Datasets:
File size: 20,522 Bytes
f683990 b2a3d55 57e6910 aa42ddf 57e6910 aa42ddf 57e6910 f683990 57e6910 b2a3d55 3cce46b b525eac 3cce46b 57e6910 3cce46b bcaa174 3cce46b bd7c6ce 3cce46b aa42ddf 07e7037 aa42ddf 07e7037 69b072e b2a3d55 b592342 b2a3d55 3cce46b b2a3d55 57e6910 e1529b3 b2a3d55 3cce46b a078585 3cce46b 060aacf 3cce46b aa42ddf 717c37b b2a3d55 3cce46b 67200e3 b2a3d55 9423904 c13ff1a 9423904 c13ff1a 2113638 9423904 b2a3d55 cd962b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 |
---
license: cc-by-nc-nd-4.0
task_categories:
- audio-classification
language:
- zh
- en
tags:
- music
- art
pretty_name: Chinese Traditional Instrument Sound Dataset
size_categories:
- 1K<n<10K
dataset_info:
- config_name: default
features:
- name: audio
dtype:
audio:
sampling_rate: 44100
- name: mel
dtype: image
- name: label
dtype:
class_label:
names:
'0': C0090
'1': C0091
'2': C0092
'3': C0093
'4': C0094
'5': C0095
'6': C0096
'7': C0097
'8': C0098
'9': C0099
'10': C0100
'11': C0101
'12': C0113
'13': C0114
'14': C0117
'15': C0123
'16': C0124
'17': C0182
'18': C0183
'19': C0187
'20': C0188
'21': C0200
'22': C0201
'23': C0237
'24': C0243
'25': C0244
'26': C0257
'27': C0259
'28': C0263
'29': C0264
'30': C0265
'31': C0280
'32': C0281
'33': C0282
'34': C0283
'35': C0296
'36': C0303
'37': C0304
'38': C0305
'39': C0306
'40': C0308
'41': C0309
'42': C0310
'43': C0311
'44': C0316
'45': D0015
'46': D0048
'47': D0049
'48': D0050
'49': D0051
'50': D0058
'51': D0060
'52': D0061
'53': D0062
'54': D0063
'55': D0064
'56': D0065
'57': D0066
'58': D0067
'59': D0068
'60': D0069
'61': D0070
'62': D0071
'63': D0102
'64': D0103
'65': D0104
'66': D0105
'67': D0125
'68': D0126
'69': D0127
'70': D0128
'71': D0129
'72': D0130
'73': D0131
'74': D0132
'75': D0137
'76': D0138
'77': D0140
'78': D0143
'79': D0144
'80': D0145
'81': D0146
'82': D0147
'83': D0172
'84': D0173
'85': D0176
'86': D0177
'87': D0178
'88': D0179
'89': D0180
'90': D0181
'91': D0184
'92': D0185
'93': D0186
'94': D0241
'95': D0242
'96': D0245
'97': D0246
'98': D0247
'99': D0248
'100': D0249
'101': D0250
'102': D0251
'103': D0252
'104': D0268
'105': D0269
'106': D0270
'107': D0271
'108': D0272
'109': D0273
'110': D0274
'111': D0275
'112': D0276
'113': D0277
'114': D0278
'115': D0279
'116': D0284
'117': D0286
'118': D0287
'119': D0290
'120': D0298
'121': D0299
'122': D0315
'123': D0325
'124': D0326
'125': D0327
'126': D0328
'127': L0044
'128': L0045
'129': L0046
'130': L0047
'131': L0053
'132': L0055
'133': L0056
'134': L0072
'135': L0073
'136': L0074
'137': L0075
'138': L0076
'139': L0077
'140': L0080
'141': L0084
'142': L0085
'143': L0086
'144': L0115
'145': L0121
'146': L0122
'147': L0133
'148': L0134
'149': L0135
'150': L0136
'151': L0139
'152': L0141
'153': L0148
'154': L0149
'155': L0150
'156': L0151
'157': L0152
'158': L0153
'159': L0154
'160': L0155
'161': L0156
'162': L0157
'163': L0158
'164': L0160
'165': L0161
'166': L0162
'167': L0163
'168': L0164
'169': L0165
'170': L0166
'171': L0167
'172': L0168
'173': L0169
'174': L0170
'175': L0239
'176': L0240
'177': L0256
'178': L0266
'179': L0285
'180': L0288
'181': L0291
'182': L0292
'183': L0297
'184': L0307
'185': L0312
'186': L0313
'187': L0314
'188': T0006
'189': T0007
'190': T0078
'191': T0081
'192': T0082
'193': T0083
'194': T0087
'195': T0088
'196': T0089
'197': T0111
'198': T0116
'199': T0159
'200': T0171
'201': T0238
'202': T0254
'203': T0255
'204': T0260
'205': T0261
'206': T0262
'207': T0267
'208': T0289
'209': T0294
'210': T0295
'211': T0300
'212': T0301
'213': T0302
'214': T0317
'215': T0318
'216': T0319
'217': T0320
'218': T0323
- name: cname
dtype: string
- name: pinyin
dtype: string
splits:
- name: train
num_bytes: 2337167
num_examples: 4956
download_size: 6640960937
dataset_size: 2337167
- config_name: eval
features:
- name: mel
dtype: image
- name: cqt
dtype: image
- name: chroma
dtype: image
- name: label
dtype:
class_label:
names:
'0': C0090
'1': C0091
'2': C0092
'3': C0093
'4': C0094
'5': C0095
'6': C0096
'7': C0097
'8': C0098
'9': C0099
'10': C0100
'11': C0101
'12': C0113
'13': C0114
'14': C0117
'15': C0123
'16': C0124
'17': C0182
'18': C0183
'19': C0187
'20': C0188
'21': C0200
'22': C0201
'23': C0237
'24': C0243
'25': C0244
'26': C0257
'27': C0259
'28': C0263
'29': C0264
'30': C0265
'31': C0280
'32': C0281
'33': C0282
'34': C0283
'35': C0296
'36': C0303
'37': C0304
'38': C0305
'39': C0306
'40': C0308
'41': C0309
'42': C0310
'43': C0311
'44': C0316
'45': D0015
'46': D0048
'47': D0049
'48': D0050
'49': D0051
'50': D0058
'51': D0060
'52': D0061
'53': D0062
'54': D0063
'55': D0064
'56': D0065
'57': D0066
'58': D0067
'59': D0068
'60': D0069
'61': D0070
'62': D0071
'63': D0102
'64': D0103
'65': D0104
'66': D0105
'67': D0125
'68': D0126
'69': D0127
'70': D0128
'71': D0129
'72': D0130
'73': D0131
'74': D0132
'75': D0137
'76': D0138
'77': D0140
'78': D0143
'79': D0144
'80': D0145
'81': D0146
'82': D0147
'83': D0172
'84': D0173
'85': D0176
'86': D0177
'87': D0178
'88': D0179
'89': D0180
'90': D0181
'91': D0184
'92': D0185
'93': D0186
'94': D0241
'95': D0242
'96': D0245
'97': D0246
'98': D0247
'99': D0248
'100': D0249
'101': D0250
'102': D0251
'103': D0252
'104': D0268
'105': D0269
'106': D0270
'107': D0271
'108': D0272
'109': D0273
'110': D0274
'111': D0275
'112': D0276
'113': D0277
'114': D0278
'115': D0279
'116': D0284
'117': D0286
'118': D0287
'119': D0290
'120': D0298
'121': D0299
'122': D0315
'123': D0325
'124': D0326
'125': D0327
'126': D0328
'127': L0044
'128': L0045
'129': L0046
'130': L0047
'131': L0053
'132': L0055
'133': L0056
'134': L0072
'135': L0073
'136': L0074
'137': L0075
'138': L0076
'139': L0077
'140': L0080
'141': L0084
'142': L0085
'143': L0086
'144': L0115
'145': L0121
'146': L0122
'147': L0133
'148': L0134
'149': L0135
'150': L0136
'151': L0139
'152': L0141
'153': L0148
'154': L0149
'155': L0150
'156': L0151
'157': L0152
'158': L0153
'159': L0154
'160': L0155
'161': L0156
'162': L0157
'163': L0158
'164': L0160
'165': L0161
'166': L0162
'167': L0163
'168': L0164
'169': L0165
'170': L0166
'171': L0167
'172': L0168
'173': L0169
'174': L0170
'175': L0239
'176': L0240
'177': L0256
'178': L0266
'179': L0285
'180': L0288
'181': L0291
'182': L0292
'183': L0297
'184': L0307
'185': L0312
'186': L0313
'187': L0314
'188': T0006
'189': T0007
'190': T0078
'191': T0081
'192': T0082
'193': T0083
'194': T0087
'195': T0088
'196': T0089
'197': T0111
'198': T0116
'199': T0159
'200': T0171
'201': T0238
'202': T0254
'203': T0255
'204': T0260
'205': T0261
'206': T0262
'207': T0267
'208': T0289
'209': T0294
'210': T0295
'211': T0300
'212': T0301
'213': T0302
'214': T0317
'215': T0318
'216': T0319
'217': T0320
'218': T0323
splits:
- name: train
num_bytes: 18475805
num_examples: 34630
- name: validation
num_bytes: 2247162
num_examples: 4212
- name: test
num_bytes: 2247240
num_examples: 4212
download_size: 3443906087
dataset_size: 22970207
configs:
- config_name: default
data_files:
- split: train
path: default/train/data-*.arrow
- config_name: eval
data_files:
- split: train
path: eval/train/data-*.arrow
- split: validation
path: eval/validation/data-*.arrow
- split: test
path: eval/test/data-*.arrow
---
# Dataset Card for Chinese Traditional Instrument Sound
## Original Content
The original dataset is created by [[1]](https://link.springer.com/content/pdf/10.1007/978-981-13-8707-4_5.pdf), with no evaluation provided. The original CTIS dataset contains recordings from 287 varieties of Chinese traditional instruments, reformed Chinese musical instruments, and instruments from ethnic minority groups. Notably, some of these instruments are rarely encountered by the majority of the Chinese populace. The dataset was later utilized by [[2]](https://ietresearch.onlinelibrary.wiley.com/doi/pdf/10.1049/ccs2.12047) for Chinese instrument recognition, where only 78 instruments—approximately one-third of the total instrument classes—were used.
## Integration
We begin by performing data cleaning to remove recordings without specific instrument labels. Additionally, recordings that are not instrumental sounds, such as interview recordings, are removed to enhance usability.
Finally, instrument categories lacking specific labels are excluded. The filtered dataset contains recordings of 209 types of Chinese traditional musical instruments. Compared to the original 287 instrument types, 78 were removed due to missing instrument labels. Among the remaining instruments, seven have two variants each, and one instrument, Yangqin, has four variants. We treat variants as separate classes, thus 219 labels are included at last.
In the original dataset, the Chinese character label for each instrument was represented by the folder name housing its audio files.
During integration, we add Chinese pinyin label to make the dataset more accessible to researchers who are not familiar in Chinese.
Then, we've reorganized the data into a dictionary with five columns, which includes: audio with a sampling rate of 44,100 Hz, pre-processed mel spectrogram, numerical label, instrument name in Chinese, and instrument name in Chinese pinyin. The provision of mel spectrograms primarily serves to enhance the visualization of the audio in the [viewer](https://huggingface.co/datasets/ccmusic-database/CTIS/viewer). For the remaining datasets, these mel spectrograms will also be included in the integrated data structure. The total data number is 4,956, with a duration of 32.63 hours. The average duration of the recordings is 23.7 seconds.
We have constructed the [default subset](#default-subset) of the current integrated version of the dataset. Building on the default subset, we applied silence removal with a threshold of top_db=40 to the audio files, converting them into mel, CQT, and chroma spectrograms. The audio was then segmented into 2-second clips, with segments shorter than 2 seconds padded using circular padding. This process resulted in the construction of the [eval subset](#eval-subset) for dataset evaluation experiments.
## Statistics
|  |  |
| :--------------------------------------------------------------------------------------------: | :--------------------------------------------------------------------------------------------: |
| **Fig. 1** | **Fig. 2** |
Due to the large number of categories in this dataset, we are unable to provide the audio duration per category and the proportion of audio clips by category, as we have done for the other datasets. Instead, we provide a chart showing the distribution of the number of audio clips across different durations, as shown in **Fig. 1**. A second graph, shown in **Fig. 2**, shows the distribution of instrument categories over various durations. From **Fig. 1**, 3611 clips (73%) are concentrated in the range 0-27.5 s, with a steep drop in the number of samples in longer durations. In **Fig. 2**, about half of the instruments, totaling 117, have a duration of less than 437 seconds, while 102 instruments have a duration greater than this number. After the total duration exceeds 881 seconds, the number of instruments drops sharply. This indicates that the dataset has a certain degree of class imbalance.
| Statistical items | Values |
| :------------------------------------------: | :-------------------: |
| Total count | `4956` |
| Total duration(s) | `117482.75025085056` |
| Mean duration(s) | `23.705155417847124` |
| Min duration(s) | `0.27639583333333334` |
| Max duration(s) | `494.2522902494331` |
| Instrument types | `209` |
| Label Numbers | `219` |
| Eval subset total | `43054` |
| Class with the longest audio duartion | `中阮 (Zhong1 ruan3)` |
| Class in the longest audio duartion interval | `箜篌 (Kong1 hou2)` |
## Dataset Structure
<https://huggingface.co/datasets/ccmusic-database/CTIS/viewer>
### Data Fields
219 Chinese instruments
### Default Subset Data Instances
.zip(.wav), .csv
### Eval Subset Splits
train, validation, test
## Dataset Description
### Dataset Summary
A dataset of Chinese instrument audio
### Supported Tasks and Leaderboards
MIR, audio classification
### Languages
Chinese, English
## Usage
### Default Subset
```python
from datasets import load_dataset
dataset = load_dataset("ccmusic-database/CTIS", name="default", split="train")
for item in dataset:
print(item)
```
### Eval Subset
```python
from datasets import load_dataset
dataset = load_dataset("ccmusic-database/CTIS", name="eval")
for item in ds["train"]:
print(item)
for item in ds["validation"]:
print(item)
for item in ds["test"]:
print(item)
```
## Maintenance
```bash
GIT_LFS_SKIP_SMUDGE=1 git clone [email protected]:datasets/ccmusic-database/CTIS
cd CTIS
```
## Mirror
<https://www.modelscope.cn/datasets/ccmusic-database/CTIS>
## Additional Information
### Dataset Curators
Zijin Li
### Evaluation
[1] [Liang, Xiaojing et al. “Constructing a Multimedia Chinese Musical Instrument Database.” Lecture Notes in Electrical Engineering (2019): n. pag.](https://link.springer.com/content/pdf/10.1007/978-981-13-8707-4_5.pdf)<br>
[2] [Li, R., & Zhang, Q. (2022). Audio recognition of Chinese traditional instruments based on machine learning. Cogn. Comput. Syst., 4, 108-115.](https://ietresearch.onlinelibrary.wiley.com/doi/pdf/10.1049/ccs2.12047)<br>
[3] <https://huggingface.co/ccmusic-database/CTIS><br>
### Citation Information
```bibtex
@inproceedings{10.1007/978-981-13-8707-4_5,
author = {Xiaojing Liang and Zijin Li and Jingyu Liu and Wei Li and Jiaxing Zhu and Baoqiang Han},
booktitle = {Proceedings of the 6th Conference on Sound and Music Technology (CSMT)},
pages = {53-60},
publisher = {Springer Singapore},
address = {Singapore},
title = {Constructing a Multimedia Chinese Musical Instrument Database},
year = {2019}
}
```
### Contributions
An audio dataset for Chinese Instrument |