用于演示多语言检索的demo
下载
在一个bash脚本里运行以下代码
git clone https://hf-mirror.com/datasets/cfli/ret_demo
# git clone 的数据不完整,需要全部删除,然后重新下载
for lang in "ar" "bn" "de" "en" "es" "fa" "fi" "fr" "hi" "id" "ja" "ko" "ru" "sw" "te" "th" "yo" "zh"
do
# 删除旧文件
rm -f ./ret_demo/data/${lang}/corpus.jsonl
rm -f ./ret_demo/data/${lang}/dev_qrels.jsonl
rm -f ./ret_demo/data/${lang}/dev_queries.jsonl
rm -f ./ret_demo/emb/${lang}/corpus.npy
done
for lang in "ar" "bn" "de" "en" "es" "fa" "fi" "fr" "hi" "id" "ja" "ko" "ru" "sw" "te" "th" "yo" "zh"
do
# 下载并移动文件
wget https://hf-mirror.com/datasets/cfli/ret_demo/resolve/main/emb/${lang}/corpus.npy
mv corpus.npy ./ret_demo/emb/${lang}/
wget https://hf-mirror.com/datasets/cfli/ret_demo/resolve/main/data/${lang}/corpus.jsonl
mv corpus.jsonl ./ret_demo/data/${lang}/
wget https://hf-mirror.com/datasets/cfli/ret_demo/resolve/main/data/${lang}/dev_qrels.jsonl
mv dev_qrels.jsonl ./ret_demo/data/${lang}/
wget https://hf-mirror.com/datasets/cfli/ret_demo/resolve/main/data/${lang}/dev_queries.jsonl
mv dev_queries.jsonl ./ret_demo/data/${lang}/
done
环境依赖
pip install gradio
pip install -U FlagEmbedding
pip install https://github.com/kyamagu/faiss-wheels/releases/download/v1.7.3/faiss_gpu-1.7.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
使用
如果模型在之前未下载,运行
app.py
之前先设置export HF_ENDPOINT=https://hf-mirror.com
如果要先下载模型到本地某个指定路径,可以按如下代码下载
import os os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com' save_path = './save_model' from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-multilingual-gemma2') model = AutoModel.from_pretrained('BAAI/bge-multilingual-gemma2') tokenizer.save_pretrained(save_path) model.save_pretrained(save_path)
需要修改
utils.py
文件第 23 行模型名称代码,将self_model_path
改为【上述save_path
或self_model_path=model_path
】如果要用CPU加载模型,需要修改
utils.py
文件第 25-45 行def load_model_util(previous_model, model_path): self_model_path = '' # 使用上述 save_path,或者 self_model_path = model_path if model_path == 'BAAI/bge-multilingual-gemma2': if previous_model is not None and previous_model.model_name_or_path == self_model_path: return previous_model model = FlagLLMModel(self_model_path, query_instruction_for_retrieval="Given a question, retrieve Wikipedia passages that answer the question.", query_instruction_format="<instruct>{}\n<query>{}", use_fp16=False, devices=['cpu']) else: if previous_model is not None and previous_model.model_name_or_path == model_path: return previous_model model = FlagAutoModel.from_finetuned(model_path, use_fp16=False, devices=['cpu']) if previous_model is not None: del previous_model return model
需要修改
app.py
第 11 行和第 12 行data_dir
和index_dir
的值,指向本地的数据/索引路径如果需要保存每次的
faiss index
,修改app.py
第 81 行,设置faiss.write_index(faiss_index, index_path)
(读index与构造index时间相近,保存不是很必要)运行
app.py