Datasets:

Formats:
arrow
Libraries:
Datasets
License:
File size: 20,522 Bytes
f683990
b2a3d55
 
 
 
 
 
 
 
 
 
 
 
57e6910
 
 
 
 
 
 
 
 
 
aa42ddf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57e6910
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa42ddf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57e6910
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f683990
57e6910
b2a3d55
3cce46b
 
 
 
b525eac
 
3cce46b
 
 
57e6910
3cce46b
 
 
 
 
 
 
 
bcaa174
3cce46b
 
 
 
 
 
 
 
 
 
 
bd7c6ce
 
3cce46b
aa42ddf
 
07e7037
aa42ddf
 
 
 
 
 
 
 
07e7037
69b072e
b2a3d55
b592342
b2a3d55
 
 
 
 
 
 
 
3cce46b
b2a3d55
 
 
57e6910
e1529b3
b2a3d55
 
 
3cce46b
 
a078585
3cce46b
060aacf
3cce46b
 
 
 
 
 
 
 
 
 
aa42ddf
 
 
 
 
 
 
 
 
717c37b
b2a3d55
 
 
 
3cce46b
 
67200e3
b2a3d55
 
 
9423904
c13ff1a
9423904
c13ff1a
2113638
 
9423904
 
b2a3d55
 
 
 
cd962b2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
---
license: cc-by-nc-nd-4.0
task_categories:
- audio-classification
language:
- zh
- en
tags:
- music
- art
pretty_name: Chinese Traditional Instrument Sound Dataset
size_categories:
- 1K<n<10K
dataset_info:
  - config_name: default
    features:
      - name: audio
        dtype:
          audio:
            sampling_rate: 44100
      - name: mel
        dtype: image
      - name: label
        dtype:
          class_label:
            names:
              '0': C0090
              '1': C0091
              '2': C0092
              '3': C0093
              '4': C0094
              '5': C0095
              '6': C0096
              '7': C0097
              '8': C0098
              '9': C0099
              '10': C0100
              '11': C0101
              '12': C0113
              '13': C0114
              '14': C0117
              '15': C0123
              '16': C0124
              '17': C0182
              '18': C0183
              '19': C0187
              '20': C0188
              '21': C0200
              '22': C0201
              '23': C0237
              '24': C0243
              '25': C0244
              '26': C0257
              '27': C0259
              '28': C0263
              '29': C0264
              '30': C0265
              '31': C0280
              '32': C0281
              '33': C0282
              '34': C0283
              '35': C0296
              '36': C0303
              '37': C0304
              '38': C0305
              '39': C0306
              '40': C0308
              '41': C0309
              '42': C0310
              '43': C0311
              '44': C0316
              '45': D0015
              '46': D0048
              '47': D0049
              '48': D0050
              '49': D0051
              '50': D0058
              '51': D0060
              '52': D0061
              '53': D0062
              '54': D0063
              '55': D0064
              '56': D0065
              '57': D0066
              '58': D0067
              '59': D0068
              '60': D0069
              '61': D0070
              '62': D0071
              '63': D0102
              '64': D0103
              '65': D0104
              '66': D0105
              '67': D0125
              '68': D0126
              '69': D0127
              '70': D0128
              '71': D0129
              '72': D0130
              '73': D0131
              '74': D0132
              '75': D0137
              '76': D0138
              '77': D0140
              '78': D0143
              '79': D0144
              '80': D0145
              '81': D0146
              '82': D0147
              '83': D0172
              '84': D0173
              '85': D0176
              '86': D0177
              '87': D0178
              '88': D0179
              '89': D0180
              '90': D0181
              '91': D0184
              '92': D0185
              '93': D0186
              '94': D0241
              '95': D0242
              '96': D0245
              '97': D0246
              '98': D0247
              '99': D0248
              '100': D0249
              '101': D0250
              '102': D0251
              '103': D0252
              '104': D0268
              '105': D0269
              '106': D0270
              '107': D0271
              '108': D0272
              '109': D0273
              '110': D0274
              '111': D0275
              '112': D0276
              '113': D0277
              '114': D0278
              '115': D0279
              '116': D0284
              '117': D0286
              '118': D0287
              '119': D0290
              '120': D0298
              '121': D0299
              '122': D0315
              '123': D0325
              '124': D0326
              '125': D0327
              '126': D0328
              '127': L0044
              '128': L0045
              '129': L0046
              '130': L0047
              '131': L0053
              '132': L0055
              '133': L0056
              '134': L0072
              '135': L0073
              '136': L0074
              '137': L0075
              '138': L0076
              '139': L0077
              '140': L0080
              '141': L0084
              '142': L0085
              '143': L0086
              '144': L0115
              '145': L0121
              '146': L0122
              '147': L0133
              '148': L0134
              '149': L0135
              '150': L0136
              '151': L0139
              '152': L0141
              '153': L0148
              '154': L0149
              '155': L0150
              '156': L0151
              '157': L0152
              '158': L0153
              '159': L0154
              '160': L0155
              '161': L0156
              '162': L0157
              '163': L0158
              '164': L0160
              '165': L0161
              '166': L0162
              '167': L0163
              '168': L0164
              '169': L0165
              '170': L0166
              '171': L0167
              '172': L0168
              '173': L0169
              '174': L0170
              '175': L0239
              '176': L0240
              '177': L0256
              '178': L0266
              '179': L0285
              '180': L0288
              '181': L0291
              '182': L0292
              '183': L0297
              '184': L0307
              '185': L0312
              '186': L0313
              '187': L0314
              '188': T0006
              '189': T0007
              '190': T0078
              '191': T0081
              '192': T0082
              '193': T0083
              '194': T0087
              '195': T0088
              '196': T0089
              '197': T0111
              '198': T0116
              '199': T0159
              '200': T0171
              '201': T0238
              '202': T0254
              '203': T0255
              '204': T0260
              '205': T0261
              '206': T0262
              '207': T0267
              '208': T0289
              '209': T0294
              '210': T0295
              '211': T0300
              '212': T0301
              '213': T0302
              '214': T0317
              '215': T0318
              '216': T0319
              '217': T0320
              '218': T0323
      - name: cname
        dtype: string
      - name: pinyin
        dtype: string
    splits:
      - name: train
        num_bytes: 2337167
        num_examples: 4956
    download_size: 6640960937
    dataset_size: 2337167
  - config_name: eval
    features:
      - name: mel
        dtype: image
      - name: cqt
        dtype: image
      - name: chroma
        dtype: image
      - name: label
        dtype:
          class_label:
            names:
              '0': C0090
              '1': C0091
              '2': C0092
              '3': C0093
              '4': C0094
              '5': C0095
              '6': C0096
              '7': C0097
              '8': C0098
              '9': C0099
              '10': C0100
              '11': C0101
              '12': C0113
              '13': C0114
              '14': C0117
              '15': C0123
              '16': C0124
              '17': C0182
              '18': C0183
              '19': C0187
              '20': C0188
              '21': C0200
              '22': C0201
              '23': C0237
              '24': C0243
              '25': C0244
              '26': C0257
              '27': C0259
              '28': C0263
              '29': C0264
              '30': C0265
              '31': C0280
              '32': C0281
              '33': C0282
              '34': C0283
              '35': C0296
              '36': C0303
              '37': C0304
              '38': C0305
              '39': C0306
              '40': C0308
              '41': C0309
              '42': C0310
              '43': C0311
              '44': C0316
              '45': D0015
              '46': D0048
              '47': D0049
              '48': D0050
              '49': D0051
              '50': D0058
              '51': D0060
              '52': D0061
              '53': D0062
              '54': D0063
              '55': D0064
              '56': D0065
              '57': D0066
              '58': D0067
              '59': D0068
              '60': D0069
              '61': D0070
              '62': D0071
              '63': D0102
              '64': D0103
              '65': D0104
              '66': D0105
              '67': D0125
              '68': D0126
              '69': D0127
              '70': D0128
              '71': D0129
              '72': D0130
              '73': D0131
              '74': D0132
              '75': D0137
              '76': D0138
              '77': D0140
              '78': D0143
              '79': D0144
              '80': D0145
              '81': D0146
              '82': D0147
              '83': D0172
              '84': D0173
              '85': D0176
              '86': D0177
              '87': D0178
              '88': D0179
              '89': D0180
              '90': D0181
              '91': D0184
              '92': D0185
              '93': D0186
              '94': D0241
              '95': D0242
              '96': D0245
              '97': D0246
              '98': D0247
              '99': D0248
              '100': D0249
              '101': D0250
              '102': D0251
              '103': D0252
              '104': D0268
              '105': D0269
              '106': D0270
              '107': D0271
              '108': D0272
              '109': D0273
              '110': D0274
              '111': D0275
              '112': D0276
              '113': D0277
              '114': D0278
              '115': D0279
              '116': D0284
              '117': D0286
              '118': D0287
              '119': D0290
              '120': D0298
              '121': D0299
              '122': D0315
              '123': D0325
              '124': D0326
              '125': D0327
              '126': D0328
              '127': L0044
              '128': L0045
              '129': L0046
              '130': L0047
              '131': L0053
              '132': L0055
              '133': L0056
              '134': L0072
              '135': L0073
              '136': L0074
              '137': L0075
              '138': L0076
              '139': L0077
              '140': L0080
              '141': L0084
              '142': L0085
              '143': L0086
              '144': L0115
              '145': L0121
              '146': L0122
              '147': L0133
              '148': L0134
              '149': L0135
              '150': L0136
              '151': L0139
              '152': L0141
              '153': L0148
              '154': L0149
              '155': L0150
              '156': L0151
              '157': L0152
              '158': L0153
              '159': L0154
              '160': L0155
              '161': L0156
              '162': L0157
              '163': L0158
              '164': L0160
              '165': L0161
              '166': L0162
              '167': L0163
              '168': L0164
              '169': L0165
              '170': L0166
              '171': L0167
              '172': L0168
              '173': L0169
              '174': L0170
              '175': L0239
              '176': L0240
              '177': L0256
              '178': L0266
              '179': L0285
              '180': L0288
              '181': L0291
              '182': L0292
              '183': L0297
              '184': L0307
              '185': L0312
              '186': L0313
              '187': L0314
              '188': T0006
              '189': T0007
              '190': T0078
              '191': T0081
              '192': T0082
              '193': T0083
              '194': T0087
              '195': T0088
              '196': T0089
              '197': T0111
              '198': T0116
              '199': T0159
              '200': T0171
              '201': T0238
              '202': T0254
              '203': T0255
              '204': T0260
              '205': T0261
              '206': T0262
              '207': T0267
              '208': T0289
              '209': T0294
              '210': T0295
              '211': T0300
              '212': T0301
              '213': T0302
              '214': T0317
              '215': T0318
              '216': T0319
              '217': T0320
              '218': T0323
    splits:
      - name: train
        num_bytes: 18475805
        num_examples: 34630
      - name: validation
        num_bytes: 2247162
        num_examples: 4212
      - name: test
        num_bytes: 2247240
        num_examples: 4212
    download_size: 3443906087
    dataset_size: 22970207
configs:
  - config_name: default
    data_files:
      - split: train
        path: default/train/data-*.arrow
  - config_name: eval
    data_files:
      - split: train
        path: eval/train/data-*.arrow
      - split: validation
        path: eval/validation/data-*.arrow
      - split: test
        path: eval/test/data-*.arrow
---

# Dataset Card for Chinese Traditional Instrument Sound
## Original Content
The original dataset is created by [[1]](https://link.springer.com/content/pdf/10.1007/978-981-13-8707-4_5.pdf), with no evaluation provided. The original CTIS dataset contains recordings from 287 varieties of Chinese traditional instruments, reformed Chinese musical instruments, and instruments from ethnic minority groups. Notably, some of these instruments are rarely encountered by the majority of the Chinese populace. The dataset was later utilized by [[2]](https://ietresearch.onlinelibrary.wiley.com/doi/pdf/10.1049/ccs2.12047) for Chinese instrument recognition, where only 78 instruments—approximately one-third of the total instrument classes—were used.

## Integration
We begin by performing data cleaning to remove recordings without specific instrument labels. Additionally, recordings that are not instrumental sounds, such as interview recordings, are removed to enhance usability. 
Finally, instrument categories lacking specific labels are excluded. The filtered dataset contains recordings of 209 types of Chinese traditional musical instruments. Compared to the original 287 instrument types, 78 were removed due to missing instrument labels. Among the remaining instruments, seven have two variants each, and one instrument, Yangqin, has four variants. We treat variants as separate classes, thus 219 labels are included at last.

In the original dataset, the Chinese character label for each instrument was represented by the folder name housing its audio files.
During integration, we add Chinese pinyin label to make the dataset more accessible to researchers who are not familiar in Chinese.
Then, we've reorganized the data into a dictionary with five columns, which includes: audio with a sampling rate of 44,100 Hz, pre-processed mel spectrogram, numerical label, instrument name in Chinese, and instrument name in Chinese pinyin. The provision of mel spectrograms primarily serves to enhance the visualization of the audio in the [viewer](https://huggingface.co/datasets/ccmusic-database/CTIS/viewer). For the remaining datasets, these mel spectrograms will also be included in the integrated data structure. The total data number is 4,956, with a duration of 32.63 hours. The average duration of the recordings is 23.7 seconds.

We have constructed the [default subset](#default-subset) of the current integrated version of the dataset. Building on the default subset, we applied silence removal with a threshold of top_db=40 to the audio files, converting them into mel, CQT, and chroma spectrograms. The audio was then segmented into 2-second clips, with segments shorter than 2 seconds padded using circular padding. This process resulted in the construction of the [eval subset](#eval-subset) for dataset evaluation experiments.

## Statistics
| ![](https://www.modelscope.cn/datasets/ccmusic-database/CTIS/resolve/master/data/ctis_bar.jpg) | ![](https://www.modelscope.cn/datasets/ccmusic-database/CTIS/resolve/master/data/ctis_cls.jpg) |
| :--------------------------------------------------------------------------------------------: | :--------------------------------------------------------------------------------------------: |
|                                           **Fig. 1**                                           |                                           **Fig. 2**                                           |

Due to the large number of categories in this dataset, we are unable to provide the audio duration per category and the proportion of audio clips by category, as we have done for the other datasets. Instead, we provide a chart showing the distribution of the number of audio clips across different durations, as shown in **Fig. 1**. A second graph, shown in **Fig. 2**, shows the distribution of instrument categories over various durations. From **Fig. 1**, 3611 clips (73%) are concentrated in the range 0-27.5 s, with a steep drop in the number of samples in longer durations. In **Fig. 2**, about half of the instruments, totaling 117, have a duration of less than 437 seconds, while 102 instruments have a duration greater than this number. After the total duration exceeds 881 seconds, the number of instruments drops sharply. This indicates that the dataset has a certain degree of class imbalance.

|              Statistical items               |        Values         |
| :------------------------------------------: | :-------------------: |
|                 Total count                  |        `4956`         |
|              Total duration(s)               | `117482.75025085056`  |
|               Mean duration(s)               | `23.705155417847124`  |
|               Min duration(s)                | `0.27639583333333334` |
|               Max duration(s)                |  `494.2522902494331`  |
|               Instrument types               |         `209`         |
|                Label Numbers                 |         `219`         |
|              Eval subset total               |        `43054`        |
|    Class with the longest audio duartion     | `中阮 (Zhong1 ruan3)` |
| Class in the longest audio duartion interval |  `箜篌 (Kong1 hou2)`  |

## Dataset Structure
<https://huggingface.co/datasets/ccmusic-database/CTIS/viewer>

### Data Fields
219 Chinese instruments

### Default Subset Data Instances
.zip(.wav), .csv

### Eval Subset Splits
train, validation, test

## Dataset Description
### Dataset Summary
A dataset of Chinese instrument audio

### Supported Tasks and Leaderboards
MIR, audio classification

### Languages
Chinese, English

## Usage
### Default Subset
```python
from datasets import load_dataset

dataset = load_dataset("ccmusic-database/CTIS", name="default", split="train")
for item in dataset:
    print(item)
```

### Eval Subset
```python
from datasets import load_dataset

dataset = load_dataset("ccmusic-database/CTIS", name="eval")
for item in ds["train"]:
    print(item)

for item in ds["validation"]:
    print(item)

for item in ds["test"]:
    print(item)
```

## Maintenance
```bash
GIT_LFS_SKIP_SMUDGE=1 git clone [email protected]:datasets/ccmusic-database/CTIS
cd CTIS
```

## Mirror
<https://www.modelscope.cn/datasets/ccmusic-database/CTIS>

## Additional Information
### Dataset Curators
Zijin Li

### Evaluation
[1] [Liang, Xiaojing et al. “Constructing a Multimedia Chinese Musical Instrument Database.” Lecture Notes in Electrical Engineering (2019): n. pag.](https://link.springer.com/content/pdf/10.1007/978-981-13-8707-4_5.pdf)<br>
[2] [Li, R., & Zhang, Q. (2022). Audio recognition of Chinese traditional instruments based on machine learning. Cogn. Comput. Syst., 4, 108-115.](https://ietresearch.onlinelibrary.wiley.com/doi/pdf/10.1049/ccs2.12047)<br>
[3] <https://huggingface.co/ccmusic-database/CTIS><br>

### Citation Information
```bibtex
@inproceedings{10.1007/978-981-13-8707-4_5,
  author    = {Xiaojing Liang and Zijin Li and Jingyu Liu and Wei Li and Jiaxing Zhu and Baoqiang Han},
  booktitle = {Proceedings of the 6th Conference on Sound and Music Technology (CSMT)},
  pages     = {53-60},
  publisher = {Springer Singapore},
  address   = {Singapore},
  title     = {Constructing a Multimedia Chinese Musical Instrument Database},
  year      = {2019}
}
```

### Contributions
An audio dataset for Chinese Instrument