new Main().solve();
}
public StringBuilder solve() {
InputReader(System.in);
/*
* try { InputReader(new FileInputStream("C:\\Users\\hardik\\Desktop\\in.txt"));
* } catch(FileNotFoundException e) {}
*/
pw = new PrintWriter(System.out);
// ans_sb = new StringBuilder();
soln();
pw.close();
// System.out.println(ans_sb);
return ans_sb;
}
public void InputReader(InputStream stream1) {
stream = stream1;
}
private boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
private boolean isEndOfLine(int c) {
return c == '\n' || c == '\r' || c == -1;
}
private int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
private int nextInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
private long nextLong() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
private String nextToken() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
private String nextLine() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isEndOfLine(c));
return res.toString();
}
private int[] nextIntArray(int n) {
int[] arr = new int[n];
for (int i = 0; i < n; i++) {
arr[i] = nextInt();
}
return arr;
}
private long[] nextLongArray(int n) {
long[] arr = new long[n];
for (int i = 0; i < n; i++) {
arr[i] = nextLong();
}
return arr;
}
private void pArray(int[] arr) {
for (int i = 0; i < arr.length; i++) {
System.out.print(arr[i] + " ");
}
System.out.println();
return;
}
private void pArray(long[] arr) {
for (int i = 0; i < arr.length; i++) {
System.out.print(arr[i] + " ");
}
System.out.println();
return;
}
private boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return isWhitespace(c);
}
private char nextChar() {
int c = read();
while (isSpaceChar(c))
c = read();
char c1 = (char) c;
while (!isSpaceChar(c))
c = read();
return c1;
}
private interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.math.BigDecimal;
import java.math.BigInteger;
import java.math.RoundingMode;
import java.util.*;
import java.util.Map.Entry;
public class Main {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
private PrintWriter pw;
private long mod = 998244353;
private StringBuilder ans_sb;
private int sqrt;
private void soln() {
int n = nextInt();
int d = nextInt();
int[] arr = nextIntArray(n);
int cnt = 2;
for(int i=0;i<n-1;i++) {
int a1 = arr[i];
int a2 = arr[i+1];
a1 += d;
a2 -= d;
if(a1 < a2) {
cnt+=2;
}else if(a1==a2)
cnt++;
}
pw.println(cnt);
}
private class Pair implements Comparable<Pair>{
int x,i;
public Pair(int a, int b) {
x = a;
i = b;
}
@Override
public int compareTo(
Pair o)
{
return this.x - o.x;
}
}
private int cc = 0;
private void dfs(int c, int p, LinkedList<Integer>[] tree, int[] t, int[] tin, int[] tout, int[] arr) {
//debug(c);
t[cc] = arr[c];
tin[c] = cc++;
Iterator<Integer> it = tree[c].listIterator();
while(it.hasNext()) {
int x = it.next();
if(x != p) {
dfs(x, c, tree,t,tin,tout,arr);
}
}
tout[c] = cc;
}
public class Segment
{
private Node[] tree;
private int[] lazy;
private int size;
private int n;
private int[] base;
private class Node
{
private int on;
private int off;
}
public Segment(int n, int[] arr)
{
this.base=arr;
int x = (int) (Math.ceil(Math.log(n) / Math.log(2)));
size = 2 * (int) Math.pow(2, x) - 1;
tree = new Node[size];
lazy = new int[size];
this.n = n;
//this.set = set1;
build(0, 0, n - 1);
}
public void build(int id, int l, int r)
{
if (l == r)
{
tree[id] = new Node();
if(base[l] == 1)
tree[id].on++;
else
tree[id].off++;
return;
}
int mid = ((l + r)>>1);
build((id<<1)|1, l, mid);
build((id<<1)+2, mid + 1, r);
tree[id] = merge(tree[(id<<1)|1], tree[(id<<1)+2]);
//System.out.println(l+" "+r+" "+tree[id].l+" "+tree[id].r+" "+tree[id].ans);
}
public Node merge(Node n1, Node n2) {
Node ret = new Node();
if(n1 == null && n2 == null)
return null;
else if(n1 == null) {
ret.on = n2.on;
ret.off = n2.off;
}
else if(n2 == null) {
ret.on = n1.on;
ret.off = n1.off;
}
else {
ret.on = n1.on+n2.on;
ret.off = n2.off + n1.off;
}
return ret;
}
public int query(int l, int r)
{
Node ret = queryUtil(l, r, 0, 0, n - 1);
if(ret == null) {
return 0;
}
else
return ret.on;
}
private Node queryUtil(int x, int y, int id, int l, int r)
{
if (l > y || x > r)
return null;
if (x <= l && r <= y)
{
//shift(id,l,r);
return tree[id];
}
int mid = ((l + r)>>1);
shift(id,l,r);
Node q1 = queryUtil(x, y, (id<<1)|1, l, mid);
Node q2 = queryUtil(x, y, (id<<1)+2, mid + 1, r);
return merge(q1, q2);
}
public void update(int x, int y, int c) {
update1(x, y, c, 0, 0, n-1);
}
private void update1(int x, int y, int colour, int id, int l, int r)
{
//System.out.println(l+" "+r+" "+x);
if (x > r || y < l)
return;
if (x <= l && r <= y)
{
lazy[id]++;
// lazy[id] %= 2;
switchNode(tree[id]);
return;
}
int mid = ((l + r)>>1);
//shift(id);
if(y<=mid)
update1(x, y, colour, (id<<1)|1, l, mid);
else if(x>mid)
update1(x, y, colour, (id<<1)+2, mid + 1, r);
else {
update1(x, y, colour, (id<<1)|1, l, mid);
update1(x, y, colour, (id<<1)+2, mid + 1, r);
}
tree[id] = merge(tree[(id<<1)|1], tree[(id<<1)+2]);
}
private void shift(int id,int l, int r)
{
lazy[id] %= 2;
if(lazy[id] != 0) {
if(l != r) {
lazy[(id<<1)|1] += lazy[id];
lazy[(id<<1)+2] += lazy[id];
switchNode(tree[(id<<1)+2]);
switchNode(tree[(id<<1)|1]);
}
//switchNode(tree[(id<<1)+2]);
lazy[id] = 0;
}
}
private void switchNode(Node d) {
d.on ^= d.off;
d.off ^= d.on;
d.on ^= d.off;
}
}
private void debug(Object... o) {
System.out.println(Arrays.deepToString(o));
}
private long pow(long a, long b, long c) {
if (b == 0)
return 1;
long p = pow(a, b / 2, c);
p = (p * p) % c;
return (b % 2 == 0) ? p : (a * p) % c;
}
private long gcd(long n, long l) {
if (l == 0)
return n;
return gcd(l, n % l);
}
public static void main(String[] args) throws Exception {
new Thread(null, new Runnable() {
@Override
public void run() {
new Main().solve();
}
}, "1", 1 << 26).start();
//new Main().solve();
}
public StringBuilder solve() {
InputReader(System.in);
/*
* try { InputReader(new FileInputStream("C:\\Users\\hardik\\Desktop\\in.txt"));
* } catch(FileNotFoundException e) {}
*/
pw = new PrintWriter(System.out);
// ans_sb = new StringBuilder();
soln();
pw.close();
// System.out.println(ans_sb);
return ans_sb;
}
public void InputReader(InputStream stream1) {
stream = stream1;
}
private boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
private boolean isEndOfLine(int c) {
return c == '\n' || c == '\r' || c == -1;
}
private int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
private int nextInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
private long nextLong() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
private String nextToken() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
private String nextLine() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isEndOfLine(c));
return res.toString();
}
private int[] nextIntArray(int n) {
int[] arr = new int[n];
for (int i = 0; i < n; i++) {
arr[i] = nextInt();
}
return arr;
}
private long[] nextLongArray(int n) {
long[] arr = new long[n];
for (int i = 0; i < n; i++) {
arr[i] = nextLong();
}
return arr;
}
private void pArray(int[] arr) {
for (int i = 0; i < arr.length; i++) {
System.out.print(arr[i] + " ");
}
System.out.println();
return;
}
private void pArray(long[] arr) {
for (int i = 0; i < arr.length; i++) {
System.out.print(arr[i] + " ");
}
System.out.println();
return;
}
private boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return isWhitespace(c);
}
private char nextChar() {
int c = read();
while (isSpaceChar(c))
c = read();
char c1 = (char) c;
while (!isSpaceChar(c))
c = read();
return c1;
}
private interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 2,978 | 606 |
18 |
import java.util.Arrays;
import java.util.Scanner;
public class Solution {
private static int[] a;
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt(), m = sc.nextInt();
a = new int[101];
for (int i = 0; i < m; i++) {
int type = sc.nextInt();
a[type] = a[type] + 1;
}
int lo=1, hi=100, max=0;
while (lo <= hi) {
int mid = lo + (hi - lo)/2;
if (check(n, mid)) {
max = mid;
lo = mid+1;
} else {
hi = mid -1;
}
}
System.out.println(max);
}
public static boolean check(int n, int target) {
int result = 0;
for (int i=0; i <a.length; i++) {
result = result + (a[i] / target);
}
if (result >= n) {return true;}
return false;
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.Arrays;
import java.util.Scanner;
public class Solution {
private static int[] a;
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt(), m = sc.nextInt();
a = new int[101];
for (int i = 0; i < m; i++) {
int type = sc.nextInt();
a[type] = a[type] + 1;
}
int lo=1, hi=100, max=0;
while (lo <= hi) {
int mid = lo + (hi - lo)/2;
if (check(n, mid)) {
max = mid;
lo = mid+1;
} else {
hi = mid -1;
}
}
System.out.println(max);
}
public static boolean check(int n, int target) {
int result = 0;
for (int i=0; i <a.length; i++) {
result = result + (a[i] / target);
}
if (result >= n) {return true;}
return false;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(1): The time complexity is constant to the input size n.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.Arrays;
import java.util.Scanner;
public class Solution {
private static int[] a;
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt(), m = sc.nextInt();
a = new int[101];
for (int i = 0; i < m; i++) {
int type = sc.nextInt();
a[type] = a[type] + 1;
}
int lo=1, hi=100, max=0;
while (lo <= hi) {
int mid = lo + (hi - lo)/2;
if (check(n, mid)) {
max = mid;
lo = mid+1;
} else {
hi = mid -1;
}
}
System.out.println(max);
}
public static boolean check(int n, int target) {
int result = 0;
for (int i=0; i <a.length; i++) {
result = result + (a[i] / target);
}
if (result >= n) {return true;}
return false;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 576 | 18 |
3,118 |
import java.io.*;
import java.util.*;
import java.math.*;
public class D5 {
static int a, v, l, d;
static double w;
static double afterMark( int s, double w) {
if (2 * s * a > v * v - w * w) { // ���� ��������� v. ����� ��
return (v - w) * 1.0 / a + (s - (v * v - w * w) * 1.0 / (2 * a)) / v;
} else { // ���������
double megav = Math.sqrt((2 * a * s + w * w) * 1.0);
return (megav - w) / a;
}
}
public static void main(String args[]) throws IOException {
boolean online = System.getProperty("ONLINE_JUDGE") != null;
Scanner in = online ? new Scanner(System.in) : new Scanner(new FileReader("input.txt"));
PrintWriter out = online ? new PrintWriter(System.out) : new PrintWriter(new FileWriter("output.txt"));
a = in.nextInt();
v = in.nextInt();
l = in.nextInt();
d = in.nextInt();
w = (double) in.nextInt();
double t,t1,t2;
if (v > w) { // ����� ��������� ������, ����� ����� ���
// ������� ������ �� �����
if (2 * d * a > 2 * v * v - w * w) { // ���� ��������� v. ����� ��
t1 = (2 * v - w) * 1.0 / a + (d - (2 * v * v - w * w) * 1.0 / (2 * a)) / v;
} else if (2 * d * a > w * w) { // ���� �� ���������, �� ���� � ���� - ���������
double topv = Math.sqrt(d * a + w * w * 1.0 / 2);
t1 = (2 * topv - w) * 1.0 / a;
} else { // ���� ����������� �� ������ ����� - �����, ���������
t1 = Math.sqrt(2 * d * 1.0 / a);
w = Math.sqrt(2 * a * d * 1.0);
}
// ������� ������ ����� �����
t2 = afterMark(l - d, w);
t = t1 + t2;
} else {
t = afterMark(l, 0.0);
}
out.println(t);
out.flush();
return;
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
import java.math.*;
public class D5 {
static int a, v, l, d;
static double w;
static double afterMark( int s, double w) {
if (2 * s * a > v * v - w * w) { // ���� ��������� v. ����� ��
return (v - w) * 1.0 / a + (s - (v * v - w * w) * 1.0 / (2 * a)) / v;
} else { // ���������
double megav = Math.sqrt((2 * a * s + w * w) * 1.0);
return (megav - w) / a;
}
}
public static void main(String args[]) throws IOException {
boolean online = System.getProperty("ONLINE_JUDGE") != null;
Scanner in = online ? new Scanner(System.in) : new Scanner(new FileReader("input.txt"));
PrintWriter out = online ? new PrintWriter(System.out) : new PrintWriter(new FileWriter("output.txt"));
a = in.nextInt();
v = in.nextInt();
l = in.nextInt();
d = in.nextInt();
w = (double) in.nextInt();
double t,t1,t2;
if (v > w) { // ����� ��������� ������, ����� ����� ���
// ������� ������ �� �����
if (2 * d * a > 2 * v * v - w * w) { // ���� ��������� v. ����� ��
t1 = (2 * v - w) * 1.0 / a + (d - (2 * v * v - w * w) * 1.0 / (2 * a)) / v;
} else if (2 * d * a > w * w) { // ���� �� ���������, �� ���� � ���� - ���������
double topv = Math.sqrt(d * a + w * w * 1.0 / 2);
t1 = (2 * topv - w) * 1.0 / a;
} else { // ���� ����������� �� ������ ����� - �����, ���������
t1 = Math.sqrt(2 * d * 1.0 / a);
w = Math.sqrt(2 * a * d * 1.0);
}
// ������� ������ ����� �����
t2 = afterMark(l - d, w);
t = t1 + t2;
} else {
t = afterMark(l, 0.0);
}
out.println(t);
out.flush();
return;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
import java.math.*;
public class D5 {
static int a, v, l, d;
static double w;
static double afterMark( int s, double w) {
if (2 * s * a > v * v - w * w) { // ���� ��������� v. ����� ��
return (v - w) * 1.0 / a + (s - (v * v - w * w) * 1.0 / (2 * a)) / v;
} else { // ���������
double megav = Math.sqrt((2 * a * s + w * w) * 1.0);
return (megav - w) / a;
}
}
public static void main(String args[]) throws IOException {
boolean online = System.getProperty("ONLINE_JUDGE") != null;
Scanner in = online ? new Scanner(System.in) : new Scanner(new FileReader("input.txt"));
PrintWriter out = online ? new PrintWriter(System.out) : new PrintWriter(new FileWriter("output.txt"));
a = in.nextInt();
v = in.nextInt();
l = in.nextInt();
d = in.nextInt();
w = (double) in.nextInt();
double t,t1,t2;
if (v > w) { // ����� ��������� ������, ����� ����� ���
// ������� ������ �� �����
if (2 * d * a > 2 * v * v - w * w) { // ���� ��������� v. ����� ��
t1 = (2 * v - w) * 1.0 / a + (d - (2 * v * v - w * w) * 1.0 / (2 * a)) / v;
} else if (2 * d * a > w * w) { // ���� �� ���������, �� ���� � ���� - ���������
double topv = Math.sqrt(d * a + w * w * 1.0 / 2);
t1 = (2 * topv - w) * 1.0 / a;
} else { // ���� ����������� �� ������ ����� - �����, ���������
t1 = Math.sqrt(2 * d * 1.0 / a);
w = Math.sqrt(2 * a * d * 1.0);
}
// ������� ������ ����� �����
t2 = afterMark(l - d, w);
t = t1 + t2;
} else {
t = afterMark(l, 0.0);
}
out.println(t);
out.flush();
return;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 938 | 3,112 |
4,048 |
import java.io.*;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import java.util.StringTokenizer;
public class realfast implements Runnable {
private static final int INF = (int) 1e9;
int time[]= new int[15];
int g[]= new int [15];
public void solve() throws IOException
{
int n = readInt();
int t = readInt();
for(int i=0;i<n;i++)
{
time[i]=readInt();
g[i]=readInt();
}
long dp[][]= new long [(int)Math.pow(2,n)][4];
for(int i =0;i<(int)Math.pow(2,n);i++)
{
for(int j=0;j<=3;j++)
dp[i][j]=-1;
}
long val = cal(dp,0,0,0,t);
out.println(val);
}
public long cal(long dp[][], int mask , int genre , int t ,int T )
{
int val = dp.length;
if(t>T)
{
return 0;
}
if(t==T)
{
return 1;
}
if(dp[mask][genre]!=-1)
return dp[mask][genre];
dp[mask][genre]=0;
int i=1;
int count=0;
while(i<val)
{
if((i&mask)==0&&g[count]!=genre)
{
dp[mask][genre] = ((dp[mask][genre]%1000000007)+ cal(dp,mask|i,g[count],t+time[count],T)%1000000007)%1000000007;
}
i=2*i;
count++;
}
return dp[mask][genre];
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////
public static void main(String[] args) {
new Thread(null, new realfast(), "", 128 * (1L << 20)).start();
}
private static final boolean ONLINE_JUDGE = System.getProperty("ONLINE_JUDGE") != null;
private BufferedReader reader;
private StringTokenizer tokenizer;
private PrintWriter out;
@Override
public void run() {
try {
if (ONLINE_JUDGE || !new File("input.txt").exists()) {
reader = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
} else {
reader = new BufferedReader(new FileReader("input.txt"));
out = new PrintWriter("output.txt");
}
solve();
} catch (IOException e) {
throw new RuntimeException(e);
} finally {
try {
reader.close();
} catch (IOException e) {
// nothing
}
out.close();
}
}
private String readString() throws IOException {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
tokenizer = new StringTokenizer(reader.readLine());
}
return tokenizer.nextToken();
}
@SuppressWarnings("unused")
private int readInt() throws IOException {
return Integer.parseInt(readString());
}
@SuppressWarnings("unused")
private long readLong() throws IOException {
return Long.parseLong(readString());
}
@SuppressWarnings("unused")
private double readDouble() throws IOException {
return Double.parseDouble(readString());
}
}
class edge implements Comparable<edge>{
int u ;
int v ;
int val;
edge(int u1, int v1 , int val1)
{
this.u=u1;
this.v=v1;
this.val=val1;
}
public int compareTo(edge e)
{
return this.val-e.val;
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import java.util.StringTokenizer;
public class realfast implements Runnable {
private static final int INF = (int) 1e9;
int time[]= new int[15];
int g[]= new int [15];
public void solve() throws IOException
{
int n = readInt();
int t = readInt();
for(int i=0;i<n;i++)
{
time[i]=readInt();
g[i]=readInt();
}
long dp[][]= new long [(int)Math.pow(2,n)][4];
for(int i =0;i<(int)Math.pow(2,n);i++)
{
for(int j=0;j<=3;j++)
dp[i][j]=-1;
}
long val = cal(dp,0,0,0,t);
out.println(val);
}
public long cal(long dp[][], int mask , int genre , int t ,int T )
{
int val = dp.length;
if(t>T)
{
return 0;
}
if(t==T)
{
return 1;
}
if(dp[mask][genre]!=-1)
return dp[mask][genre];
dp[mask][genre]=0;
int i=1;
int count=0;
while(i<val)
{
if((i&mask)==0&&g[count]!=genre)
{
dp[mask][genre] = ((dp[mask][genre]%1000000007)+ cal(dp,mask|i,g[count],t+time[count],T)%1000000007)%1000000007;
}
i=2*i;
count++;
}
return dp[mask][genre];
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////
public static void main(String[] args) {
new Thread(null, new realfast(), "", 128 * (1L << 20)).start();
}
private static final boolean ONLINE_JUDGE = System.getProperty("ONLINE_JUDGE") != null;
private BufferedReader reader;
private StringTokenizer tokenizer;
private PrintWriter out;
@Override
public void run() {
try {
if (ONLINE_JUDGE || !new File("input.txt").exists()) {
reader = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
} else {
reader = new BufferedReader(new FileReader("input.txt"));
out = new PrintWriter("output.txt");
}
solve();
} catch (IOException e) {
throw new RuntimeException(e);
} finally {
try {
reader.close();
} catch (IOException e) {
// nothing
}
out.close();
}
}
private String readString() throws IOException {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
tokenizer = new StringTokenizer(reader.readLine());
}
return tokenizer.nextToken();
}
@SuppressWarnings("unused")
private int readInt() throws IOException {
return Integer.parseInt(readString());
}
@SuppressWarnings("unused")
private long readLong() throws IOException {
return Long.parseLong(readString());
}
@SuppressWarnings("unused")
private double readDouble() throws IOException {
return Double.parseDouble(readString());
}
}
class edge implements Comparable<edge>{
int u ;
int v ;
int val;
edge(int u1, int v1 , int val1)
{
this.u=u1;
this.v=v1;
this.val=val1;
}
public int compareTo(edge e)
{
return this.val-e.val;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import java.util.StringTokenizer;
public class realfast implements Runnable {
private static final int INF = (int) 1e9;
int time[]= new int[15];
int g[]= new int [15];
public void solve() throws IOException
{
int n = readInt();
int t = readInt();
for(int i=0;i<n;i++)
{
time[i]=readInt();
g[i]=readInt();
}
long dp[][]= new long [(int)Math.pow(2,n)][4];
for(int i =0;i<(int)Math.pow(2,n);i++)
{
for(int j=0;j<=3;j++)
dp[i][j]=-1;
}
long val = cal(dp,0,0,0,t);
out.println(val);
}
public long cal(long dp[][], int mask , int genre , int t ,int T )
{
int val = dp.length;
if(t>T)
{
return 0;
}
if(t==T)
{
return 1;
}
if(dp[mask][genre]!=-1)
return dp[mask][genre];
dp[mask][genre]=0;
int i=1;
int count=0;
while(i<val)
{
if((i&mask)==0&&g[count]!=genre)
{
dp[mask][genre] = ((dp[mask][genre]%1000000007)+ cal(dp,mask|i,g[count],t+time[count],T)%1000000007)%1000000007;
}
i=2*i;
count++;
}
return dp[mask][genre];
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////
public static void main(String[] args) {
new Thread(null, new realfast(), "", 128 * (1L << 20)).start();
}
private static final boolean ONLINE_JUDGE = System.getProperty("ONLINE_JUDGE") != null;
private BufferedReader reader;
private StringTokenizer tokenizer;
private PrintWriter out;
@Override
public void run() {
try {
if (ONLINE_JUDGE || !new File("input.txt").exists()) {
reader = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
} else {
reader = new BufferedReader(new FileReader("input.txt"));
out = new PrintWriter("output.txt");
}
solve();
} catch (IOException e) {
throw new RuntimeException(e);
} finally {
try {
reader.close();
} catch (IOException e) {
// nothing
}
out.close();
}
}
private String readString() throws IOException {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
tokenizer = new StringTokenizer(reader.readLine());
}
return tokenizer.nextToken();
}
@SuppressWarnings("unused")
private int readInt() throws IOException {
return Integer.parseInt(readString());
}
@SuppressWarnings("unused")
private long readLong() throws IOException {
return Long.parseLong(readString());
}
@SuppressWarnings("unused")
private double readDouble() throws IOException {
return Double.parseDouble(readString());
}
}
class edge implements Comparable<edge>{
int u ;
int v ;
int val;
edge(int u1, int v1 , int val1)
{
this.u=u1;
this.v=v1;
this.val=val1;
}
public int compareTo(edge e)
{
return this.val-e.val;
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,160 | 4,037 |
2,159 |
/*
ID: andrew42
LANG: JAVA
TASK:
PROG:
*/
import java.io.*;
import java.util.*;
import java.lang.*;
public class curling {
public static void main(String[] args) throws IOException {
Scanner input = new Scanner(System.in);
int numD = input.nextInt();
double rad = input.nextInt();
int[] xC = new int[numD];
for (int i = 0; i < numD; i++){
xC[i] = input.nextInt();
}
double[] maxY = new double[1001];
for (int i = 0; i < numD; i++){
double h = rad;
for (int j = Math.max(1, xC[i]-(int)(2*rad)); j <= Math.min(1000, xC[i]+2*rad); j++){
if (maxY[j] > 0){
h = Math.max(h, Math.sqrt(4*rad*rad-(j-xC[i])*(j-xC[i]))+maxY[j]);
}
}
System.out.print(h + " ");
maxY[xC[i]] = h;
}
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
/*
ID: andrew42
LANG: JAVA
TASK:
PROG:
*/
import java.io.*;
import java.util.*;
import java.lang.*;
public class curling {
public static void main(String[] args) throws IOException {
Scanner input = new Scanner(System.in);
int numD = input.nextInt();
double rad = input.nextInt();
int[] xC = new int[numD];
for (int i = 0; i < numD; i++){
xC[i] = input.nextInt();
}
double[] maxY = new double[1001];
for (int i = 0; i < numD; i++){
double h = rad;
for (int j = Math.max(1, xC[i]-(int)(2*rad)); j <= Math.min(1000, xC[i]+2*rad); j++){
if (maxY[j] > 0){
h = Math.max(h, Math.sqrt(4*rad*rad-(j-xC[i])*(j-xC[i]))+maxY[j]);
}
}
System.out.print(h + " ");
maxY[xC[i]] = h;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
/*
ID: andrew42
LANG: JAVA
TASK:
PROG:
*/
import java.io.*;
import java.util.*;
import java.lang.*;
public class curling {
public static void main(String[] args) throws IOException {
Scanner input = new Scanner(System.in);
int numD = input.nextInt();
double rad = input.nextInt();
int[] xC = new int[numD];
for (int i = 0; i < numD; i++){
xC[i] = input.nextInt();
}
double[] maxY = new double[1001];
for (int i = 0; i < numD; i++){
double h = rad;
for (int j = Math.max(1, xC[i]-(int)(2*rad)); j <= Math.min(1000, xC[i]+2*rad); j++){
if (maxY[j] > 0){
h = Math.max(h, Math.sqrt(4*rad*rad-(j-xC[i])*(j-xC[i]))+maxY[j]);
}
}
System.out.print(h + " ");
maxY[xC[i]] = h;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 612 | 2,155 |
664 |
import java.util.*;
public class Main {
public static void main(String[] args) {
Main iq = new Main();
Scanner sc = new Scanner(System.in);
int n;
n = sc.nextInt();
int[] naturalNumbers = new int[n];
for (int i = 0; i < naturalNumbers.length; i++) {
naturalNumbers[i] = sc.nextInt();
}
System.out.println(iq.diffInEvenness(n, naturalNumbers));
}
public int diffInEvenness(int n, int[] naturalNumbers) {
int even, odd, lastEvenIndex, lastOddIndex;
even = odd = lastEvenIndex = lastOddIndex = 0;
for (int i = 0; i < naturalNumbers.length; i++) {
if((naturalNumbers[i] % 2) == 0) {
even++;
lastEvenIndex = i + 1;
}
else {
odd++;
lastOddIndex = i + 1;
}
}
return (even > odd ? lastOddIndex : lastEvenIndex);
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
public class Main {
public static void main(String[] args) {
Main iq = new Main();
Scanner sc = new Scanner(System.in);
int n;
n = sc.nextInt();
int[] naturalNumbers = new int[n];
for (int i = 0; i < naturalNumbers.length; i++) {
naturalNumbers[i] = sc.nextInt();
}
System.out.println(iq.diffInEvenness(n, naturalNumbers));
}
public int diffInEvenness(int n, int[] naturalNumbers) {
int even, odd, lastEvenIndex, lastOddIndex;
even = odd = lastEvenIndex = lastOddIndex = 0;
for (int i = 0; i < naturalNumbers.length; i++) {
if((naturalNumbers[i] % 2) == 0) {
even++;
lastEvenIndex = i + 1;
}
else {
odd++;
lastOddIndex = i + 1;
}
}
return (even > odd ? lastOddIndex : lastEvenIndex);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The running time increases with the cube of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(1): The running time does not change regardless of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
public class Main {
public static void main(String[] args) {
Main iq = new Main();
Scanner sc = new Scanner(System.in);
int n;
n = sc.nextInt();
int[] naturalNumbers = new int[n];
for (int i = 0; i < naturalNumbers.length; i++) {
naturalNumbers[i] = sc.nextInt();
}
System.out.println(iq.diffInEvenness(n, naturalNumbers));
}
public int diffInEvenness(int n, int[] naturalNumbers) {
int even, odd, lastEvenIndex, lastOddIndex;
even = odd = lastEvenIndex = lastOddIndex = 0;
for (int i = 0; i < naturalNumbers.length; i++) {
if((naturalNumbers[i] % 2) == 0) {
even++;
lastEvenIndex = i + 1;
}
else {
odd++;
lastOddIndex = i + 1;
}
}
return (even > odd ? lastOddIndex : lastEvenIndex);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 570 | 663 |
3,547 |
// upsolve with rainboy
import java.io.*;
import java.util.*;
public class CF1187G extends PrintWriter {
CF1187G() { super(System.out); }
static class Scanner {
Scanner(InputStream in) { this.in = in; } InputStream in;
int k, l; byte[] bb = new byte[1 << 15];
byte getc() {
if (k >= l) {
k = 0;
try { l = in.read(bb); } catch (IOException e) { l = 0; }
if (l <= 0) return -1;
}
return bb[k++];
}
int nextInt() {
byte c = 0; while (c <= 32) c = getc();
int a = 0;
while (c > 32) { a = a * 10 + c - '0'; c = getc(); }
return a;
}
}
Scanner sc = new Scanner(System.in);
public static void main(String[] $) {
CF1187G o = new CF1187G(); o.main(); o.flush();
}
static final int INF = 0x3f3f3f3f;
ArrayList[] aa_;
int n_, m_;
int[] pi, dd, bb;
int[] uu, vv, uv, cost;
boolean[] iq;
int[] cc;
void init() {
aa_ = new ArrayList[n_];
for (int u = 0; u < n_; u++)
aa_[u] = new ArrayList<Integer>();
pi = new int[n_];
dd = new int[n_];
bb = new int[n_];
iq = new boolean[n_];
uu = new int[m_];
vv = new int[m_];
uv = new int[m_];
cost = new int[m_];
cc = new int[m_ * 2];
m_ = 0;
}
void link(int u, int v, int cap, int cos) {
int h = m_++;
uu[h] = u;
vv[h] = v;
uv[h] = u ^ v;
cost[h] = cos;
cc[h << 1 ^ 0] = cap;
aa_[u].add(h << 1 ^ 0);
aa_[v].add(h << 1 ^ 1);
}
boolean dijkstra(int s, int t) {
Arrays.fill(pi, INF);
pi[s] = 0;
TreeSet<Integer> pq = new TreeSet<>((u, v) -> pi[u] != pi[v] ? pi[u] - pi[v] : dd[u] != dd[v] ? dd[u] - dd[v] : u - v);
pq.add(s); iq[s] = true;
Integer first;
while ((first = pq.pollFirst()) != null) {
int u = first;
iq[u] = false;
int d = dd[u] + 1;
ArrayList<Integer> adj = aa_[u];
for (int h_ : adj)
if (cc[h_] > 0) {
int h = h_ >> 1;
int p = pi[u] + ((h_ & 1) == 0 ? cost[h] : -cost[h]);
int v = u ^ uv[h];
if (pi[v] > p || pi[v] == p && dd[v] > d) {
if (iq[v]) {
pq.remove(v); iq[v] = false;
}
pi[v] = p;
dd[v] = d;
bb[v] = h_;
pq.add(v); iq[v] = true;
}
}
}
return pi[t] != INF;
}
void push(int s, int t) {
int c = INF;
for (int u = t, h_, h; u != s; u ^= uv[h]) {
h = (h_ = bb[u]) >> 1;
c = Math.min(c, cc[h_]);
}
for (int u = t, h_, h; u != s; u ^= uv[h]) {
h = (h_ = bb[u]) >> 1;
cc[h_] -= c; cc[h_ ^ 1] += c;
}
}
void push1(int s, int t) {
for (int u = t, h_, h; u != s; u ^= uv[h]) {
h = (h_ = bb[u]) >> 1;
cc[h_]--; cc[h_ ^ 1]++;
}
}
int edmonds_karp(int s, int t) {
while (dijkstra(s, t))
push1(s, t);
int c = 0;
for (int h = 0; h < m_; h++)
c += cost[h] * cc[h << 1 ^ 1];
return c;
}
void main() {
int n = sc.nextInt();
int m = sc.nextInt();
int k = sc.nextInt();
int c = sc.nextInt();
int d = sc.nextInt();
int[] ii = new int[k];
for (int h = 0; h < k; h++)
ii[h] = sc.nextInt() - 1;
ArrayList[] aa = new ArrayList[n];
for (int i = 0; i < n; i++)
aa[i] = new ArrayList<Integer>();
for (int h = 0; h < m; h++) {
int i = sc.nextInt() - 1;
int j = sc.nextInt() - 1;
aa[i].add(j);
aa[j].add(i);
}
int t = n + k + 1;
n_ = n * t + 1;
m_ = k + (m * 2 * k + n) * (t - 1);
init();
for (int i = 0; i < n; i++) {
ArrayList<Integer> adj = aa[i];
for (int s = 0; s < t - 1; s++) {
int u = i * t + s;
for (int j : adj) {
int v = j * t + s + 1;
for (int x = 1; x <= k; x++)
link(u, v, 1, c + (x * 2 - 1) * d);
}
}
}
for (int i = 0; i < n; i++)
for (int s = 0; s < t - 1; s++) {
int u = i * t + s, v = u + 1;
link(u, v, k, i == 0 ? 0 : c);
}
for (int h = 0; h < k; h++)
link(n_ - 1, ii[h] * t + 0, 1, 0);
println(edmonds_karp(n_ - 1, 0 * t + t - 1));
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
// upsolve with rainboy
import java.io.*;
import java.util.*;
public class CF1187G extends PrintWriter {
CF1187G() { super(System.out); }
static class Scanner {
Scanner(InputStream in) { this.in = in; } InputStream in;
int k, l; byte[] bb = new byte[1 << 15];
byte getc() {
if (k >= l) {
k = 0;
try { l = in.read(bb); } catch (IOException e) { l = 0; }
if (l <= 0) return -1;
}
return bb[k++];
}
int nextInt() {
byte c = 0; while (c <= 32) c = getc();
int a = 0;
while (c > 32) { a = a * 10 + c - '0'; c = getc(); }
return a;
}
}
Scanner sc = new Scanner(System.in);
public static void main(String[] $) {
CF1187G o = new CF1187G(); o.main(); o.flush();
}
static final int INF = 0x3f3f3f3f;
ArrayList[] aa_;
int n_, m_;
int[] pi, dd, bb;
int[] uu, vv, uv, cost;
boolean[] iq;
int[] cc;
void init() {
aa_ = new ArrayList[n_];
for (int u = 0; u < n_; u++)
aa_[u] = new ArrayList<Integer>();
pi = new int[n_];
dd = new int[n_];
bb = new int[n_];
iq = new boolean[n_];
uu = new int[m_];
vv = new int[m_];
uv = new int[m_];
cost = new int[m_];
cc = new int[m_ * 2];
m_ = 0;
}
void link(int u, int v, int cap, int cos) {
int h = m_++;
uu[h] = u;
vv[h] = v;
uv[h] = u ^ v;
cost[h] = cos;
cc[h << 1 ^ 0] = cap;
aa_[u].add(h << 1 ^ 0);
aa_[v].add(h << 1 ^ 1);
}
boolean dijkstra(int s, int t) {
Arrays.fill(pi, INF);
pi[s] = 0;
TreeSet<Integer> pq = new TreeSet<>((u, v) -> pi[u] != pi[v] ? pi[u] - pi[v] : dd[u] != dd[v] ? dd[u] - dd[v] : u - v);
pq.add(s); iq[s] = true;
Integer first;
while ((first = pq.pollFirst()) != null) {
int u = first;
iq[u] = false;
int d = dd[u] + 1;
ArrayList<Integer> adj = aa_[u];
for (int h_ : adj)
if (cc[h_] > 0) {
int h = h_ >> 1;
int p = pi[u] + ((h_ & 1) == 0 ? cost[h] : -cost[h]);
int v = u ^ uv[h];
if (pi[v] > p || pi[v] == p && dd[v] > d) {
if (iq[v]) {
pq.remove(v); iq[v] = false;
}
pi[v] = p;
dd[v] = d;
bb[v] = h_;
pq.add(v); iq[v] = true;
}
}
}
return pi[t] != INF;
}
void push(int s, int t) {
int c = INF;
for (int u = t, h_, h; u != s; u ^= uv[h]) {
h = (h_ = bb[u]) >> 1;
c = Math.min(c, cc[h_]);
}
for (int u = t, h_, h; u != s; u ^= uv[h]) {
h = (h_ = bb[u]) >> 1;
cc[h_] -= c; cc[h_ ^ 1] += c;
}
}
void push1(int s, int t) {
for (int u = t, h_, h; u != s; u ^= uv[h]) {
h = (h_ = bb[u]) >> 1;
cc[h_]--; cc[h_ ^ 1]++;
}
}
int edmonds_karp(int s, int t) {
while (dijkstra(s, t))
push1(s, t);
int c = 0;
for (int h = 0; h < m_; h++)
c += cost[h] * cc[h << 1 ^ 1];
return c;
}
void main() {
int n = sc.nextInt();
int m = sc.nextInt();
int k = sc.nextInt();
int c = sc.nextInt();
int d = sc.nextInt();
int[] ii = new int[k];
for (int h = 0; h < k; h++)
ii[h] = sc.nextInt() - 1;
ArrayList[] aa = new ArrayList[n];
for (int i = 0; i < n; i++)
aa[i] = new ArrayList<Integer>();
for (int h = 0; h < m; h++) {
int i = sc.nextInt() - 1;
int j = sc.nextInt() - 1;
aa[i].add(j);
aa[j].add(i);
}
int t = n + k + 1;
n_ = n * t + 1;
m_ = k + (m * 2 * k + n) * (t - 1);
init();
for (int i = 0; i < n; i++) {
ArrayList<Integer> adj = aa[i];
for (int s = 0; s < t - 1; s++) {
int u = i * t + s;
for (int j : adj) {
int v = j * t + s + 1;
for (int x = 1; x <= k; x++)
link(u, v, 1, c + (x * 2 - 1) * d);
}
}
}
for (int i = 0; i < n; i++)
for (int s = 0; s < t - 1; s++) {
int u = i * t + s, v = u + 1;
link(u, v, k, i == 0 ? 0 : c);
}
for (int h = 0; h < k; h++)
link(n_ - 1, ii[h] * t + 0, 1, 0);
println(edmonds_karp(n_ - 1, 0 * t + t - 1));
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The running time increases with the square of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
// upsolve with rainboy
import java.io.*;
import java.util.*;
public class CF1187G extends PrintWriter {
CF1187G() { super(System.out); }
static class Scanner {
Scanner(InputStream in) { this.in = in; } InputStream in;
int k, l; byte[] bb = new byte[1 << 15];
byte getc() {
if (k >= l) {
k = 0;
try { l = in.read(bb); } catch (IOException e) { l = 0; }
if (l <= 0) return -1;
}
return bb[k++];
}
int nextInt() {
byte c = 0; while (c <= 32) c = getc();
int a = 0;
while (c > 32) { a = a * 10 + c - '0'; c = getc(); }
return a;
}
}
Scanner sc = new Scanner(System.in);
public static void main(String[] $) {
CF1187G o = new CF1187G(); o.main(); o.flush();
}
static final int INF = 0x3f3f3f3f;
ArrayList[] aa_;
int n_, m_;
int[] pi, dd, bb;
int[] uu, vv, uv, cost;
boolean[] iq;
int[] cc;
void init() {
aa_ = new ArrayList[n_];
for (int u = 0; u < n_; u++)
aa_[u] = new ArrayList<Integer>();
pi = new int[n_];
dd = new int[n_];
bb = new int[n_];
iq = new boolean[n_];
uu = new int[m_];
vv = new int[m_];
uv = new int[m_];
cost = new int[m_];
cc = new int[m_ * 2];
m_ = 0;
}
void link(int u, int v, int cap, int cos) {
int h = m_++;
uu[h] = u;
vv[h] = v;
uv[h] = u ^ v;
cost[h] = cos;
cc[h << 1 ^ 0] = cap;
aa_[u].add(h << 1 ^ 0);
aa_[v].add(h << 1 ^ 1);
}
boolean dijkstra(int s, int t) {
Arrays.fill(pi, INF);
pi[s] = 0;
TreeSet<Integer> pq = new TreeSet<>((u, v) -> pi[u] != pi[v] ? pi[u] - pi[v] : dd[u] != dd[v] ? dd[u] - dd[v] : u - v);
pq.add(s); iq[s] = true;
Integer first;
while ((first = pq.pollFirst()) != null) {
int u = first;
iq[u] = false;
int d = dd[u] + 1;
ArrayList<Integer> adj = aa_[u];
for (int h_ : adj)
if (cc[h_] > 0) {
int h = h_ >> 1;
int p = pi[u] + ((h_ & 1) == 0 ? cost[h] : -cost[h]);
int v = u ^ uv[h];
if (pi[v] > p || pi[v] == p && dd[v] > d) {
if (iq[v]) {
pq.remove(v); iq[v] = false;
}
pi[v] = p;
dd[v] = d;
bb[v] = h_;
pq.add(v); iq[v] = true;
}
}
}
return pi[t] != INF;
}
void push(int s, int t) {
int c = INF;
for (int u = t, h_, h; u != s; u ^= uv[h]) {
h = (h_ = bb[u]) >> 1;
c = Math.min(c, cc[h_]);
}
for (int u = t, h_, h; u != s; u ^= uv[h]) {
h = (h_ = bb[u]) >> 1;
cc[h_] -= c; cc[h_ ^ 1] += c;
}
}
void push1(int s, int t) {
for (int u = t, h_, h; u != s; u ^= uv[h]) {
h = (h_ = bb[u]) >> 1;
cc[h_]--; cc[h_ ^ 1]++;
}
}
int edmonds_karp(int s, int t) {
while (dijkstra(s, t))
push1(s, t);
int c = 0;
for (int h = 0; h < m_; h++)
c += cost[h] * cc[h << 1 ^ 1];
return c;
}
void main() {
int n = sc.nextInt();
int m = sc.nextInt();
int k = sc.nextInt();
int c = sc.nextInt();
int d = sc.nextInt();
int[] ii = new int[k];
for (int h = 0; h < k; h++)
ii[h] = sc.nextInt() - 1;
ArrayList[] aa = new ArrayList[n];
for (int i = 0; i < n; i++)
aa[i] = new ArrayList<Integer>();
for (int h = 0; h < m; h++) {
int i = sc.nextInt() - 1;
int j = sc.nextInt() - 1;
aa[i].add(j);
aa[j].add(i);
}
int t = n + k + 1;
n_ = n * t + 1;
m_ = k + (m * 2 * k + n) * (t - 1);
init();
for (int i = 0; i < n; i++) {
ArrayList<Integer> adj = aa[i];
for (int s = 0; s < t - 1; s++) {
int u = i * t + s;
for (int j : adj) {
int v = j * t + s + 1;
for (int x = 1; x <= k; x++)
link(u, v, 1, c + (x * 2 - 1) * d);
}
}
}
for (int i = 0; i < n; i++)
for (int s = 0; s < t - 1; s++) {
int u = i * t + s, v = u + 1;
link(u, v, k, i == 0 ? 0 : c);
}
for (int h = 0; h < k; h++)
link(n_ - 1, ii[h] * t + 0, 1, 0);
println(edmonds_karp(n_ - 1, 0 * t + t - 1));
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The running time increases with the square of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n^3): The running time increases with the cube of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,911 | 3,540 |
4,314 |
//package contest10D;
import java.math.*;
import java.util.*;
import static java.math.BigInteger.*;
import static java.lang.Math.*;
import static java.util.Arrays.*;
import static java.util.Collections.*;
public class Main {
static void debug(Object... os) {
System.err.println(deepToString(os));
}
public static void main(String[] args) {
new Main().run();
}
void run() {
Scanner sc = new Scanner(System.in);
int n=sc.nextInt(),m=sc.nextInt();
boolean[][] bs=new boolean[n][n];
for (int i = 0; i < m; i++) {
int s=sc.nextInt()-1,t=sc.nextInt()-1;
bs[s][t] = bs[t][s] = true;
}
long res = 0;
for(int i=0;i<n;i++){
res += calc(bs,n-1-i);
}
System.out.println(res/2);
}
long calc(boolean[][] bs,int n){//start is n.
long[][] dp=new long[1<<n][n]; // set,last -> number of path n -> last.
for(int i=0;i<n;i++){
if(bs[i][n])
dp[1<<i][i] ++;
}
for(int i=1;i<1<<n;i++){
for(int j=0;j<n;j++)if(((i>>j)&1)==1)
for(int k=0;k<n;k++)if(((i>>k)&1)==0 && bs[j][k]){//add
dp[i|(1<<k)][k] += dp[i][j];
}
}
long res=0;
for(int i=0;i<1<<n;i++)for(int j=0;j<n;j++)if(Integer.bitCount(i)>=2&&bs[j][n])res+=dp[i][j];
return res;
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
//package contest10D;
import java.math.*;
import java.util.*;
import static java.math.BigInteger.*;
import static java.lang.Math.*;
import static java.util.Arrays.*;
import static java.util.Collections.*;
public class Main {
static void debug(Object... os) {
System.err.println(deepToString(os));
}
public static void main(String[] args) {
new Main().run();
}
void run() {
Scanner sc = new Scanner(System.in);
int n=sc.nextInt(),m=sc.nextInt();
boolean[][] bs=new boolean[n][n];
for (int i = 0; i < m; i++) {
int s=sc.nextInt()-1,t=sc.nextInt()-1;
bs[s][t] = bs[t][s] = true;
}
long res = 0;
for(int i=0;i<n;i++){
res += calc(bs,n-1-i);
}
System.out.println(res/2);
}
long calc(boolean[][] bs,int n){//start is n.
long[][] dp=new long[1<<n][n]; // set,last -> number of path n -> last.
for(int i=0;i<n;i++){
if(bs[i][n])
dp[1<<i][i] ++;
}
for(int i=1;i<1<<n;i++){
for(int j=0;j<n;j++)if(((i>>j)&1)==1)
for(int k=0;k<n;k++)if(((i>>k)&1)==0 && bs[j][k]){//add
dp[i|(1<<k)][k] += dp[i][j];
}
}
long res=0;
for(int i=0;i<1<<n;i++)for(int j=0;j<n;j++)if(Integer.bitCount(i)>=2&&bs[j][n])res+=dp[i][j];
return res;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
//package contest10D;
import java.math.*;
import java.util.*;
import static java.math.BigInteger.*;
import static java.lang.Math.*;
import static java.util.Arrays.*;
import static java.util.Collections.*;
public class Main {
static void debug(Object... os) {
System.err.println(deepToString(os));
}
public static void main(String[] args) {
new Main().run();
}
void run() {
Scanner sc = new Scanner(System.in);
int n=sc.nextInt(),m=sc.nextInt();
boolean[][] bs=new boolean[n][n];
for (int i = 0; i < m; i++) {
int s=sc.nextInt()-1,t=sc.nextInt()-1;
bs[s][t] = bs[t][s] = true;
}
long res = 0;
for(int i=0;i<n;i++){
res += calc(bs,n-1-i);
}
System.out.println(res/2);
}
long calc(boolean[][] bs,int n){//start is n.
long[][] dp=new long[1<<n][n]; // set,last -> number of path n -> last.
for(int i=0;i<n;i++){
if(bs[i][n])
dp[1<<i][i] ++;
}
for(int i=1;i<1<<n;i++){
for(int j=0;j<n;j++)if(((i>>j)&1)==1)
for(int k=0;k<n;k++)if(((i>>k)&1)==0 && bs[j][k]){//add
dp[i|(1<<k)][k] += dp[i][j];
}
}
long res=0;
for(int i=0;i<1<<n;i++)for(int j=0;j<n;j++)if(Integer.bitCount(i)>=2&&bs[j][n])res+=dp[i][j];
return res;
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n^3): The running time increases with the cube of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n): The running time grows linearly with the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(1): The running time does not change regardless of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 736 | 4,303 |
2,549 |
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.HashSet;
import java.util.List;
import java.util.StringTokenizer;
public class D {
int[][] fast(int n, int m){
int[][] ans = new int[2][n * m];
int c = 0;
for (int left = 1, right = m; left < right; left++, right--) {
for (int l = 1, r = n; l <= n && r >= 1; l++, r--) {
ans[0][c] = l;
ans[1][c++] = left;
ans[0][c] = r;
ans[1][c++] = right;
}
}
if (m % 2 == 1) {
int x = m/2 + 1;
for(int l = 1, r = n;l < r;l++, r--){
ans[0][c] = l;
ans[1][c++] = x;
ans[0][c] = r;
ans[1][c++] = x;
if(n % 2 == 1 && l + 2 == r){
ans[0][c] = l+1;
ans[1][c++] = x;
}
}
}
if(n == 1 && m % 2 == 1){
ans[0][c] = 1;
ans[1][c] = m/2 + 1;
}
return ans;
}
void stress(){
for(int i = 3;i<=5;i++){
for(int j = 2;j<=5;j++){
int[][] ans = new int[2][];
try{
ans = fast(i, j);
}catch(Exception e){
out.println("ошибка");
out.print(i + " " + j);
return;
}
boolean[][] check = new boolean[i][j];
for(int c = 0;c<ans[0].length;c++){
int x = ans[0][c] - 1;
int y = ans[1][c] - 1;
check[x][y] = true;
}
for(int c = 0;c<i;c++){
for(int q = 0;q<j;q++){
if(!check[c][q]){
out.println(i + " " + j);
out.println("точки");
for(int w = 0;w<ans[0].length;w++){
out.println(ans[0][w] + " " + ans[1][w]);
}
return;
}
}
}
HashSet<String> set = new HashSet<>();
for(int c = 1;c<ans[0].length;c++){
int x = ans[0][c] - ans[0][c- 1];
int y = ans[1][c] - ans[1][c - 1];
set.add(x + " " + y);
}
if(set.size() < i * j - 1){
out.println(i + " " + j);
out.println("вектора");
for(int w = 0;w<ans[0].length;w++){
out.println(ans[0][w] + " " + ans[1][w]);
}
return;
}
}
}
}
void normal(){
int n =readInt();
int m = readInt();
int[][] ans = fast(n, m);
for(int i = 0;i<ans[0].length;i++){
out.println(ans[0][i] + " " + ans[1][i]);
}
}
boolean stress = false;
void solve(){
if(stress) stress();
else normal();
}
public static void main(String[] args) {
new D().run();
}
void run(){
init();
solve();
out.close();
}
BufferedReader in;
PrintWriter out;
StringTokenizer tok = new StringTokenizer("");
void init(){
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
}
String readLine(){
try{
return in.readLine();
}catch(Exception ex){
throw new RuntimeException(ex);
}
}
String readString(){
while(!tok.hasMoreTokens()){
String nextLine = readLine();
if(nextLine == null) return null;
tok = new StringTokenizer(nextLine);
}
return tok.nextToken();
}
int readInt(){
return Integer.parseInt(readString());
}
long readLong(){
return Long.parseLong(readString());
}
double readDouble(){
return Double.parseDouble(readString());
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.HashSet;
import java.util.List;
import java.util.StringTokenizer;
public class D {
int[][] fast(int n, int m){
int[][] ans = new int[2][n * m];
int c = 0;
for (int left = 1, right = m; left < right; left++, right--) {
for (int l = 1, r = n; l <= n && r >= 1; l++, r--) {
ans[0][c] = l;
ans[1][c++] = left;
ans[0][c] = r;
ans[1][c++] = right;
}
}
if (m % 2 == 1) {
int x = m/2 + 1;
for(int l = 1, r = n;l < r;l++, r--){
ans[0][c] = l;
ans[1][c++] = x;
ans[0][c] = r;
ans[1][c++] = x;
if(n % 2 == 1 && l + 2 == r){
ans[0][c] = l+1;
ans[1][c++] = x;
}
}
}
if(n == 1 && m % 2 == 1){
ans[0][c] = 1;
ans[1][c] = m/2 + 1;
}
return ans;
}
void stress(){
for(int i = 3;i<=5;i++){
for(int j = 2;j<=5;j++){
int[][] ans = new int[2][];
try{
ans = fast(i, j);
}catch(Exception e){
out.println("ошибка");
out.print(i + " " + j);
return;
}
boolean[][] check = new boolean[i][j];
for(int c = 0;c<ans[0].length;c++){
int x = ans[0][c] - 1;
int y = ans[1][c] - 1;
check[x][y] = true;
}
for(int c = 0;c<i;c++){
for(int q = 0;q<j;q++){
if(!check[c][q]){
out.println(i + " " + j);
out.println("точки");
for(int w = 0;w<ans[0].length;w++){
out.println(ans[0][w] + " " + ans[1][w]);
}
return;
}
}
}
HashSet<String> set = new HashSet<>();
for(int c = 1;c<ans[0].length;c++){
int x = ans[0][c] - ans[0][c- 1];
int y = ans[1][c] - ans[1][c - 1];
set.add(x + " " + y);
}
if(set.size() < i * j - 1){
out.println(i + " " + j);
out.println("вектора");
for(int w = 0;w<ans[0].length;w++){
out.println(ans[0][w] + " " + ans[1][w]);
}
return;
}
}
}
}
void normal(){
int n =readInt();
int m = readInt();
int[][] ans = fast(n, m);
for(int i = 0;i<ans[0].length;i++){
out.println(ans[0][i] + " " + ans[1][i]);
}
}
boolean stress = false;
void solve(){
if(stress) stress();
else normal();
}
public static void main(String[] args) {
new D().run();
}
void run(){
init();
solve();
out.close();
}
BufferedReader in;
PrintWriter out;
StringTokenizer tok = new StringTokenizer("");
void init(){
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
}
String readLine(){
try{
return in.readLine();
}catch(Exception ex){
throw new RuntimeException(ex);
}
}
String readString(){
while(!tok.hasMoreTokens()){
String nextLine = readLine();
if(nextLine == null) return null;
tok = new StringTokenizer(nextLine);
}
return tok.nextToken();
}
int readInt(){
return Integer.parseInt(readString());
}
long readLong(){
return Long.parseLong(readString());
}
double readDouble(){
return Double.parseDouble(readString());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The running time does not change regardless of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.HashSet;
import java.util.List;
import java.util.StringTokenizer;
public class D {
int[][] fast(int n, int m){
int[][] ans = new int[2][n * m];
int c = 0;
for (int left = 1, right = m; left < right; left++, right--) {
for (int l = 1, r = n; l <= n && r >= 1; l++, r--) {
ans[0][c] = l;
ans[1][c++] = left;
ans[0][c] = r;
ans[1][c++] = right;
}
}
if (m % 2 == 1) {
int x = m/2 + 1;
for(int l = 1, r = n;l < r;l++, r--){
ans[0][c] = l;
ans[1][c++] = x;
ans[0][c] = r;
ans[1][c++] = x;
if(n % 2 == 1 && l + 2 == r){
ans[0][c] = l+1;
ans[1][c++] = x;
}
}
}
if(n == 1 && m % 2 == 1){
ans[0][c] = 1;
ans[1][c] = m/2 + 1;
}
return ans;
}
void stress(){
for(int i = 3;i<=5;i++){
for(int j = 2;j<=5;j++){
int[][] ans = new int[2][];
try{
ans = fast(i, j);
}catch(Exception e){
out.println("ошибка");
out.print(i + " " + j);
return;
}
boolean[][] check = new boolean[i][j];
for(int c = 0;c<ans[0].length;c++){
int x = ans[0][c] - 1;
int y = ans[1][c] - 1;
check[x][y] = true;
}
for(int c = 0;c<i;c++){
for(int q = 0;q<j;q++){
if(!check[c][q]){
out.println(i + " " + j);
out.println("точки");
for(int w = 0;w<ans[0].length;w++){
out.println(ans[0][w] + " " + ans[1][w]);
}
return;
}
}
}
HashSet<String> set = new HashSet<>();
for(int c = 1;c<ans[0].length;c++){
int x = ans[0][c] - ans[0][c- 1];
int y = ans[1][c] - ans[1][c - 1];
set.add(x + " " + y);
}
if(set.size() < i * j - 1){
out.println(i + " " + j);
out.println("вектора");
for(int w = 0;w<ans[0].length;w++){
out.println(ans[0][w] + " " + ans[1][w]);
}
return;
}
}
}
}
void normal(){
int n =readInt();
int m = readInt();
int[][] ans = fast(n, m);
for(int i = 0;i<ans[0].length;i++){
out.println(ans[0][i] + " " + ans[1][i]);
}
}
boolean stress = false;
void solve(){
if(stress) stress();
else normal();
}
public static void main(String[] args) {
new D().run();
}
void run(){
init();
solve();
out.close();
}
BufferedReader in;
PrintWriter out;
StringTokenizer tok = new StringTokenizer("");
void init(){
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
}
String readLine(){
try{
return in.readLine();
}catch(Exception ex){
throw new RuntimeException(ex);
}
}
String readString(){
while(!tok.hasMoreTokens()){
String nextLine = readLine();
if(nextLine == null) return null;
tok = new StringTokenizer(nextLine);
}
return tok.nextToken();
}
int readInt(){
return Integer.parseInt(readString());
}
long readLong(){
return Long.parseLong(readString());
}
double readDouble(){
return Double.parseDouble(readString());
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,346 | 2,543 |
4,233 |
import java.util.*;
public class Main {
public static class Pair implements Comparable<Pair> {
int k, x;
public Pair(int k) {
this.k = k;
}
public void update(int x) {
this.x = Math.max(this.x, x);
}
public int compareTo(Pair other) {
if (x != other.x) {
return other.x - x;
}
return k - other.k;
}
}
public static int sum(int[] arr) {
int sum = 0;
for (int x : arr) {
sum += x;
}
return sum;
}
public static int[] join(int[] a, int[] b) {
int n = a.length;
int[] best = new int[n];
int sum = 0;
for (int shift = 0; shift < n; shift++) {
int[] curr = new int[n];
for (int i = 0; i < n; i++) {
curr[i] = Math.max(a[i], b[(i + shift) % n]);
}
int now = sum(curr);
if (now > sum) {
sum = now;
best = curr;
}
}
return best;
}
public static int n;
public static int[] pow;
public static int[][] dp, real;
public static void calc(int mask) {
int[] best = new int[n];
int sum = 0;
for (int i = 0; i < n; i++) {
if ((mask & pow[i]) != 0) {
int to = mask ^ pow[i];
int[] init = new int[n];
for (int j = 0; j < n; j++) {
init[j] = real[j][i];
}
int[] curr = join(dp[to], init);
int s = sum(curr);
if (s > sum) {
sum = s;
best = curr;
}
}
}
dp[mask] = best;
}
public static void main(String[] args) {
pow = new int[15];
pow[0] = 1;
for (int i = 1; i < pow.length; i++) {
pow[i] = pow[i - 1] * 2;
}
Scanner in = new Scanner(System.in);
int t = in.nextInt();
for (int i = 0; i < t; i++) {
n = in.nextInt();
int m = in.nextInt();
int[][] arr = new int[n][m];
for (int j = 0; j < n; j++) {
for (int k = 0; k < m; k++) {
arr[j][k] = in.nextInt();
}
}
Pair[] best = new Pair[m];
for (int j = 0; j < m; j++) {
best[j] = new Pair(j);
for (int k = 0; k < n; k++) {
best[j].update(arr[k][j]);
}
}
Arrays.sort(best);
real = new int[n][n];
for (int j = 0; j < n; j++) {
for (int k = 0; k < Math.min(n, m); k++) {
real[j][k] = arr[j][best[k].k];
}
}
dp = new int[1 << n][];
Stack<Integer>[] min = new Stack[n + 1];
for (int j = 0; j <= n; j++) {
min[j] = new Stack<>();
}
for (int j = 0; j < dp.length; j++) {
int cnt = 0;
for (int k = 0; k < n; k++) {
if ((j & pow[k]) != 0) {
cnt++;
}
}
min[cnt].add(j);
}
for (int j = 0; j < min.length; j++) {
for (int x : min[j]) {
if (j == 0) {
dp[x] = new int[n];
} else {
calc(x);
}
}
}
System.out.println(sum(dp[dp.length - 1]));
}
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
public class Main {
public static class Pair implements Comparable<Pair> {
int k, x;
public Pair(int k) {
this.k = k;
}
public void update(int x) {
this.x = Math.max(this.x, x);
}
public int compareTo(Pair other) {
if (x != other.x) {
return other.x - x;
}
return k - other.k;
}
}
public static int sum(int[] arr) {
int sum = 0;
for (int x : arr) {
sum += x;
}
return sum;
}
public static int[] join(int[] a, int[] b) {
int n = a.length;
int[] best = new int[n];
int sum = 0;
for (int shift = 0; shift < n; shift++) {
int[] curr = new int[n];
for (int i = 0; i < n; i++) {
curr[i] = Math.max(a[i], b[(i + shift) % n]);
}
int now = sum(curr);
if (now > sum) {
sum = now;
best = curr;
}
}
return best;
}
public static int n;
public static int[] pow;
public static int[][] dp, real;
public static void calc(int mask) {
int[] best = new int[n];
int sum = 0;
for (int i = 0; i < n; i++) {
if ((mask & pow[i]) != 0) {
int to = mask ^ pow[i];
int[] init = new int[n];
for (int j = 0; j < n; j++) {
init[j] = real[j][i];
}
int[] curr = join(dp[to], init);
int s = sum(curr);
if (s > sum) {
sum = s;
best = curr;
}
}
}
dp[mask] = best;
}
public static void main(String[] args) {
pow = new int[15];
pow[0] = 1;
for (int i = 1; i < pow.length; i++) {
pow[i] = pow[i - 1] * 2;
}
Scanner in = new Scanner(System.in);
int t = in.nextInt();
for (int i = 0; i < t; i++) {
n = in.nextInt();
int m = in.nextInt();
int[][] arr = new int[n][m];
for (int j = 0; j < n; j++) {
for (int k = 0; k < m; k++) {
arr[j][k] = in.nextInt();
}
}
Pair[] best = new Pair[m];
for (int j = 0; j < m; j++) {
best[j] = new Pair(j);
for (int k = 0; k < n; k++) {
best[j].update(arr[k][j]);
}
}
Arrays.sort(best);
real = new int[n][n];
for (int j = 0; j < n; j++) {
for (int k = 0; k < Math.min(n, m); k++) {
real[j][k] = arr[j][best[k].k];
}
}
dp = new int[1 << n][];
Stack<Integer>[] min = new Stack[n + 1];
for (int j = 0; j <= n; j++) {
min[j] = new Stack<>();
}
for (int j = 0; j < dp.length; j++) {
int cnt = 0;
for (int k = 0; k < n; k++) {
if ((j & pow[k]) != 0) {
cnt++;
}
}
min[cnt].add(j);
}
for (int j = 0; j < min.length; j++) {
for (int x : min[j]) {
if (j == 0) {
dp[x] = new int[n];
} else {
calc(x);
}
}
}
System.out.println(sum(dp[dp.length - 1]));
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
public class Main {
public static class Pair implements Comparable<Pair> {
int k, x;
public Pair(int k) {
this.k = k;
}
public void update(int x) {
this.x = Math.max(this.x, x);
}
public int compareTo(Pair other) {
if (x != other.x) {
return other.x - x;
}
return k - other.k;
}
}
public static int sum(int[] arr) {
int sum = 0;
for (int x : arr) {
sum += x;
}
return sum;
}
public static int[] join(int[] a, int[] b) {
int n = a.length;
int[] best = new int[n];
int sum = 0;
for (int shift = 0; shift < n; shift++) {
int[] curr = new int[n];
for (int i = 0; i < n; i++) {
curr[i] = Math.max(a[i], b[(i + shift) % n]);
}
int now = sum(curr);
if (now > sum) {
sum = now;
best = curr;
}
}
return best;
}
public static int n;
public static int[] pow;
public static int[][] dp, real;
public static void calc(int mask) {
int[] best = new int[n];
int sum = 0;
for (int i = 0; i < n; i++) {
if ((mask & pow[i]) != 0) {
int to = mask ^ pow[i];
int[] init = new int[n];
for (int j = 0; j < n; j++) {
init[j] = real[j][i];
}
int[] curr = join(dp[to], init);
int s = sum(curr);
if (s > sum) {
sum = s;
best = curr;
}
}
}
dp[mask] = best;
}
public static void main(String[] args) {
pow = new int[15];
pow[0] = 1;
for (int i = 1; i < pow.length; i++) {
pow[i] = pow[i - 1] * 2;
}
Scanner in = new Scanner(System.in);
int t = in.nextInt();
for (int i = 0; i < t; i++) {
n = in.nextInt();
int m = in.nextInt();
int[][] arr = new int[n][m];
for (int j = 0; j < n; j++) {
for (int k = 0; k < m; k++) {
arr[j][k] = in.nextInt();
}
}
Pair[] best = new Pair[m];
for (int j = 0; j < m; j++) {
best[j] = new Pair(j);
for (int k = 0; k < n; k++) {
best[j].update(arr[k][j]);
}
}
Arrays.sort(best);
real = new int[n][n];
for (int j = 0; j < n; j++) {
for (int k = 0; k < Math.min(n, m); k++) {
real[j][k] = arr[j][best[k].k];
}
}
dp = new int[1 << n][];
Stack<Integer>[] min = new Stack[n + 1];
for (int j = 0; j <= n; j++) {
min[j] = new Stack<>();
}
for (int j = 0; j < dp.length; j++) {
int cnt = 0;
for (int k = 0; k < n; k++) {
if ((j & pow[k]) != 0) {
cnt++;
}
}
min[cnt].add(j);
}
for (int j = 0; j < min.length; j++) {
for (int x : min[j]) {
if (j == 0) {
dp[x] = new int[n];
} else {
calc(x);
}
}
}
System.out.println(sum(dp[dp.length - 1]));
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The running time increases with the cube of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(1): The running time does not change regardless of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,270 | 4,222 |
3,487 |
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt(), md = sc.nextInt();
int k = (n + 1) / 2;int ans = 0;
int[][] dp = new int[k + 1][n + 1];dp[0][0] = 1;
for (int h = 1; h <= k; h++)
for (int l = h; l <= n - h + 1; l++)
dp[h][l] = (int) ((dp[h][l - 1] * 2L + dp[h - 1][l - 1]) * h % md);
for (int h = 1; h <= k; h++)
ans = (ans + dp[h][n - h + 1]) % md;
System.out.println(ans);
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt(), md = sc.nextInt();
int k = (n + 1) / 2;int ans = 0;
int[][] dp = new int[k + 1][n + 1];dp[0][0] = 1;
for (int h = 1; h <= k; h++)
for (int l = h; l <= n - h + 1; l++)
dp[h][l] = (int) ((dp[h][l - 1] * 2L + dp[h - 1][l - 1]) * h % md);
for (int h = 1; h <= k; h++)
ans = (ans + dp[h][n - h + 1]) % md;
System.out.println(ans);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The running time does not change regardless of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt(), md = sc.nextInt();
int k = (n + 1) / 2;int ans = 0;
int[][] dp = new int[k + 1][n + 1];dp[0][0] = 1;
for (int h = 1; h <= k; h++)
for (int l = h; l <= n - h + 1; l++)
dp[h][l] = (int) ((dp[h][l - 1] * 2L + dp[h - 1][l - 1]) * h % md);
for (int h = 1; h <= k; h++)
ans = (ans + dp[h][n - h + 1]) % md;
System.out.println(ans);
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(1): The time complexity is constant to the input size n.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 536 | 3,481 |
3,287 |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.StringTokenizer;
public class Solver {
StringTokenizer st;
BufferedReader in;
PrintWriter out;
public static void main(String[] args) throws NumberFormatException, IOException {
Solver solver = new Solver();
solver.open();
solver.solve();
solver.close();
}
public void open() throws IOException {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
}
public String nextToken() throws IOException {
while (st == null || !st.hasMoreTokens()) {
st = new StringTokenizer(in.readLine());
}
return st.nextToken();
}
public int nextInt() throws NumberFormatException, IOException {
return Integer.parseInt(nextToken());
}
public long nextLong() throws NumberFormatException, IOException {
return Long.parseLong(nextToken());
}
public double nextDouble() throws NumberFormatException, IOException {
return Double.parseDouble(nextToken());
}
public void solve() throws NumberFormatException, IOException {
int n = nextInt();
out.println(0+" "+0+" "+n);
}
public void close() {
out.flush();
out.close();
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.StringTokenizer;
public class Solver {
StringTokenizer st;
BufferedReader in;
PrintWriter out;
public static void main(String[] args) throws NumberFormatException, IOException {
Solver solver = new Solver();
solver.open();
solver.solve();
solver.close();
}
public void open() throws IOException {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
}
public String nextToken() throws IOException {
while (st == null || !st.hasMoreTokens()) {
st = new StringTokenizer(in.readLine());
}
return st.nextToken();
}
public int nextInt() throws NumberFormatException, IOException {
return Integer.parseInt(nextToken());
}
public long nextLong() throws NumberFormatException, IOException {
return Long.parseLong(nextToken());
}
public double nextDouble() throws NumberFormatException, IOException {
return Double.parseDouble(nextToken());
}
public void solve() throws NumberFormatException, IOException {
int n = nextInt();
out.println(0+" "+0+" "+n);
}
public void close() {
out.flush();
out.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.StringTokenizer;
public class Solver {
StringTokenizer st;
BufferedReader in;
PrintWriter out;
public static void main(String[] args) throws NumberFormatException, IOException {
Solver solver = new Solver();
solver.open();
solver.solve();
solver.close();
}
public void open() throws IOException {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
}
public String nextToken() throws IOException {
while (st == null || !st.hasMoreTokens()) {
st = new StringTokenizer(in.readLine());
}
return st.nextToken();
}
public int nextInt() throws NumberFormatException, IOException {
return Integer.parseInt(nextToken());
}
public long nextLong() throws NumberFormatException, IOException {
return Long.parseLong(nextToken());
}
public double nextDouble() throws NumberFormatException, IOException {
return Double.parseDouble(nextToken());
}
public void solve() throws NumberFormatException, IOException {
int n = nextInt();
out.println(0+" "+0+" "+n);
}
public void close() {
out.flush();
out.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 608 | 3,281 |
1,803 |
import java.util.Arrays;
import java.util.Scanner;
public class Main2 {
public static void main(String args[]){
Scanner input = new Scanner(System.in);
int n = input.nextInt();
int m = input.nextInt();
int k = input.nextInt();
int[] num = new int[n];
for(int i = 0 ; i < n ; i++){
num[i] = input.nextInt();
}
System.out.println(str(n,m,k,num));
}
static int str(int n,int m,int k,int[] num){
Arrays.sort(num);
int total = k;
int count = 0;
while(k < m){
if(count == num.length)return -1;
k += num[num.length-count-1]-1;
count++;
}
return count;
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.Arrays;
import java.util.Scanner;
public class Main2 {
public static void main(String args[]){
Scanner input = new Scanner(System.in);
int n = input.nextInt();
int m = input.nextInt();
int k = input.nextInt();
int[] num = new int[n];
for(int i = 0 ; i < n ; i++){
num[i] = input.nextInt();
}
System.out.println(str(n,m,k,num));
}
static int str(int n,int m,int k,int[] num){
Arrays.sort(num);
int total = k;
int count = 0;
while(k < m){
if(count == num.length)return -1;
k += num[num.length-count-1]-1;
count++;
}
return count;
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(1): The time complexity is constant to the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.Arrays;
import java.util.Scanner;
public class Main2 {
public static void main(String args[]){
Scanner input = new Scanner(System.in);
int n = input.nextInt();
int m = input.nextInt();
int k = input.nextInt();
int[] num = new int[n];
for(int i = 0 ; i < n ; i++){
num[i] = input.nextInt();
}
System.out.println(str(n,m,k,num));
}
static int str(int n,int m,int k,int[] num){
Arrays.sort(num);
int total = k;
int count = 0;
while(k < m){
if(count == num.length)return -1;
k += num[num.length-count-1]-1;
count++;
}
return count;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 503 | 1,799 |
2,021 |
//package codeforces.br22;
import java.io.*;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
/**
* User: Kandy
* Date: 29.06.2010
* Time: 21:07:24
*/
public class ProblemA {
public void solve() {
boolean oj = true;
try {
Reader reader = oj ? new InputStreamReader(System.in) : new FileReader("A.in");
Writer writer = oj ? new OutputStreamWriter(System.out) : new FileWriter("A.out");
BufferedReader br = new BufferedReader(reader);
StreamTokenizer st = new StreamTokenizer(reader);
PrintWriter out = new PrintWriter(writer);
MyTokenizer tok = new MyTokenizer(br.readLine());
int n = (int)tok.getNum();
tok =new MyTokenizer(br.readLine());
List<Integer> a = new ArrayList<Integer>();
for(int i=0;i<n;i++) {
int r = (int)tok.getNum();
if (!a.contains(r)) {
a.add(r);
}
}
Collections.sort(a);
if (a.size() < 2) {
out.printf("NO");
} else {
out.printf("%d", a.get(1));
}
br.close();
out.close();
reader.close();
writer.close();
}
catch (Exception ex) {
ex.printStackTrace();
}
finally {
}
}
public static void main(String[] args) {
ProblemA f = new ProblemA();
f.solve();
}
private class MyTokenizer {
private String s;
private int cur;
public MyTokenizer(String s) {
this.s = s;
cur = 0;
}
public void skip() {
while (cur < s.length() && (s.charAt(cur) == ' ' || s.charAt(cur) == '\n')) {
cur++;
}
}
public double getNum() {
skip();
String snum = "";
while (cur < s.length() && (s.charAt(cur) >= '0' && s.charAt(cur) <= '9' || s.charAt(cur) == '.' || s.charAt(cur) == '-')) {
snum += s.charAt(cur);
cur++;
}
return Double.valueOf(snum);
}
public String getString() {
skip();
String s2 = "";
while (cur < s.length() && (((s.charAt(cur) >= 'a' && s.charAt(cur) <= 'z')) || ((s.charAt(cur) >= 'A' && s.charAt(cur) <= 'Z')))) {
s2 += s.charAt(cur);
cur++;
}
return s2;
}
public char getCurrentChar() throws Exception {
if (cur < s.length())
return s.charAt(cur);
else
throw new Exception("Current character out of string length");
}
public void moveNextChar() {
if (cur < s.length())
cur++;
}
public boolean isFinished() {
return cur >= s.length();
}
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
//package codeforces.br22;
import java.io.*;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
/**
* User: Kandy
* Date: 29.06.2010
* Time: 21:07:24
*/
public class ProblemA {
public void solve() {
boolean oj = true;
try {
Reader reader = oj ? new InputStreamReader(System.in) : new FileReader("A.in");
Writer writer = oj ? new OutputStreamWriter(System.out) : new FileWriter("A.out");
BufferedReader br = new BufferedReader(reader);
StreamTokenizer st = new StreamTokenizer(reader);
PrintWriter out = new PrintWriter(writer);
MyTokenizer tok = new MyTokenizer(br.readLine());
int n = (int)tok.getNum();
tok =new MyTokenizer(br.readLine());
List<Integer> a = new ArrayList<Integer>();
for(int i=0;i<n;i++) {
int r = (int)tok.getNum();
if (!a.contains(r)) {
a.add(r);
}
}
Collections.sort(a);
if (a.size() < 2) {
out.printf("NO");
} else {
out.printf("%d", a.get(1));
}
br.close();
out.close();
reader.close();
writer.close();
}
catch (Exception ex) {
ex.printStackTrace();
}
finally {
}
}
public static void main(String[] args) {
ProblemA f = new ProblemA();
f.solve();
}
private class MyTokenizer {
private String s;
private int cur;
public MyTokenizer(String s) {
this.s = s;
cur = 0;
}
public void skip() {
while (cur < s.length() && (s.charAt(cur) == ' ' || s.charAt(cur) == '\n')) {
cur++;
}
}
public double getNum() {
skip();
String snum = "";
while (cur < s.length() && (s.charAt(cur) >= '0' && s.charAt(cur) <= '9' || s.charAt(cur) == '.' || s.charAt(cur) == '-')) {
snum += s.charAt(cur);
cur++;
}
return Double.valueOf(snum);
}
public String getString() {
skip();
String s2 = "";
while (cur < s.length() && (((s.charAt(cur) >= 'a' && s.charAt(cur) <= 'z')) || ((s.charAt(cur) >= 'A' && s.charAt(cur) <= 'Z')))) {
s2 += s.charAt(cur);
cur++;
}
return s2;
}
public char getCurrentChar() throws Exception {
if (cur < s.length())
return s.charAt(cur);
else
throw new Exception("Current character out of string length");
}
public void moveNextChar() {
if (cur < s.length())
cur++;
}
public boolean isFinished() {
return cur >= s.length();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
//package codeforces.br22;
import java.io.*;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
/**
* User: Kandy
* Date: 29.06.2010
* Time: 21:07:24
*/
public class ProblemA {
public void solve() {
boolean oj = true;
try {
Reader reader = oj ? new InputStreamReader(System.in) : new FileReader("A.in");
Writer writer = oj ? new OutputStreamWriter(System.out) : new FileWriter("A.out");
BufferedReader br = new BufferedReader(reader);
StreamTokenizer st = new StreamTokenizer(reader);
PrintWriter out = new PrintWriter(writer);
MyTokenizer tok = new MyTokenizer(br.readLine());
int n = (int)tok.getNum();
tok =new MyTokenizer(br.readLine());
List<Integer> a = new ArrayList<Integer>();
for(int i=0;i<n;i++) {
int r = (int)tok.getNum();
if (!a.contains(r)) {
a.add(r);
}
}
Collections.sort(a);
if (a.size() < 2) {
out.printf("NO");
} else {
out.printf("%d", a.get(1));
}
br.close();
out.close();
reader.close();
writer.close();
}
catch (Exception ex) {
ex.printStackTrace();
}
finally {
}
}
public static void main(String[] args) {
ProblemA f = new ProblemA();
f.solve();
}
private class MyTokenizer {
private String s;
private int cur;
public MyTokenizer(String s) {
this.s = s;
cur = 0;
}
public void skip() {
while (cur < s.length() && (s.charAt(cur) == ' ' || s.charAt(cur) == '\n')) {
cur++;
}
}
public double getNum() {
skip();
String snum = "";
while (cur < s.length() && (s.charAt(cur) >= '0' && s.charAt(cur) <= '9' || s.charAt(cur) == '.' || s.charAt(cur) == '-')) {
snum += s.charAt(cur);
cur++;
}
return Double.valueOf(snum);
}
public String getString() {
skip();
String s2 = "";
while (cur < s.length() && (((s.charAt(cur) >= 'a' && s.charAt(cur) <= 'z')) || ((s.charAt(cur) >= 'A' && s.charAt(cur) <= 'Z')))) {
s2 += s.charAt(cur);
cur++;
}
return s2;
}
public char getCurrentChar() throws Exception {
if (cur < s.length())
return s.charAt(cur);
else
throw new Exception("Current character out of string length");
}
public void moveNextChar() {
if (cur < s.length())
cur++;
}
public boolean isFinished() {
return cur >= s.length();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The running time increases with the cube of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,002 | 2,017 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.