ret_demo / readme.md
cfli's picture
Update readme.md
0a7e00e verified
用于演示多语言检索的demo
### 下载
在一个bash脚本里运行以下代码
```shell
git clone https://hf-mirror.com/datasets/cfli/ret_demo
# git clone 的数据不完整,需要全部删除,然后重新下载
for lang in "ar" "bn" "de" "en" "es" "fa" "fi" "fr" "hi" "id" "ja" "ko" "ru" "sw" "te" "th" "yo" "zh"
do
# 删除旧文件
rm -f ./ret_demo/data/${lang}/corpus.jsonl
rm -f ./ret_demo/data/${lang}/dev_qrels.jsonl
rm -f ./ret_demo/data/${lang}/dev_queries.jsonl
rm -f ./ret_demo/emb/${lang}/corpus.npy
done
for lang in "ar" "bn" "de" "en" "es" "fa" "fi" "fr" "hi" "id" "ja" "ko" "ru" "sw" "te" "th" "yo" "zh"
do
# 下载并移动文件
wget https://hf-mirror.com/datasets/cfli/ret_demo/resolve/main/emb/${lang}/corpus.npy
mv corpus.npy ./ret_demo/emb/${lang}/
wget https://hf-mirror.com/datasets/cfli/ret_demo/resolve/main/data/${lang}/corpus.jsonl
mv corpus.jsonl ./ret_demo/data/${lang}/
wget https://hf-mirror.com/datasets/cfli/ret_demo/resolve/main/data/${lang}/dev_qrels.jsonl
mv dev_qrels.jsonl ./ret_demo/data/${lang}/
wget https://hf-mirror.com/datasets/cfli/ret_demo/resolve/main/data/${lang}/dev_queries.jsonl
mv dev_queries.jsonl ./ret_demo/data/${lang}/
done
```
### 环境依赖
```shell
pip install gradio
pip install -U FlagEmbedding
pip install https://github.com/kyamagu/faiss-wheels/releases/download/v1.7.3/faiss_gpu-1.7.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
```
### 使用
1. 如果模型在之前未下载,运行`app.py`之前先设置`export HF_ENDPOINT=https://hf-mirror.com`
2. 如果要先下载模型到本地某个指定路径,可以按如下代码下载
```python
import os
os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com'
save_path = './save_model'
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-multilingual-gemma2')
model = AutoModel.from_pretrained('BAAI/bge-multilingual-gemma2')
tokenizer.save_pretrained(save_path)
model.save_pretrained(save_path)
```
3. 需要修改`utils.py`文件第 23 行模型名称代码,将`self_model_path`改为【上述`save_path``self_model_path=model_path`
4. 如果要用CPU加载模型,需要修改`utils.py`文件第 25-45 行
```python
def load_model_util(previous_model, model_path):
self_model_path = '' # 使用上述 save_path,或者 self_model_path = model_path
if model_path == 'BAAI/bge-multilingual-gemma2':
if previous_model is not None and previous_model.model_name_or_path == self_model_path:
return previous_model
model = FlagLLMModel(self_model_path,
query_instruction_for_retrieval="Given a question, retrieve Wikipedia passages that answer the question.",
query_instruction_format="<instruct>{}\n<query>{}",
use_fp16=False,
devices=['cpu'])
else:
if previous_model is not None and previous_model.model_name_or_path == model_path:
return previous_model
model = FlagAutoModel.from_finetuned(model_path,
use_fp16=False,
devices=['cpu'])
if previous_model is not None:
del previous_model
return model
```
5. 需要修改`app.py`第 11 行和第 12 行`data_dir``index_dir`的值,指向本地的数据/索引路径
6. 如果需要保存每次的`faiss index`,修改`app.py`第 81 行,设置`faiss.write_index(faiss_index, index_path)`(读index与构造index时间相近,保存不是很必要)
7. 运行`app.py`