Dataset Viewer
Auto-converted to Parquet
text
stringlengths
957
885k
""" Module providing unit-testing for `~halotools.utils.value_added_halo_table_functions`. """ from __future__ import (absolute_import, division, print_function) from copy import deepcopy from collections import Counter import numpy as np import pytest from astropy.extern.six.moves import xrange as range from ..value_added_halo_table_functions import broadcast_host_halo_property, add_halo_hostid from ..crossmatch import crossmatch from ...sim_manager import FakeSim from ...custom_exceptions import HalotoolsError __all__ = ('test_broadcast_host_halo_mass1', ) def test_broadcast_host_halo_mass1(): """ """ fake_sim = FakeSim() t = fake_sim.halo_table broadcast_host_halo_property(t, 'halo_mvir', delete_possibly_existing_column=True) assert 'halo_mvir_host_halo' in list(t.keys()) hostmask = t['halo_hostid'] == t['halo_id'] assert np.all(t['halo_mvir_host_halo'][hostmask] == t['halo_mvir'][hostmask]) assert np.any(t['halo_mvir_host_halo'][~hostmask] != t['halo_mvir'][~hostmask]) # Verify that both the group_member_generator method and the # crossmatch method give identical results for calculation of host halo mass idx_table1, idx_table2 = crossmatch(t['halo_hostid'], t['halo_id']) t['tmp'] = np.zeros(len(t), dtype=t['halo_mvir'].dtype) t['tmp'][idx_table1] = t['halo_mvir'][idx_table2] assert np.all(t['tmp'] == t['halo_mvir_host_halo']) data = Counter(t['halo_hostid']) frequency_analysis = data.most_common() for igroup in range(0, 10): idx = np.where(t['halo_hostid'] == frequency_analysis[igroup][0])[0] idx_host = np.where(t['halo_id'] == frequency_analysis[igroup][0])[0] assert np.all(t['halo_mvir_host_halo'][idx] == t['halo_mvir'][idx_host]) for igroup in range(-10, -1): idx = np.where(t['halo_hostid'] == frequency_analysis[igroup][0])[0] idx_host = np.where(t['halo_id'] == frequency_analysis[igroup][0])[0] assert np.all(t['halo_mvir_host_halo'][idx] == t['halo_mvir'][idx_host]) del t def test_broadcast_host_halo_mass2(): """ """ fake_sim = FakeSim() with pytest.raises(HalotoolsError) as err: broadcast_host_halo_property(4, 'xxx') substr = "The input ``table`` must be an Astropy `~astropy.table.Table` object" assert substr in err.value.args[0] def test_broadcast_host_halo_mass3(): """ """ fake_sim = FakeSim() t = fake_sim.halo_table with pytest.raises(HalotoolsError) as err: broadcast_host_halo_property(t, 'xxx') substr = "The input table does not have the input ``halo_property_key``" assert substr in err.value.args[0] def test_broadcast_host_halo_mass4(): """ """ fake_sim = FakeSim() t = fake_sim.halo_table with pytest.raises(HalotoolsError) as err: broadcast_host_halo_property(t, 'halo_mvir') substr = "Your input table already has an existing new_colname column name." assert substr in err.value.args[0] broadcast_host_halo_property(t, 'halo_mvir', delete_possibly_existing_column=True) def test_add_halo_hostid1(): """ """ with pytest.raises(HalotoolsError) as err: add_halo_hostid(5, delete_possibly_existing_column=False) substr = "The input ``table`` must be an Astropy `~astropy.table.Table` object" assert substr in err.value.args[0] def test_add_halo_hostid2(): """ """ fake_sim = FakeSim() t = fake_sim.halo_table del t['halo_id'] with pytest.raises(HalotoolsError) as err: add_halo_hostid(t, delete_possibly_existing_column=False) substr = "The input table must have ``halo_upid`` and ``halo_id`` keys" assert substr in err.value.args[0] def test_add_halo_hostid3(): """ """ fake_sim = FakeSim() t = fake_sim.halo_table with pytest.raises(HalotoolsError) as err: add_halo_hostid(t, delete_possibly_existing_column=False) substr = "Your input table already has an existing ``halo_hostid`` column name." assert substr in err.value.args[0] existing_halo_hostid = deepcopy(t['halo_hostid'].data) del t['halo_hostid'] add_halo_hostid(t, delete_possibly_existing_column=False) assert np.all(t['halo_hostid'] == existing_halo_hostid) add_halo_hostid(t, delete_possibly_existing_column=True) assert np.all(t['halo_hostid'] == existing_halo_hostid)
import logging from typing import Callable, Union from tags_model import (TagCategory, TagCategoryBase, TagCategoryBaseItem, TagItem) tag_configuration: list[TagCategoryBase] = list() def load_tag_configuration(config_file_name: str) -> None: with open(config_file_name, mode='r', encoding='utf-8-sig') as f: is_heading: bool = True current_heading_index: int = -1 for line in f: tag_line: str = line.strip() if not tag_line: is_heading = True # An empty line is marking the category end. # The next line is the other category beginning. continue if is_heading: tag_configuration.append(TagCategoryBase((tag_line, None))) current_heading_index += 1 is_heading = False else: tag_configuration[current_heading_index].add_item(tag_line) log_tags('Loaded configuration:', tag_configuration) def load_tag_category(loaded_categories: list[TagCategory], tag_config: TagCategoryBase, included_predicate: Callable[[TagItem], bool]) -> TagCategory: def initialize_tag(tag_category: TagCategory, tag_config: TagCategoryBaseItem, included_predicate: Callable[[TagItem], bool]) -> TagItem: result: TagItem = TagItem((tag_config.name, tag_category)) # Use a predicate or an included property initializer? result.included = included_predicate(result) return result result: TagCategory = TagCategory((tag_config.name, None)) loaded_categories.append(result) result.items = [initialize_tag(result, tag, included_predicate) for tag in tag_config.items] return result def load_tags(tags_file_name: str) -> list[TagCategory]: def load_current_tags() -> set[str]: with open(tags_file_name, mode='r', encoding='utf-8-sig') as f: # Skip <!DOCTYPE html> header line next(f) # strip '<div>' from left and '</div>\n' from right for the tag name result: set[str] = {get_tag_key(line[5:-7]) for line in f} return result def get_tag_key(tag_name: str) -> str: return tag_name.upper() def unregister_tag(tag: str) -> bool: result: bool = tag in current_tags if result: current_tags.remove(tag) return result current_tags: set[str] = load_current_tags() result: list[TagCategory] = list() for tag_category in tag_configuration: load_tag_category(result, tag_category, lambda tag: unregister_tag(get_tag_key(tag.name))) if len(current_tags): additional: TagCategoryBase = TagCategoryBase(('Additional tags', None)) additional.items = [TagCategoryBaseItem((tag_name, additional)) for tag_name in current_tags] load_tag_category(result, additional, lambda t: True) log_tags('Loaded file tags:', result) return result def save_tags(tags_file_name: str, tag_categories: list[str]) -> None: with open(tags_file_name, mode='w', encoding='utf-8-sig') as f: f.write('<!DOCTYPE html>\n') for tag in tag_categories: _ = f.write(f'<div>{tag}</div>\n') def log_tags(list_description: str, tag_list: Union[list[TagCategoryBase], list[TagCategory]]) -> None: logging.debug(list_description) for category in tag_list: [logging.debug(f'{category.name} : {tag.__dict__}') for tag in category.items] logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
<filename>pkgs/ops-pkg/src/genie/libs/ops/lldp/iosxr/tests/lldp_output.py '''LLDP Genie Ops Object Outputs for IOSXR.''' class LldpOutput(object): ShowLldp = { "hello_timer": 30, "enabled": True, "hold_timer": 120, "status": "active", "reinit_delay": 2 } ShowLldpEntry = { 'interfaces': { 'GigabitEthernet0/0/0/0': { 'port_id': { 'GigabitEthernet2': { 'neighbors': { 'R1_csr1000v.openstacklocal': { 'chassis_id': '001e.49f7.2c00', 'port_description': 'GigabitEthernet2', 'system_name': 'R1_csr1000v.openstacklocal', 'neighbor_id': 'R1_csr1000v.openstacklocal', 'system_description': 'Cisco IOS Software [Everest], Virtual XE Software (X86_64_LINUX_IOSD-UNIVERSALK9-M), Version 16.6.1, RELEASE SOFTWARE (fc2)\nTechnical Support: http://www.cisco.com/techsupport\nCopyright (c) 1986-2017 by Cisco Systems, Inc.\nCompiled Sat 22-Jul-17 05:51 by', 'time_remaining': 117, 'hold_time': 120, 'capabilities': { 'bridge': { 'system': True, }, 'router': { 'system': True, 'enabled': True, }, }, 'management_address': '10.1.2.1', }, }, }, }, }, 'GigabitEthernet0/0/0/1': { 'port_id': { 'Ethernet1/2': { 'neighbors': { 'R3_n9kv': { 'chassis_id': '5e00.8002.0009', 'port_description': 'Ethernet1/2', 'system_name': 'R3_n9kv', 'neighbor_id': 'R3_n9kv', 'system_description': 'Cisco Nexus Operating System (NX-OS) Software 7.0(3)I7(1)\nTAC support: http://www.cisco.com/tac\nCopyright (c) 2002-2017, Cisco Systems, Inc. All rights reserved.\n', 'time_remaining': 103, 'hold_time': 120, 'capabilities': { 'bridge': { 'system': True, 'enabled': True, }, 'router': { 'system': True, 'enabled': True, }, }, }, }, }, }, }, }, 'total_entries': 2, } ShowLldpNeighborsDetail = { 'interfaces': { 'GigabitEthernet0/0/0/0': { 'port_id': { 'GigabitEthernet2': { 'neighbors': { 'R1_csr1000v.openstacklocal': { 'chassis_id': '001e.49f7.2c00', 'port_description': 'GigabitEthernet2', 'system_name': 'R1_csr1000v.openstacklocal', 'neighbor_id': 'R1_csr1000v.openstacklocal', 'system_description': 'Cisco IOS Software [Everest], Virtual XE Software (X86_64_LINUX_IOSD-UNIVERSALK9-M), Version 16.6.1, RELEASE SOFTWARE (fc2)\nTechnical Support: http://www.cisco.com/techsupport\nCopyright (c) 1986-2017 by Cisco Systems, Inc.\nCompiled Sat 22-Jul-17 05:51 by', 'time_remaining': 90, 'hold_time': 120, 'capabilities': { 'bridge': { 'system': True, }, 'router': { 'system': True, 'enabled': True, }, }, 'management_address': '10.1.2.1', }, }, }, }, }, 'GigabitEthernet0/0/0/1': { 'port_id': { 'Ethernet1/2': { 'neighbors': { 'R3_n9kv': { 'chassis_id': '5e00.8002.0009', 'port_description': 'Ethernet1/2', 'system_name': 'R3_n9kv', 'neighbor_id': 'R3_n9kv', 'system_description': 'Cisco Nexus Operating System (NX-OS) Software 7.0(3)I7(1)\nTAC support: http://www.cisco.com/tac\nCopyright (c) 2002-2017, Cisco Systems, Inc. All rights reserved.\n', 'time_remaining': 106, 'hold_time': 120, 'capabilities': { 'bridge': { 'system': True, 'enabled': True, }, 'router': { 'system': True, 'enabled': True, }, }, }, }, }, }, }, }, 'total_entries': 2, } ShowLldpTraffic = { "counters": { "frame_in": 399, "frame_out": 588, "frame_error_in": 0, "frame_discard": 0, "tlv_discard": 119, 'tlv_unknown': 119, 'entries_aged_out': 0 } } ShowLldpInterface = { 'interfaces': { 'GigabitEthernet0/0/0/0': { 'tx': 'enabled', 'rx': 'enabled', 'tx_state': 'idle', 'rx_state': 'wait for frame', }, 'GigabitEthernet0/0/0/1': { 'tx': 'enabled', 'rx': 'enabled', 'tx_state': 'idle', 'rx_state': 'wait for frame', }, } } lldpOutput = { 'enabled': True, 'hello_timer': 30, 'hold_timer': 120, 'interfaces': { 'GigabitEthernet0/0/0/1': { 'port_id': { 'Ethernet1/2': { 'neighbors': { 'R3_n9kv': { 'neighbor_id': 'R3_n9kv', 'system_name': 'R3_n9kv', 'system_description': 'Cisco Nexus Operating System (NX-OS) Software 7.0(3)I7(1)\nTAC support: http://www.cisco.com/tac\nCopyright (c) 2002-2017, Cisco Systems, Inc. All rights reserved.\n', 'chassis_id': '5e00.8002.0009', 'port_description': 'Ethernet1/2', 'capabilities': { 'router': { 'enabled': True, }, 'bridge': { 'enabled': True, }, }, }, }, }, }, 'enabled': True, }, 'GigabitEthernet0/0/0/0': { 'port_id': { 'GigabitEthernet2': { 'neighbors': { 'R1_csr1000v.openstacklocal': { 'neighbor_id': 'R1_csr1000v.openstacklocal', 'system_name': 'R1_csr1000v.openstacklocal', 'system_description': 'Cisco IOS Software [Everest], Virtual XE Software (X86_64_LINUX_IOSD-UNIVERSALK9-M), Version 16.6.1, RELEASE SOFTWARE (fc2)\nTechnical Support: http://www.cisco.com/techsupport\nCopyright (c) 1986-2017 by Cisco Systems, Inc.\nCompiled Sat 22-Jul-17 05:51 by', 'chassis_id': '001e.49f7.2c00', 'port_description': 'GigabitEthernet2', 'management_address': '10.1.2.1', 'capabilities': { 'router': { 'enabled': True, }, }, }, }, }, }, 'enabled': True, }, }, 'counters': { 'frame_in': 399, 'frame_out': 588, 'frame_error_in': 0, 'frame_discard': 0, 'tlv_discard': 119, 'tlv_unknown': 119, 'entries_aged_out': 0, }, }
<gh_stars>1-10 """secp256k1 elliptic curve cryptography interface.""" # The process for using SECP256k1 is complex and more involved than ED25519. # # See https://xrpl.org/cryptographic-keys.html#secp256k1-key-derivation # for an overview of the algorithm. from __future__ import annotations from hashlib import sha256 from typing import Callable, Tuple, Type, cast from ecpy.curves import Curve # type: ignore from ecpy.ecdsa import ECDSA # type: ignore from ecpy.keys import ECPrivateKey, ECPublicKey # type: ignore from typing_extensions import Final, Literal from xrpl.core.keypairs.crypto_implementation import CryptoImplementation from xrpl.core.keypairs.exceptions import XRPLKeypairsException from xrpl.core.keypairs.helpers import sha512_first_half _CURVE: Final[Curve] = Curve.get_curve("secp256k1") _GROUP_ORDER: Final[int] = _CURVE.order _SIGNER: Final[ECDSA] = ECDSA("DER") # String keys must be _KEY_LENGTH long _KEY_LENGTH: Final[int] = 66 # Pad string keys with _PADDING_PREFIX to reach _KEY_LENGTH _PADDING_PREFIX: Final[str] = "0" # Generated sequence values are _SEQUENCE_SIZE bytes unsigned big-endian _SEQUENCE_SIZE: Final[int] = 4 _SEQUENCE_MAX: Final[int] = 256 ** _SEQUENCE_SIZE # Intermediate private keys are always padded with 4 bytes of zeros _INTERMEDIATE_KEYPAIR_PADDING: Final[bytes] = (0).to_bytes( 4, byteorder="big", signed=False, ) class SECP256K1(CryptoImplementation): """ Methods for using the ECDSA cryptographic system with the secp256k1 elliptic curve. """ @classmethod def derive_keypair( cls: Type[SECP256K1], decoded_seed: bytes, is_validator: bool ) -> Tuple[str, str]: """ Derive the public and private secp256k1 keys from a given seed value. Args: decoded_seed: The secp256k1 seed to derive a key pair from, as bytes. is_validator: Whether to derive a validator keypair. Returns: A (public key, private key) pair derived from the given seed. """ root_public, root_private = cls._do_derive_part(decoded_seed, "root") # validator keys just stop at the first pass if is_validator: return cls._format_keys(root_public, root_private) mid_public, mid_private = cls._do_derive_part( cls._public_key_to_bytes(root_public), "mid", ) final_public, final_private = cls._derive_final_pair( root_public, root_private, mid_public, mid_private, ) return cls._format_keys(final_public, final_private) @classmethod def sign(cls: Type[SECP256K1], message: bytes, private_key: str) -> bytes: """ Signs a message using a given secp256k1 private key. Args: message: The message to sign, as bytes. private_key: The private key to use to sign the message. Returns: The signature of the message, as bytes. """ wrapped_private = ECPrivateKey(int(private_key, 16), _CURVE) return cast( bytes, _SIGNER.sign_rfc6979( sha512_first_half(message), wrapped_private, sha256, canonical=True, ), ) @classmethod def is_valid_message( cls: Type[SECP256K1], message: bytes, signature: bytes, public_key: str ) -> bool: """ Verifies the signature on a given message. Args: message: The message to validate. signature: The signature of the message. public_key: The public key to use to verify the message and signature. Returns: Whether the message is valid for the given signature and public key. """ public_key_point = _CURVE.decode_point(bytes.fromhex(public_key)) wrapped_public = ECPublicKey(public_key_point) return cast( bool, _SIGNER.verify(sha512_first_half(message), signature, wrapped_public), ) @classmethod def _format_keys( cls: Type[SECP256K1], public: ECPublicKey, private: ECPrivateKey ) -> Tuple[str, str]: return ( cls._format_key(cls._public_key_to_str(public)), cls._format_key(cls._private_key_to_str(private)), ) @classmethod def _format_key(cls: Type[SECP256K1], keystr: str) -> str: return keystr.rjust(_KEY_LENGTH, _PADDING_PREFIX).upper() @classmethod def _public_key_to_bytes(cls: Type[SECP256K1], key: ECPublicKey) -> bytes: return bytes(_CURVE.encode_point(key.W, compressed=True)) @classmethod def _public_key_to_str(cls: Type[SECP256K1], key: ECPublicKey) -> str: return cls._public_key_to_bytes(key).hex() @classmethod def _do_derive_part( cls: Type[SECP256K1], bytes_input: bytes, phase: Literal["root", "mid"] ) -> Tuple[ECPublicKey, ECPrivateKey]: """ Given bytes_input determine public/private keypair for a given phase of this algorithm. The difference between generating the root and intermediate keypairs is just what bytes are input by the caller and that the intermediate keypair needs to inject _INTERMEDIATE_KEYPAIR_PADDING into the value to hash to get the raw private key. """ def _candidate_merger(candidate: bytes) -> bytes: if phase == "root": return bytes_input + candidate return bytes_input + _INTERMEDIATE_KEYPAIR_PADDING + candidate raw_private = cls._get_secret(_candidate_merger) wrapped_private = ECPrivateKey(int.from_bytes(raw_private, "big"), _CURVE) return wrapped_private.get_public_key(), wrapped_private @classmethod def _derive_final_pair( cls: Type[SECP256K1], root_public: ECPublicKey, root_private: ECPrivateKey, mid_public: ECPublicKey, mid_private: ECPrivateKey, ) -> Tuple[ECPublicKey, ECPrivateKey]: raw_private = (root_private.d + mid_private.d) % _GROUP_ORDER wrapped_private = ECPrivateKey(raw_private, _CURVE) wrapped_public = ECPublicKey(_CURVE.add_point(root_public.W, mid_public.W)) return wrapped_public, wrapped_private @classmethod def _get_secret( cls: Type[SECP256K1], candidate_merger: Callable[[bytes], bytes] ) -> bytes: """ Given a function `candidate_merger` that knows how to prepare a sequence candidate bytestring into a possible full candidate secret, returns the first sequence value that is valid. If none are valid, raises; however this should be so exceedingly rare as to ignore. """ for raw_root in range(_SEQUENCE_MAX): root = raw_root.to_bytes( _SEQUENCE_SIZE, byteorder="big", signed=False, ) candidate = sha512_first_half(candidate_merger(root)) if cls._is_secret_valid(candidate): return candidate raise XRPLKeypairsException( """Could not determine a key pair. This is extremely improbable. Please try again.""", ) @classmethod def _is_secret_valid(cls: Type[SECP256K1], secret: bytes) -> bool: numerical_secret = int.from_bytes(secret, "big") return numerical_secret in range(1, _GROUP_ORDER)
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Tests for validation.py. """ import json import os import tempfile import unittest from app.executor import validation class ValidationTest(unittest.TestCase): def setUp(self): self.tmp_dir = tempfile.TemporaryDirectory() self.repo_dir = self.tmp_dir.name def tearDown(self): self.tmp_dir.cleanup() def test_import_targets_valid_absolute_names(self): manifest_path = os.path.join(self.repo_dir, 'scripts/us_fed/manifest.json') os.makedirs(os.path.dirname(manifest_path), exist_ok=True) with open(manifest_path, 'w+') as manifest: manifest.write( json.dumps( {'import_specifications': [{ 'import_name': 'treasury' }]})) manifest_path = os.path.join(self.repo_dir, 'us_bls/cpi/manifest.json') os.makedirs(os.path.dirname(manifest_path), exist_ok=True) with open(manifest_path, 'w+') as manifest: manifest.write( json.dumps( {'import_specifications': [{ 'import_name': 'cpi_u' }]})) validation.are_import_targets_valid( ['scripts/us_fed:treasury', 'us_bls/cpi:cpi_u'], ['utils/template.py'], self.repo_dir, 'manifest.json') def test_import_targets_valid_name_not_exist(self): manifest_path = os.path.join(self.repo_dir, 'scripts/us_fed/manifest.json') os.makedirs(os.path.dirname(manifest_path), exist_ok=True) with open(manifest_path, 'w+') as manifest: manifest.write( json.dumps( {'import_specifications': [{ 'import_name': 'treasury' }]})) with self.assertRaises(ValueError) as context: validation.are_import_targets_valid(['scripts/us_fed:treasuryyy'], ['utils/template.py'], self.repo_dir, 'manifest.json') self.assertIn('treasuryyy not found', str(context.exception)) def test_import_targets_valid_manifest_not_exist(self): with self.assertRaises(ValueError) as context: validation.are_import_targets_valid( ['scripts/us_fed:treasury', 'us_bls/cpi:cpi_u'], ['utils/template.py'], self.repo_dir, 'manifest.json') self.assertIn('manifest.json does not exist', str(context.exception)) def test_import_targets_valid_relative_names(self): manifest_path = os.path.join(self.repo_dir, 'scripts/us_fed/manifest.json') os.makedirs(os.path.dirname(manifest_path), exist_ok=True) with open(manifest_path, 'w+') as file: manifest = { 'import_specifications': [{ 'import_name': 'treasury1' }, { 'import_name': 'treasury2' }] } file.write(json.dumps(manifest)) validation.are_import_targets_valid(['treasury1', 'treasury2'], ['scripts/us_fed'], self.repo_dir, 'manifest.json') def test_import_targets_valid_relative_names_multiple_dirs(self): manifest_path = os.path.join(self.repo_dir, 'scripts/us_fed/manifest.json') os.makedirs(os.path.dirname(manifest_path), exist_ok=True) with open(manifest_path, 'w+') as file: manifest = { 'import_specifications': [{ 'import_name': 'treasury1' }, { 'import_name': 'treasury2' }] } file.write(json.dumps(manifest)) with self.assertRaises(ValueError) as context: validation.are_import_targets_valid(['treasury1', 'treasury2'], ['scripts/us_fed', 'foo/bar'], self.repo_dir, 'manifest.json') self.assertIn('relative import names', str(context.exception)) def test_import_spec_valid(self): import_dir = 'scripts/us_fed' os.makedirs(os.path.join(self.repo_dir, import_dir, 'dir'), exist_ok=True) script_path = os.path.join(self.repo_dir, import_dir, 'dir/foo.py') print(script_path) with open(script_path, 'w+') as script: script.write('line\n') script.flush() script_path = os.path.join(self.repo_dir, import_dir, 'bar.py') with open(script_path, 'w+') as script: script.write('line\n') script.flush() spec = { 'import_name': 'treausry', 'provenance_url': 'url', 'provenance_description': 'description', 'curator_emails': 'curator', 'scripts': ['dir/foo.py', 'dir/../bar.py'] } validation._is_import_spec_valid(spec, self.repo_dir, import_dir) def test_import_spec_valid_fields_absent(self): spec = { 'import_name': 'treausry', 'scripts': ['dir/foo.py', 'dir/../bar.py'] } with self.assertRaises(ValueError) as context: validation._is_import_spec_valid(spec, self.repo_dir, 'scripts/us_fed') self.assertIn( 'provenance_url, provenance_description, curator_emails', str(context.exception)) def test_import_spec_valid_script_not_exist(self): spec = { 'import_name': 'treausry', 'provenance_url': 'url', 'provenance_description': 'description', 'curator_emails': 'curator', 'scripts': ['dir/foo.py', 'dir/../bar.py'] } with self.assertRaises(ValueError) as context: validation._is_import_spec_valid(spec, self.repo_dir, 'scripts/us_fed') self.assertIn('dir/foo.py, dir/../bar.py', str(context.exception)) def test_manifest_valid_fields_absent(self): with self.assertRaises(ValueError) as context: validation.is_manifest_valid({}, self.repo_dir, 'scripts/us_fed') self.assertIn('import_specifications not found', str(context.exception))
from matplotlib import pyplot as plt from matplotlib.patches import Polygon import seaborn as sns from utils import * from analysis import * from SpikeVidUtils import * def tidy_axis(ax, top=False, right=False, left=False, bottom=False): ax.spines['top'].set_visible(top) ax.spines['right'].set_visible(right) ax.spines['left'].set_visible(left) ax.spines['bottom'].set_visible(bottom) ax.xaxis.set_tick_params(top='off', direction='out', width=1) ax.yaxis.set_tick_params(right='off', left='off', direction='out', width=1) def plot_neurons(ax, df, neurons, color_map): # print(df.head()) for id_ in neurons: df_id = df[df['ID'] == id_] if len(df_id) == 0: break color = color_map[id_] ax.scatter(df_id['Time'], df_id['ID'], color=color, marker="|", s=150, label='Simulated') # ax.set_ylim(0, len(neurons)) xlim = int(max(df['Interval'])) ax.set_xlim(0, xlim) ax.set_xticks(np.linspace(0, xlim, num=3)) ax.tick_params(axis='y', labelsize=15) ax.tick_params(axis='x', labelsize=15) def plot_raster_trial(df1, df2, trials, neurons): color_labels = neurons rgb_values = sns.color_palette("bright", len(neurons)) color_map = dict(zip(color_labels, rgb_values)) fig, ax = plt.subplots(nrows=len(trials), ncols=2, figsize=(12,10), squeeze=False) for n, trial in enumerate(trials): df1_trial_n = df1[df1['Trial'] == trial] df2_trial_n = df2[df2['Trial'] == trial] ax[n][0].set_ylabel(f'Trial {trial}') plot_neurons(ax[n][0], df1_trial_n, neurons, color_map) plot_neurons(ax[n][1], df2_trial_n, neurons, color_map) # ax[0][n].get_shared_x_axes().join(ax[0][0], ax[0][n]) # ax[1][n].get_shared_x_axes().join(ax[0][0], ax[1][n]) plt.setp(ax, yticks=neurons, yticklabels=neurons) ax[0][0].set_title('True') ax[0][1].set_title('Predicted') fig.supxlabel('Time (S)') fig.supylabel('Neuron ID') plt.tight_layout() def plot_raster_trial(df1, df2, trials, neurons): color_labels = neurons rgb_values = sns.color_palette("bright", len(neurons)) color_map = dict(zip(color_labels, rgb_values)) fig, ax = plt.subplots(nrows=len(trials), ncols=2, figsize=(12,10), squeeze=False) for n, trial in enumerate(trials): df1_trial_n = df1[df1['Trial'] == trial] df2_trial_n = df2[df2['Trial'] == trial] ax[n][0].set_ylabel(f'Trial {trial}') plot_neurons(ax[n][0], df1_trial_n, neurons, color_map) plot_neurons(ax[n][1], df2_trial_n, neurons, color_map) # ax[0][n].get_shared_x_axes().join(ax[0][0], ax[0][n]) # ax[1][n].get_shared_x_axes().join(ax[0][0], ax[1][n]) plt.setp(ax, yticks=neurons, yticklabels=neurons) ax[0][0].set_title('True') ax[0][1].set_title('Predicted') fig.supxlabel('Time (S)') fig.supylabel('Neuron ID') plt.tight_layout() def get_id_intervals(df, n_id, intervals): id_intervals = np.zeros(len(intervals)) interval_counts = df[df['ID'] == n_id].groupby(df['Interval']).size() id_intervals[interval_counts.index.astype(int).tolist()] = interval_counts.index.astype(int).tolist() return id_intervals.tolist() def get_id_intervals(df, n_id, intervals): id_intervals = np.zeros(len(intervals)) interval_counts = df[df['ID'] == n_id].groupby(df['Interval']).size() id_intervals[interval_counts.index.astype(int).tolist()] = interval_counts.index.astype(int).tolist() return id_intervals.tolist() def plot_var(ax, df, variable, values, color_map, m_s=150, l_w=1): for value in values: color = color_map[value] data = df[df[variable] == value] data[variable] = data[variable].astype('str') ax.scatter(data['Time'], data[variable], color=color, # c=data[variable].map(color_map), marker="|", s=m_s, linewidth=l_w) # ax.xaxis.set_tick_params(top='off', direction='out', width=1) ax.yaxis.set_tick_params(right='off', left='off', direction='out', width=1) ax.set_ylim(0, len(values)) xlim = int(max(df['Interval'])) ax.set_xlim(0, xlim) ax.set_xticks(np.linspace(0, xlim, num=3)) ax.tick_params(axis='y', labelsize=10) ax.tick_params(axis='x', labelsize=10) # ax.spines['top'].set_visible(False) # ax.spines['right'].set_visible(False) # ax.spines['left'].set_visible(False) ax.xaxis.set_tick_params(top='off', direction='out', width=1) # ax.yaxis.set_tick_params(right='off', direction='out', width=1) ms_firing = 25 line_width = 0.75 lw_scatter = 0.1 def plot_firing_comparison(df_1, df_2, id, trials, intervals, figure_name=None): ''' get trial averaged spikes (PSTH) ''' id_ = id true = df_1[(df_1['Trial'].isin(trials)) & (df_1['ID'] == id_)].reset_index(drop=True) pred = df_2[(df_2['Trial'].isin(trials)) & (df_2['ID'] == id_)].reset_index(drop=True) rates_1_id = get_rates(true, [id_], intervals)[id_] rates_2_id = get_rates(pred, [id_], intervals)[id_] left, width = 0.15, 0.85 bottom, height = 0.1, 0.1 spacing = 0.005 height_hist = 0.10 rect_scatter_1 = [left, bottom*4, width, height] rect_scatter_2 = [left, bottom*3, width, height] rect_hist1 = [left, bottom*2, width, height_hist] # rect_hist2 = [left, bottom*1, width, height_hist] # rect_histy = [left + width + spacing, bottom, 0.2, height] if figure_name is None: fig = plt.figure(figsize=(10, 10)) else: fig = figure_name # ax_rast_1 = fig.add_subaxes(rect_scatter_1) # ax_rast_2 = fig.add_axes(rect_scatter_2, sharex=ax_rast_1) # ax_hist_1 = fig.add_axes(rect_hist1, sharex=ax_rast_1) # ax_hist_2 = fig.add_axes(rect_hist2, sharex=ax_rast_1) tidy_axis(fig) no_top_right_ticks(fig) fig.set_yticks([]) fig.set_yticklabels([]) fig.axis('off') ax_rast_1 = fig.inset_axes(rect_scatter_1) ax_rast_2 = fig.inset_axes(rect_scatter_2, sharex=ax_rast_1) ax_hist_1 = fig.inset_axes(rect_hist1, sharex=ax_rast_1) ax_rast_2.axis('off') ax_rast_1.axis('off') axes_list = [ax_rast_1, ax_rast_2, ax_hist_1] # colors = sns.color_palette("gist_ncar_r", 2) colors = ['black', 'red'] def plot_raster_scatter(ax, data, color, label): ax.scatter(data['Interval'], data['ID'], c=color, s=ms_firing, linewidth=lw_scatter, marker='|', label=label) ax.set_xlabel(label) # ax.scatter(true['Interval'], true['ID'].astype('str'), color='#069AF3', marker='|') plot_raster_scatter(ax_rast_2, pred, colors[0], 'Simulated') plot_raster_scatter(ax_rast_1, true, colors[1], 'True') # sns.distplot(true['Interval'], hist=False) # sns.distplot(pred['Interval'], hist=False) sns.kdeplot(pred['Interval'], ax=ax_hist_1, bw_adjust=.25, color=colors[0], lw=line_width, alpha=0.7) #plot(np.array(intervals), rates_1_id, color=colors[0], lw=3) sns.kdeplot(true['Interval'], ax=ax_hist_1, bw_adjust=.25, color=colors[1], lw=line_width, alpha=0.7) #plot(np.array(intervals), rates_2_id, color=colors[1], lw=3) ax_hist_1.set_ylabel('') ax_hist_1.set_yticks([]) sns.despine(top=True, left=True) # tidy_axis(ax_hist_1, bottom=True) # tidy_axis(ax_hist_2, bottom=True) ax_hist_1.set_xlabel([]) # ax_hist_1.spines['bottom'].set_visible(False) # ax_rast_1.spines['bottom'].set_visible(False) # ax_rast_2.spines['bottom'].set_visible(False) # ax_hist_1.spines['top'].set_visible(False) # ax_hist_2.spines['top'].set_visible(False) # xlabels = np.arange(0, max(intervals) + 1, 60) # xticks, xlabels = xlabels, xlabels max_intervals = math.ceil(df_1['Interval'].max()) # max_intervals = max(intervals) xticks, xlabels = [0,max_intervals // 2, max_intervals], [0,max_intervals // 2, max_intervals] yticks, ylabels = np.arange(len(trials)), list(map(str, trials)) for ax in axes_list: tidy_axis(ax, bottom=True) no_top_right_ticks(ax) ax.set_xlim(0, max(intervals)) ax.set_xticks(xticks) ax.set_xticklabels(xlabels) ax.set_yticks([]) ax.set_yticklabels([]) # ax_hist_1.set_xlabel('Time (s)', fontsize=20) ax_hist_1.set_xlabel('', fontsize=20) legend = fig.legend(bbox_to_anchor=(0.25, 0.01), ncol=3, frameon=True, fontsize=17.5) # bbox_to_anchor=(0.75, 0.55) ax_rast_1.set_title("{}".format(id_), fontsize=20) def plot_firing_comparison_sweeps(df_1, df_2, id, trials, intervals, figure_name=None): ''' get trial averaged spikes (PSTH) ''' left, width = 0.15, 0.85 bottom, height = 0.1, 0.1 spacing = 0.005 height_hist = 0.10 rect_hist1 = [left, bottom*2, width, height_hist] # rect_hist2 = [left, bottom*1, width, height_hist] # rect_histy = [left + width + spacing, bottom, 0.2, height] if figure_name is None: # fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(10, 10)) fig = plt.subplot() else: fig = figure_name tidy_axis(fig) no_top_right_ticks(fig) fig.set_yticks([]) fig.set_yticklabels([]) fig.axis('off') ax_dict_true = dict() ax_dict_pred = dict() for n, trial in enumerate(trials): ax_dict_true[trial] = fig.inset_axes([left, bottom * (3+n), width, height_hist]) ax_dict_pred[trial] = fig.inset_axes([left, bottom * (3+n+len(trials)), width, height_hist], sharex=ax_dict_true[trial]) ax_dict_true[trial].axis('off') ax_dict_pred[trial].axis('off') ax_hist_1 = fig.inset_axes(rect_hist1, sharex=ax_dict_true[trials[0]]) axes_list = [list(ax_dict_true.values()), list(ax_dict_pred.values()), [ax_hist_1]] # colors = sns.color_palette("gist_ncar_r", 2) colors = ['black', 'red'] def plot_raster_scatter(ax, data, color, label): ax.scatter(data['Interval'], data['ID'], c=color, s=ms_firing, marker='|', linewidth=lw_scatter, label=label) ax.set_xlabel(label) # ax.scatter(true['Interval'], true['ID'].astype('str'), color='#069AF3', marker='|') for n, trial in enumerate(trials): id_ = id true = df_1[(df_1['Trial'] == trial) & (df_1['ID'] == id_)].reset_index(drop=True) pred = df_2[(df_2['Trial'] == trial) & (df_2['ID'] == id_)].reset_index(drop=True) if id_ == 345: print(true, pred) plot_raster_scatter(ax_dict_pred[trial], pred, colors[0], 'Simulated') plot_raster_scatter(ax_dict_true[trial], true, colors[1], 'True') sns.kdeplot(pred['Interval'], ax=ax_hist_1, bw_adjust=.25, color=colors[0], lw=line_width, alpha=0.7) #plot(np.array(intervals), rates_1_id, color=colors[0], lw=3) sns.kdeplot(true['Interval'], ax=ax_hist_1, bw_adjust=.25, color=colors[1], lw=line_width, alpha=0.7) #plot(np.array(intervals), rates_2_id, color=colors[1], lw=3) max_intervals = df_1['Interval'].max() yticks, ylabels = np.arange(len(trials)), list(map(str, trials)) xticks, xlabels = [0,max_intervals // 2, max_intervals], [0,max_intervals // 2, max_intervals] for ax in axes_list: ax = ax[0] tidy_axis(ax, bottom=True) no_top_right_ticks(ax) ax.set_xlim(0, max(intervals)) ax.set_xticks(xticks) ax.set_xticklabels(xlabels) ax.set_yticks([]) ax.set_yticklabels([]) # ax_hist_1.set_xlim(0, max(intervals)) # sns.distplot(true['Interval'], hist=False) # sns.distplot(pred['Interval'], hist=False) ax_hist_1.set_ylabel('') ax_hist_1.set_yticks([]) sns.despine(top=True, left=True) # tidy_axis(ax_hist_1, bottom=True) # tidy_axis(ax_hist_2, bottom=True) ax_hist_1.set_xlabel('') # ax_hist_1.set_xlabel('Time (s)', fontsize=20) legend = fig.legend(bbox_to_anchor=(0.25, 0.01), ncol=3, frameon=True, fontsize=17.5) # bbox_to_anchor=(0.75, 0.55) list(ax_dict_pred.values())[-1].set_title("{}".format(id_), fontsize=20) def get_psth(df, n_id, trials): df = df[df['ID'] == n_id] df = df[df['Trial'] == trial] df = df.groupby('Interval_dt').size().reset_index() df.columns = ['Interval_dt', 'Count'] return df def set_categorical_ticks(ax, yticks=None, ylabels=None, xticks=None, xlabels=None, fs=None): fs = fs if fs is not None else 10 if yticks is not None: ax.set_ylim(0, len(ylabels)) ax.set_yticks(yticks) ax.set_yticklabels(ylabels) if xticks is not None: ax.set_xlim(0, max(xlabels)) ax.set_xticks(xticks) ax.set_xticklabels(xlabels) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.tick_params(axis='x', labelsize=10) ax.tick_params(axis='y', labelsize=fs) ax.get_xaxis().tick_bottom() # remove unneeded ticks ax.get_yaxis().tick_left() def no_top_right_ticks(ax): ax.set_yticklabels([]) ax.set_yticks([]) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.spines['left'].set_visible(False) ax.yaxis.set_tick_params(top='off', direction='out', width=1) ax.yaxis.set_tick_params(top='off', right='off', left='on', direction='out', width=1) ax.tick_params(labelright='off', labeltop='off') ax.tick_params(axis='both', direction='out') ax.get_xaxis().tick_bottom() # remove unneeded ticks ax.get_yaxis().tick_left() def plot_neurons_trials_psth(df_1, df_2, neurons, trials, intervals, figuresize=None): fs = 15 plt.rcParams['xtick.labelsize']= fs plt.rcParams['ytick.labelsize']= fs plt.rcParams['axes.labelsize']= fs plt.rcParams['axes.titlesize']= fs plt.rcParams['legend.fontsize']= fs plt.rcParams['lines.linewidth']= 2 # plt.rcParams['fig.supylabel']= fs df_1 = df_1.reset_index(drop=True) df_2 = df_2.reset_index(drop=True) dt = 4 intervals_dt = [dt * n for n in range(int((intervals[-1]) // dt) + 1)] df_1['Interval_dt'] = pd.cut(df_1['Interval'], intervals_dt, include_lowest=True) df_2['Interval_dt'] = pd.cut(df_2['Interval'], intervals_dt, include_lowest=True) # neuron_list = list(map(str, sorted(top_corr[:6].index.tolist()))) neurons = list(map(str, [i for i in neurons])) trials = df_1['Trial'].unique() # neuron_list = sorted(top_corr[:10].index.tolist()) scale = 1 nrows, ncols = 4, len(neurons) fig_size = figuresize if figuresize is not None else (2 * scale * len(neurons),10 * scale) fig, ax = plt.subplots(nrows=nrows, ncols=ncols, figsize=fig_size) variable = 'Trial' color_labels = trials rgb_values = sns.color_palette("gist_ncar_r", len(trials)) color_map = dict(zip(color_labels, rgb_values)) max_freq = 0 for n, neuron in enumerate(neurons): df_1['ID'] = df_1['ID'].astype('str') df_2['ID'] = df_2['ID'].astype('str') df_1_id = df_1[df_1['ID'] == neuron] df_2_id = df_2[df_2['ID'] == neuron] max_intervals = 32 # max_intervals = max(intervals) yticks, ylabels = np.arange(len(trials)), list(map(str, trials)) xticks, xlabels = [0,max_intervals // 2, max_intervals], [0,max_intervals // 2, max_intervals] m_s = 45 l_w = 0.5 plot_var(ax[0][n], df_1_id, variable, trials, color_map, m_s, l_w=l_w) plot_var(ax[1][n], df_2_id, variable, trials, color_map, m_s, l_w=l_w) set_categorical_ticks(ax[0][n], yticks, ylabels, xticks, xlabels) set_categorical_ticks(ax[1][n], yticks, ylabels, xticks, xlabels) ax[0][n].set_yticks([]) ax[1][n].set_yticks([]) if n > 0: no_top_right_ticks(ax[0][n]) no_top_right_ticks(ax[1][n]) df_1['ID'] = df_1['ID'].astype('int') df_2['ID'] = df_2['ID'].astype('int') neuron_int = int(neuron) df_1_id = df_1[df_1['ID'] == neuron_int] df_2_id = df_2[df_2['ID'] == neuron_int] # rates_1 = get_rates(df_1, [neuron_int], intervals_dt)[neuron_int] # rates_2 = get_rates(df_2, [neuron_int], intervals_dt)[neuron_int] freq_id_1 = df_1_id['Interval'].value_counts().reindex(intervals, fill_value=0) freq_id_2 = df_2_id['Interval'].value_counts().reindex(intervals, fill_value=0) bins = np.arange(len(intervals) // 2) # bins = len(intervals) # ax[2][n].bar(intervals_dt, freq_id_1) # ax[2][n].hist([freq_id_1, freq_id_2], bins=bins, histtype='step', edgecolor=['blue', 'red'], # lw=2, alpha=0.3, facecolor=['blue', 'red'], label=['True', 'Sim']) c_2, c_1 = rgb_values[2], rgb_values[-1] ax[2][n].hist(df_1_id['Interval'], bins=bins, edgecolor=None, lw=2, alpha=1, facecolor=c_1, label='True') ax[3][n].hist(df_2_id['Interval'], bins=bins, edgecolor=None, lw=2, alpha=1, facecolor=c_2, label='Predicted') # histtype='step' # xticks, xlabels = [0, max(intervals) // 2, max(intervals)], [0, max(intervals) // 2, max(intervals)] y_fs_hist = 15 set_categorical_ticks(ax[2][n], None, None, xticks, xlabels, y_fs_hist) ax[2][n].spines['right'].set_visible(False) ax[2][n].spines['top'].set_visible(False) set_categorical_ticks(ax[3][n], None, None, xticks, xlabels, y_fs_hist) ax[3][n].spines['right'].set_visible(False) ax[3][n].spines['top'].set_visible(False) if n > 0: no_top_right_ticks(ax[2][n]) ax[3][n].get_shared_y_axes().join(ax[2][n], ax[2][n-1]) no_top_right_ticks(ax[3][n]) max_lim = (max(ax[2][n].get_ylim()[1], ax[3][n].get_ylim()[1])) ax[0][n].set_xticklabels([]) ax[1][n].set_xticklabels([]) ax[2][n].set_xticklabels([]) ax[2][n].set_ylim(0, max_lim) ax[3][n].set_ylim(0, max_lim) ax[2][n].get_shared_y_axes().join(ax[3][n], ax[3][n-1]) # max_freq = max(freq_id_1.max(), freq_id_2.max(), max_freq) # yticks, ylabels = np.linspace(0, max(freq_id_1.max(), freq_id_2.max()), 3), [i for i in range(max(freq_id_1.max(), freq_id_2.max()))] # set_categorical_ticks(ax[2][n], yticks, ylabels, xticks, xlabels) plt.setp(ax[0]) # ax[0][0].set_ylim(0, 32) ax[0][0].set_ylabel('Ground Truth') ax[1][0].set_ylabel('Simulated') # ax[2][0].set_ylabel('PSTH, True') # ax[3][0].set_ylabel('PSTH, Simulation') # ax[2][-1].legend() ax[0][0].legend(bbox_to_anchor=(0,0,1,1)) # fig.supxlabel('Time (S)', fontsize=15, y=0.07) # fig.supylabel('Trials') fig.suptitle('Gabor 3D Sim', fontsize=20, y=0.925) # fig.gca().set_aspect('equal', adjustable='box') # plt.autoscale() # plt.tight_layout() def get_boxplot_data(df_1, df_2, intervals, trials): data_boxplot_true = [] data_boxplot_pred = [] for n, trial in enumerate(trials): trial_prev = trials[n - 1] if n > 0 else trials[n + 1] true_prev = df_1[df_1['Trial'] == trial_prev].reset_index(drop=True) true = df_1[df_1['Trial'] == trial].reset_index(drop=True) pred = df_2[df_2['Trial'] == trial].reset_index(drop=True) rates_true_prev, rates_true, rates_pred = get_rates_trial(true_prev, intervals), get_rates_trial(true, intervals), get_rates_trial(pred, intervals) corr_trials_true = calc_corr_psth(rates_true, rates_true_prev) corr_trials_pred = calc_corr_psth(rates_true, rates_pred) data_boxplot_true.append(np.array(corr_trials_true).flatten()) data_boxplot_pred.append(np.array(corr_trials_pred).flatten()) return data_boxplot_true, data_boxplot_pred, corr_trials_true, corr_trials_pred def plot_error_bar(x, n, color): """ databoxplot_true, databoxplot_pred, corr_trials_true, corr_trials_pred = get_boxplot_data(df_1, df_2, intervals, n_trial) plot_error_bar(corr_trials_true, n, true_color) plot_error_bar(corr_trials_pred, n, pred_color) """ mins = x.min() maxes = x.max() means = x.mean() std = x.std() # plt.errorbar(n, means, std, fmt='ok', lw=3) # plt.errorbar(n, means, [means - mins, maxes - means], # fmt='.k', ecolor='gray', lw=1) # plt.xlim(-1, 8) green_diamond = dict(markerfacecolor=color, marker='o') # fig3, ax3 = plt.subplots() # ax3.set_title('Changed Outlier Symbols') ax.boxplot(x, flierprops=green_diamond) def fancy_boxplot(fig, ax1, data, color): bp = ax1.boxplot(data, notch=0, sym='+', vert=1, whis=1.5) plt.setp(bp['boxes'], color='black') plt.setp(bp['whiskers'], color='black') plt.setp(bp['fliers'], color='red', marker='+') # Add a horizontal grid to the plot, but make it very light in color # so we can use it for reading data values but not be distracting ax1.yaxis.grid(True, linestyle='-', which='major', color='lightgrey', alpha=0.5) # ax1.set( # axisbelow=True, # Hide the grid behind plot objects # title='Comparison of IID Bootstrap Resampling Across Five Distributions', # xlabel='Distribution', # ylabel='Value', # ) # Now fill the boxes with desired colors # box_colors = ['darkkhaki', 'royalblue'] # box_colors = sns.dark_palette("#69d", len(data), reverse=True) box_colors = [color] num_boxes = len(data) medians = np.empty(num_boxes) for i in range(num_boxes): box = bp['boxes'][i] box_x = [] box_y = [] for j in range(5): box_x.append(box.get_xdata()[j]) box_y.append(box.get_ydata()[j]) box_coords = np.column_stack([box_x, box_y]) # Alternate between Dark Khaki and Royal Blue ax1.add_patch(Polygon(box_coords, facecolor=box_colors[0])) # Now draw the median lines back over what we just filled in med = bp['medians'][i] median_x = [] median_y = [] for j in range(2): median_x.append(med.get_xdata()[j]) median_y.append(med.get_ydata()[j]) ax1.plot(median_x, median_y, 'k') medians[i] = median_y[0] # Finally, overplot the sample averages, with horizontal alignment # in the center of each box ax1.plot(np.average(med.get_xdata()), np.average(data[i]), color='w', marker='*', markeredgecolor='k') # Set the axes ranges and axes labels # ax1.set_xlim(0.5, num_boxes + 0.5) # top = 40 # bottom = -5 # ax1.set_ylim(bottom, top) # ax1.set_xticklabels(np.repeat(random_dists, 2), # rotation=45, fontsize=8) # Due to the Y-axis scale being different across samples, it can be # hard to compare differences in medians across the samples. Add upper # X-axis tick labels with the sample medians to aid in comparison # (just use two decimal places of precision) pos = np.arange(num_boxes) + 1 upper_labels = [str(round(s, 2)) for s in medians] weights = ['bold', 'semibold'] for tick, label in zip(range(num_boxes), ax1.get_xticklabels()): k = tick % 2 ax1.text(pos[tick], .95, upper_labels[tick], transform=ax1.get_xaxis_transform(), horizontalalignment='center', size='x-small', weight=weights[k], color=box_colors[0]) fig.supxlabel('Trials') fig.supylabel('Pearson Correlation (P)') fig.suptitle('Inter-Neuron Correlation Across Trials') plt.tight_layout() def plot_intertrial_corr(corr_true, corr_pred, trial): def scatter_hist(x, y, ax, ax_histy): # no labels # ax_histx.tick_params(axis="x", labelbottom=False) ax_histy.tick_params(axis="y", labelleft=False) # the scatter plot: # ax.scatter(x, y) # bins = 250 # now determine nice limits by hand: # binwidth = 0.25 # xymax = max(np.max(np.abs(x)), np.max(np.abs(y))) # lim = (int(xymax/binwidth) + 1) * binwidth # bins = np.arange(-lim, lim + binwidth, binwidth) # ax_histx.hist(x, bins=bins) ax_hist = sns.distplot(y, hist=False, ax=ax_histy, vertical=True) # (x, y, bins=10, orientation='horizontal') ax_hist.set(xlabel=None) # sns.distplot(top_corr, hist=False, ax=ax_histy, vertical=True) # definitions for the axes left, width = 0.1, 0.65 bottom, height = 0.1, 0.65 spacing = 0.005 rect_scatter = [left, bottom, width, height] # rect_histx = [left, bottom + height + spacing, width, 0.2] rect_histy = [left + width + spacing, bottom, 0.2, height] # start with a square Figure fig = plt.figure(figsize=(15, 15)) ax = fig.add_axes(rect_scatter) # ax_histx = fig.add_axes(rect_histx, sharex=ax) ax_histy = fig.add_axes(rect_histy, sharey=ax) # use the previously defined function scatter_hist(np.array(corr_true.index), corr_true, ax, ax_histy) scatter_hist(np.array(corr_pred.index), corr_pred, ax, ax_histy) ax.grid(lw=0.8, alpha=0.7, color='gray') ax.scatter(corr_true.index, corr_true, label=f'Trial {trial} vs. 1', alpha=0.4) ax.scatter(corr_pred.index, corr_pred, label=f'Trial {trial} vs. Pred', alpha=0.5) ax.set_title('Pair-wise Correlation Between Trials', fontsize=25) ax.set_xlabel('Neuron ID', fontsize=20) ax.set_ylim(-0.1, 0.6) plt.ylabel('Pearson Correlation (p)') ax.legend(fontsize=20, title_fontsize=20) plt.show()
#! /usr/bin/env python3 import sys import pickle import argparse import numpy as np import pandas as pd import scipy.stats as stats def like_calc(X, y_test, unc): """ Given a simulated entry with uncertainty and a test entry, calculates the likelihood that they are the same. Parameters ---------- X : numpy array (train DB) of nuclide measurements for simulated entry y_test : numpy array (single row) of nuclide measurements for test ("measured") entry unc : float representing flat uncertainty percentage, or 0.0 indicated counting error Returns ------- like: likelihood that the test entry is the simulated entry """ # TODO UNTESTED CODE (but not recently in use) idx = np.nonzero(y_test)[0] y_test = y_test[idx] X = X[:, idx] # unc arg of 0 indicates for the script to use sqrt(counts) uncertainty if unc == 0.0: std = np.sqrt(X) else: std = unc * X like = np.prod(stats.norm.pdf(X, loc=y_test, scale=std), axis=1) return like def ll_calc(X, y_test, unc): """ Given a simulated entry with uncertainty and a test entry, calculates the log-likelihood that they are the same. Parameters ---------- X : numpy array (train DB) of nuclide measurements for simulated entry y_test : numpy array (single row) of nuclide measurements for test ("measured") entry unc : float representing flat uncertainty percentage, or 0.0 indicated counting error Returns ------- ll: numpy array of log-likelihoods that the test entry is the simulated entry for each entry in the DB """ idx = np.nonzero(y_test)[0] y_test = y_test[idx] X = X[:, idx] # unc arg of 0 indicates for the script to use sqrt(counts) uncertainty if unc == 0.0: std = np.sqrt(X) else: std = unc * X ll = np.sum(stats.norm.logpdf(X, loc=y_test, scale=std), axis=1) return ll def unc_calc(X, y_test, unc): """ Given a simulated entry and a test entry with uniform uncertainty, calculates the uncertainty in the log-likelihood calculation. Parameters ---------- X : numpy array (train DB) of nuclide measurements for simulated entry y_test : numpy array (single row) of nuclide measurements for test ("measured") entry unc : float representing flat uncertainty percentage, or 0.0 indicated counting error Returns ------- ll_unc: numpy array of log-likelihood uncertainties for each DB entry """ idx = np.nonzero(y_test)[0] y_test = y_test[idx] X = X[:, idx] # unc arg of 0 indicates for the script to use sqrt(counts) uncertainty if unc == 0.0: sim_unc_sq = X tst_unc_sq = y_test else: sim_unc_sq = (unc * X)**2 tst_unc_sq = (unc * y_test)**2 unc_array = ((X - y_test) / sim_unc_sq)**2 * (sim_unc_sq + tst_unc_sq) np.nan_to_num(unc_array, copy=False, nan=0.0, posinf=0.0, neginf=0.0) unc_array = np.array(unc_array, dtype=np.float64) ll_unc = np.sqrt(np.sum(unc_array, axis=1)) return ll_unc def ratios(XY, ratio_list, labels): """ Given a dataframe with entries (rows) that contain nuclide measurements and some labels, calculate the predetermined ratios of the measurements. Parameters ---------- XY : dataframe of spent fuel entries containing nuclide measurements and their labels ratio_list : list of nuclide ratios labels : list of label titles in the dataframe Returns ------- XY_ratios : dataframe of spent fuel entries containing nuclide measurement ratios and their labels """ XY_ratios = XY.loc[:, labels].copy() for ratio in ratio_list: nucs = ratio.split('/') XY_ratios[ratio] = XY[nucs[0]] / XY[nucs[1]] XY_ratios.replace([np.inf, -np.inf], 0, inplace=True) XY_ratios.fillna(0, inplace = True) # reorganize columns cols = ratio_list + labels XY_ratios = XY_ratios[cols] return XY_ratios def format_pred(pred_row, lbls, nonlbls, cdf_cols): """ This separates off the formatting of the pred_ll dataframe from the get_pred function for cleanliness. Parameters ---------- pred_row : single-row dataframe including nuclide measurements, the prediction (i.e., the predicted labels), and all saved log- likelihoods lbls : list of labels that are predicted nonlbls : list of reactor parameters that aren't being predicted cdf_cols : list of new LogLL columns added to prediction for CDF plot Returns ------- pred_row : single-row dataframe including the prediction (i.e., predicted labels), LLmax, LLUnc, and a list of LLs and their Uncs to populate a CDF """ lbls = lbls + nonlbls pred_lbls = ["pred_" + s for s in lbls] pred_row.rename(columns=dict(zip(lbls, pred_lbls)), inplace=True) pred_lbls.extend(cdf_cols) pred_row = pred_row.loc[:, pred_lbls] return pred_row def ll_cdf(pred_ll, ll_df): """ Returns a single-row dataframe with the prediction/MaxLogLL with 8 new columns of log-likelihoods that can populate a CDF, which includes the 2nd largest LogLL, and 7 percentiles that should give a decent picture of the CDF curve. (and all corresponding uncertainties) Parameters ---------- pred_ll : single-row dataframe including nuclide measurements, the prediction (i.e., the predicted labels), and maxLL/LLUnc ll_df : two-column dataframe including log-likelihood calculations and their uncertainties for a given test sample calculation against entire training db Returns ------- pred_ll : single-row dataframe including nuclide measurements, the prediction (i.e., the predicted labels), and all saved log- likelihoods (Max and CDF-relevant) cdf_cols : list of column names that are the new LogLL columns added for CDF """ old_cols = pred_ll.columns.values.tolist() # First, grab adjacent LL value to MaxLL cols = ll_df.columns.values.tolist() maxs = ll_df.nlargest(2, cols[0]) pred_ll['2ndMaxLogLL'] = maxs[cols[0]].iloc[1] pred_ll['2ndMaxLLUnc'] = maxs[cols[1]].iloc[1] # Second, add columns with percentiles in the col name quants = [0.9998, 0.9988, 0.95, 0.9, 0.5, 0.1, 0.01] for quant in quants: quant_df = ll_df.quantile(quant) pred_ll['CDF_LogLL_' + str(quant)] = quant_df.loc[cols[0]] pred_ll['CDF_LLUnc_' + str(quant)] = quant_df.loc[cols[1]] new_cols = pred_ll.columns.values.tolist() cdf_cols = [col for col in new_cols if col not in old_cols] return pred_ll, cdf_cols def get_pred(XY, test_sample, unc, lbls, nonlbls): """ Given a database of spent fuel entries and a test sample (nuclide measurements only), calculates the log-likelihood (and LL-uncertainty) of that sample against every database entry. Determines the max LL, and therefore the corresponding prediction in the database. Also determines a list of LL measurements that populate a CDF. Returns that prediction and LL information as a single row dataframe. Parameters ---------- XY : dataframe with nuclide measurements and reactor parameters test_sample : numpy array of a sample to be predicted (nuclide measurements only) unc : float that represents the simulation uncertainty in nuclide measurements lbls : list of reactor parameters to be predicted nonlbls : list of reactor parameters that aren't being predicted Returns ------- pred_ll : single-row dataframe including the prediction (i.e., predicted labels), its max log-likelihood/uncertainty, and a list of log-likelihoods and their uncertainties to populate a CDF """ ll_name = 'MaxLogLL' unc_name = 'MaxLLUnc' X = XY.drop(lbls+nonlbls, axis=1).copy().to_numpy() XY[ll_name] = ll_calc(X, test_sample, unc) XY[unc_name] = unc_calc(X, test_sample, unc) pred_row = XY.loc[XY.index == XY[ll_name].idxmax()].copy() pred_ll, cdf_cols = ll_cdf(pred_row, XY[[ll_name, unc_name]]) cdf_cols = [ll_name, unc_name] + cdf_cols pred_ll = format_pred(pred_ll, lbls, nonlbls, cdf_cols) # need to delete calculated columns so next test sample can be calculated XY.drop(columns=[ll_name, unc_name], inplace=True) return pred_ll def mll_testset(XY, test, ext_test, unc, lbls, nonlbls): """ Given a database of spent fuel entries containing a nuclide vector and the reactor operation parameters, and an equally formatted database of test cases to predict, this function loops through the test database to perform a series of predictions. It first formats the test sample for prediction, then gathers all the predictions from the test database entries Parameters ---------- XY : dataframe with nuclide measurements and reactor parameters test : dataframe with test cases to predict in same format as train ext_test : boolean indicating which of external test set or LOOV is being performed unc : float that represents the simulation uncertainty in nuclide measurements lbls : list of reactor parameters to be predicted nonlbls : list of reactor parameters that aren't being predicted Returns ------- pred_df : dataframe with ground truth and predictions """ pred_df = pd.DataFrame() for sim_idx, row in test.iterrows(): if ext_test: test_sample = row.drop(lbls) test_answer = row[lbls] pred_ll = get_pred(XY, test_sample.to_numpy(), unc, lbls, nonlbls) all_lbls = lbls else: test_sample = row.drop(lbls+nonlbls) test_answer = row[lbls+nonlbls] pred_ll = get_pred(XY.drop(sim_idx), test_sample.to_numpy(), unc, lbls, nonlbls) all_lbls = lbls + nonlbls if pred_df.empty: pred_df = pd.DataFrame(columns = pred_ll.columns.to_list()) pred_df = pred_df.append(pred_ll) pred_df = pd.concat([test.loc[:, all_lbls].rename_axis('sim_idx').reset_index(), pred_df.rename_axis('pred_idx').reset_index() ], axis=1) return pred_df def check_traindb_equal(final, db_path, arg_ratios, ratio_list, lbls): """ Checks at end of script that the database was not altered Parameters ---------- final : training database dataframe at end of script db_path : path to pkl file containing training database arg_ratios : Boolean arg indicating whether or not nuclide ratios are being used ratio_list : list of ratios being created lbls : all non-features (prediction labels and non-prediction labels) """ initial = pd.read_pickle(db_path) if arg_ratios == True: initial = ratios(initial, ratio_list, lbls) if not initial.equals(final): sys.exit('Final training database does not equal initial database') return def convert_g_to_mgUi(XY, Y_list): """ Converts nuclides from ORIGEN simulations measured in grams to concentrations measured in mg / gUi Parameters ---------- XY : dataframe of origen sims with nuclides measured in grams Y_list : list of columns in DB that are not features (nuclides) Returns ------- XY : dataframe of origen sims with nuclides measured in mg / gUi """ nucs = XY.columns[~XY.columns.isin(Y_list)].tolist() # [x (g) / 1e6 (gUi)] * [1000 (mg) / 1 (g)] = x / 1000 XY[nucs] = XY[nucs].div(1000, axis=0) return XY def parse_args(args): """ Command-line argument parsing Parameters ---------- args : Returns ------- XY : cleaned and formatted training database """ parser = argparse.ArgumentParser(description='Performs maximum likelihood calculations for reactor parameter prediction.') parser.add_argument('outdir', metavar='output-directory', help='directory in which to organize output csv') parser.add_argument('sim_unc', metavar='sim-uncertainty', type=float, help='value of simulation uncertainty (in fraction) to apply to likelihood calculations') parser.add_argument('train_db', metavar='reactor-db', help='file path to a training set, e.g. /mnt/researchdrive/BOX_INTERNAL/opotowsky/*.pkl') parser.add_argument('test_db', metavar='testing-set', help='file path to an external testing set, e.g. ~/sfcompo/format_clean/sfcompo_nucXX.pkl') parser.add_argument('outfile', metavar='csv-output', help='name for csv output file') parser.add_argument('db_rows', metavar='db-interval', nargs=2, type=int, help='indices of the database interval for the job') parser.add_argument('--ext-test', dest='ext_test', action='store_true', help='execute script with external testing set by providing file path to a testing set') parser.add_argument('--no-ext-test', dest='ext_test', action='store_false', help='do not execute script with external testing set') parser.add_argument('--ratios', dest='ratios', action='store_true', help='compute isotopic ratios instead of using concentrations') parser.add_argument('--no-ratios', dest='ratios', action='store_false', help='compute using concentrations instead of isotopic ratios') return parser.parse_args(args) def main(): """ Given a database of spent fuel entries (containing nuclide measurements and labels of reactor operation parameters of interest for prediction) and a testing database containing spent fuel entries formatted in the same way, this script calculates the maximum log-likelihood of each test sample against the database for a prediction. The errors of those predictions are then calculated and saved as a CSV file. """ args = parse_args(sys.argv[1:]) # training set XY = pd.read_pickle(args.train_db) if 'total' in XY.columns: XY.drop('total', axis=1, inplace=True) lbls = ['ReactorType', 'CoolingTime', 'Enrichment', 'Burnup', 'OrigenReactor'] nonlbls = ['AvgPowerDensity', 'ModDensity', 'UiWeight'] # testing set if args.ext_test == True: test = pd.read_pickle(args.test_db) # In-script test: order of columns must match: xy_cols = XY.columns.tolist() for col in nonlbls: xy_cols.remove(col) if xy_cols != test.columns.tolist(): if sorted(xy_cols) == sorted(test.columns.tolist()): test = test[xy_cols] else: sys.exit('Feature sets are different') # slice test set test = test.iloc[args.db_rows[0]:args.db_rows[1]] # converting train DB to match units in sfcompo DB XY = convert_g_to_mgUi(XY, lbls+nonlbls) else: test = XY.iloc[args.db_rows[0]:args.db_rows[1]] # this is a fix for the now too-large db to test every entry # 3 lines per job, with max_jobs currently set to 9900 # (~6% of db is tested) #test = test.sample(3) # TODO: need some better way to handle varying ratio lists tamu_list = ['cs137/cs133', 'cs134/cs137', 'cs135/cs137', 'ba136/ba138', 'sm150/sm149', 'sm152/sm149', 'eu154/eu153', 'pu240/pu239', 'pu241/pu239', 'pu242/pu239' ] ratio_list = tamu_list if args.ratios == True: XY = ratios(XY, ratio_list, lbls+nonlbls) test = ratios(test, ratio_list, lbls) unc = float(args.sim_unc) pred_df = mll_testset(XY, test, args.ext_test, unc, lbls, nonlbls) fname = args.outfile + '.csv' pred_df.to_csv(fname) return if __name__ == "__main__": main()
#!/usr/bin/env python """ cmddocs Class """ import os import cmd import sys import signal import configparser import git import pkg_resources from cmddocs.articles import * from cmddocs.completions import * from cmddocs.version import __version__ class Cmddocs(cmd.Cmd): """ Basic commandline interface class """ def __init__(self, conf="~/.cmddocsrc"): """ Initialize the class Inherit from Cmd Read config, initialize Datadir, create Prompt """ cmd.Cmd.__init__(self) self.reset = '\033[0m' self.read_config(self, conf) self.initialize_docs(self) self.prompt = '\033[1m\033[' + self.promptcol + 'm' + self.prompt + " " + self.reset self.do_cd(self.datadir) def read_config(self, sconf, conf): """ All Config Options being read and defaulting """ self.colors = {} config = configparser.ConfigParser() if not config.read(os.path.expanduser(conf)): print("Error: your config %s could not be read" % conf) exit(1) try: self.datadir = os.path.expanduser(config.get("General", "Datadir")) except configparser.NoOptionError: print("Error: Please set a Datadir in %s" % conf) exit(1) try: self.exclude = os.path.expanduser(config.get("General", "Excludedir")) except configparser.NoOptionError: self.exclude = os.path.expanduser('.git/') try: self.default_commit_msg = config.get("General", "Default_Commit_Message") except configparser.NoOptionError: self.default_commit_msg = "small changes" try: self.editor = config.get("General", "Editor") except configparser.NoOptionError: if os.environ.get('EDITOR') is not None: self.editor = os.environ.get('EDITOR') else: print("Error: Could not find usable editor.") print("Please specify one in config or set EDITOR in your \ OS Environment") exit(1) try: self.pager = config.get("General", "Pager") except configparser.NoOptionError: if os.environ.get('PAGER') is not None: self.editor = os.environ.get('PAGER') else: print("Error: Could not find usable Pager.") print("Please specify one in config or set PAGER in your\ OS Environment") exit(1) try: self.pagerflags = config.get("General", "PagerFlags") except configparser.NoOptionError: self.pagerflags = False try: self.editorflags = config.get("General", "EditorFlags") except configparser.NoOptionError: self.editorflags = False try: self.prompt = config.get("General", "Prompt") except configparser.NoOptionError: self.prompt = "cmddocs>" try: self.promptcol = config.get("General", "Promptcolor") except configparser.NoOptionError: self.promptcol = "37" try: self.intro = config.get("General", "Intro_Message") except configparser.NoOptionError: self.intro = "cmddocs - press ? for help" try: self.mailfrom = config.get("General", "Mail") except configparser.NoOptionError: self.mailfrom = "nobody" try: self.extension = config.get("General", "Default_Extension") except configparser.NoOptionError: self.extension = "md" try: self.colors['h1'] = config.get("Colors", "Header12") except (configparser.NoOptionError, configparser.NoSectionError): self.colors['h1'] = "37" try: self.colors['h2'] = config.get("Colors", "Header345") except (configparser.NoOptionError, configparser.NoSectionError): self.colors['h2'] = "92" try: self.colors['code'] = config.get("Colors", "Codeblock") except (configparser.NoOptionError, configparser.NoSectionError): self.colors['code'] = "92" return def initialize_docs(self, docs): """ Read or initialize git repository """ try: self.repo = git.Repo(self.datadir) except git.exc.NoSuchPathError: print("Error: Specified datadir %s does not exist" % self.datadir) exit(1) except git.exc.InvalidGitRepositoryError: self.repo = git.Repo.init(self.datadir) try: self.repo.git.add(".") self.repo.git.commit(m=" init") except git.exc.GitCommandError: pass print("Successfully created and initialized empty repo at %s" % self.datadir) # Change to datadir try: os.chdir(self.datadir) self.cwd = os.getcwd() except OSError: print("Error: Switching to Datadir %s not possible" % self.datadir) exit(1) def do_list(self, dir): """ Show files in current working dir Usage: list l list Databases/ """ if not dir: dir = "." return list_articles(dir, self.extension) do_l = do_list do_ls = do_list def do_dirs(self, dir): """ Show directories in current working dir Usage: dirs d dirs Databases/ """ if not dir: dir = "." return list_directories(dir) do_d = do_dirs def do_cd(self, dir): """ Change directory Usage: cd Programming/ cd """ change_directory(dir, self.datadir) def do_pwd(self, line): """ Show current directory Usage: pwd """ print(os.path.relpath(os.getcwd(), self.datadir)) def do_edit(self, article, test=False): """ Edit or create new article. Usage: edit databases/mongodb edit intro """ return edit_article(article, os.getcwd(), self.editor, self.repo, self.default_commit_msg, self.extension, test, self.editorflags) do_e = do_edit def do_view(self, article): """ View an article. Creates temporary file with converted markdown to ansi colored output. Opens your PAGER. (Only less supported atm) Usage: view databases/mongodb view intro """ return view_article(article, os.getcwd(), self.pager, self.extension, self.pagerflags, self.colors) def do_mail(self, article): """ Mail an article to a friend Usage: mail databases/mongodb Recipient: <EMAIL> mail programming/r/loops mail intro """ return mail_article(article, os.getcwd(), self.mailfrom, self.extension) def do_delete(self, article): """ Delete an article Usage: delete databases/mongodb rm databases/mssql """ delete_article(article, os.getcwd(), self.repo, self.extension) do_rm = do_delete def do_move(self, args): """ Move an article to a new location Usage: move databases/mongodb databases/MongoDB move life/foo notes/foo mv life/foo notes/foo """ move_article(os.getcwd(), args, self.repo, self.extension) do_mv = do_move def do_search(self, keyword): """ Search for keyword in current directory Usage: search mongodb search foo """ print(search_article(keyword, os.getcwd(), self.datadir, self.exclude)) def do_status(self, line): """ Show git repo status of your docs Usage: status """ print(self.repo.git.status()) def do_log(self, args): """ Show git logs of your docs. Usage: log # default loglines: 10) log 20 # show 20 loglines log 20 article # show log for specific article log databases/mongodb 3 # same """ show_log(args, self.repo, self.extension) def do_info(self, article): """ Show infos for an article Usage: info article info Databases/mongodb Created: 2014-01-18 11:18:03 +0100 Updated: 2015-10-23 14:14:44 +0200 Commits: 26 Lines: 116 Words: 356 Characters: 2438 """ info_article(article, os.getcwd(), self.repo, self.extension) def do_diff(self, args): """ Show git diffs between files and commits Usage: diff 7 # show diff for last 7 changes diff 1 article # show diff for last change to article diff # show last 5 diffs """ show_diff(args, self.repo, self.extension) def do_undo(self, args): """ You can revert your changes (use revert from git) Usage: undo HEAD undo 355f375 Will ask for confirmation. """ undo_change(args, self.repo) def do_stats(self, args): """ Calculate some statistics on your docs Usage: stats """ show_stats(args, self.repo, self.datadir) def do_version(self, args): """ Show version of cmddocs Usage: version """ print("cmddocs %s" % __version__) do_revert = do_undo ### exit def do_exit(self, args): """ Exit cmddocs Usage: exit """ return True do_EOF = do_exit ### completions complete_l = path_complete complete_ls = path_complete complete_list = path_complete complete_d = path_complete complete_dirs = path_complete complete_view = path_complete complete_cd = path_complete complete_e = path_complete complete_edit = path_complete complete_rm = path_complete complete_delete = path_complete complete_mail = path_complete complete_mv = path_complete complete_move = path_complete complete_log = path_complete complete_info = path_complete def ctrlc(sig, frame): """ Handle Interrupts """ print("\n") sys.exit(0) signal.signal(signal.SIGINT, ctrlc) def main(): """ Call loop method """ Cmddocs().cmdloop() if __name__ == '__main__': main()
<filename>sdk/loadtestservice/azure-mgmt-loadtestservice/azure/mgmt/loadtestservice/models/_models_py3.py<gh_stars>1000+ # coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- import datetime from typing import Any, Dict, List, Optional, Union from azure.core.exceptions import HttpResponseError import msrest.serialization from ._load_test_client_enums import * class ErrorAdditionalInfo(msrest.serialization.Model): """The resource management error additional info. Variables are only populated by the server, and will be ignored when sending a request. :ivar type: The additional info type. :vartype type: str :ivar info: The additional info. :vartype info: any """ _validation = { 'type': {'readonly': True}, 'info': {'readonly': True}, } _attribute_map = { 'type': {'key': 'type', 'type': 'str'}, 'info': {'key': 'info', 'type': 'object'}, } def __init__( self, **kwargs ): super(ErrorAdditionalInfo, self).__init__(**kwargs) self.type = None self.info = None class ErrorDetail(msrest.serialization.Model): """The error detail. Variables are only populated by the server, and will be ignored when sending a request. :ivar code: The error code. :vartype code: str :ivar message: The error message. :vartype message: str :ivar target: The error target. :vartype target: str :ivar details: The error details. :vartype details: list[~load_test_client.models.ErrorDetail] :ivar additional_info: The error additional info. :vartype additional_info: list[~load_test_client.models.ErrorAdditionalInfo] """ _validation = { 'code': {'readonly': True}, 'message': {'readonly': True}, 'target': {'readonly': True}, 'details': {'readonly': True}, 'additional_info': {'readonly': True}, } _attribute_map = { 'code': {'key': 'code', 'type': 'str'}, 'message': {'key': 'message', 'type': 'str'}, 'target': {'key': 'target', 'type': 'str'}, 'details': {'key': 'details', 'type': '[ErrorDetail]'}, 'additional_info': {'key': 'additionalInfo', 'type': '[ErrorAdditionalInfo]'}, } def __init__( self, **kwargs ): super(ErrorDetail, self).__init__(**kwargs) self.code = None self.message = None self.target = None self.details = None self.additional_info = None class ErrorResponse(msrest.serialization.Model): """Common error response for all Azure Resource Manager APIs to return error details for failed operations. (This also follows the OData error response format.). :param error: The error object. :type error: ~load_test_client.models.ErrorDetail """ _attribute_map = { 'error': {'key': 'error', 'type': 'ErrorDetail'}, } def __init__( self, *, error: Optional["ErrorDetail"] = None, **kwargs ): super(ErrorResponse, self).__init__(**kwargs) self.error = error class Resource(msrest.serialization.Model): """Common fields that are returned in the response for all Azure Resource Manager resources. Variables are only populated by the server, and will be ignored when sending a request. :ivar id: Fully qualified resource ID for the resource. Ex - /subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/{resourceProviderNamespace}/{resourceType}/{resourceName}. :vartype id: str :ivar name: The name of the resource. :vartype name: str :ivar type: The type of the resource. E.g. "Microsoft.Compute/virtualMachines" or "Microsoft.Storage/storageAccounts". :vartype type: str :ivar system_data: Azure Resource Manager metadata containing createdBy and modifiedBy information. :vartype system_data: ~load_test_client.models.SystemData """ _validation = { 'id': {'readonly': True}, 'name': {'readonly': True}, 'type': {'readonly': True}, 'system_data': {'readonly': True}, } _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'system_data': {'key': 'systemData', 'type': 'SystemData'}, } def __init__( self, **kwargs ): super(Resource, self).__init__(**kwargs) self.id = None self.name = None self.type = None self.system_data = None class TrackedResource(Resource): """The resource model definition for an Azure Resource Manager tracked top level resource which has 'tags' and a 'location'. Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :ivar id: Fully qualified resource ID for the resource. Ex - /subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/{resourceProviderNamespace}/{resourceType}/{resourceName}. :vartype id: str :ivar name: The name of the resource. :vartype name: str :ivar type: The type of the resource. E.g. "Microsoft.Compute/virtualMachines" or "Microsoft.Storage/storageAccounts". :vartype type: str :ivar system_data: Azure Resource Manager metadata containing createdBy and modifiedBy information. :vartype system_data: ~load_test_client.models.SystemData :param tags: A set of tags. Resource tags. :type tags: dict[str, str] :param location: Required. The geo-location where the resource lives. :type location: str """ _validation = { 'id': {'readonly': True}, 'name': {'readonly': True}, 'type': {'readonly': True}, 'system_data': {'readonly': True}, 'location': {'required': True}, } _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'system_data': {'key': 'systemData', 'type': 'SystemData'}, 'tags': {'key': 'tags', 'type': '{str}'}, 'location': {'key': 'location', 'type': 'str'}, } def __init__( self, *, location: str, tags: Optional[Dict[str, str]] = None, **kwargs ): super(TrackedResource, self).__init__(**kwargs) self.tags = tags self.location = location class LoadTestResource(TrackedResource): """LoadTest details. Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :ivar id: Fully qualified resource ID for the resource. Ex - /subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/{resourceProviderNamespace}/{resourceType}/{resourceName}. :vartype id: str :ivar name: The name of the resource. :vartype name: str :ivar type: The type of the resource. E.g. "Microsoft.Compute/virtualMachines" or "Microsoft.Storage/storageAccounts". :vartype type: str :ivar system_data: Azure Resource Manager metadata containing createdBy and modifiedBy information. :vartype system_data: ~load_test_client.models.SystemData :param tags: A set of tags. Resource tags. :type tags: dict[str, str] :param location: Required. The geo-location where the resource lives. :type location: str :param identity: The type of identity used for the resource. :type identity: ~load_test_client.models.SystemAssignedServiceIdentity :param description: Description of the resource. :type description: str :ivar provisioning_state: Resource provisioning state. Possible values include: "Succeeded", "Failed", "Canceled", "Deleted". :vartype provisioning_state: str or ~load_test_client.models.ResourceState :ivar data_plane_uri: Resource data plane URI. :vartype data_plane_uri: str """ _validation = { 'id': {'readonly': True}, 'name': {'readonly': True}, 'type': {'readonly': True}, 'system_data': {'readonly': True}, 'location': {'required': True}, 'description': {'max_length': 512, 'min_length': 0}, 'provisioning_state': {'readonly': True}, 'data_plane_uri': {'readonly': True, 'max_length': 2083, 'min_length': 0}, } _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'system_data': {'key': 'systemData', 'type': 'SystemData'}, 'tags': {'key': 'tags', 'type': '{str}'}, 'location': {'key': 'location', 'type': 'str'}, 'identity': {'key': 'identity', 'type': 'SystemAssignedServiceIdentity'}, 'description': {'key': 'properties.description', 'type': 'str'}, 'provisioning_state': {'key': 'properties.provisioningState', 'type': 'str'}, 'data_plane_uri': {'key': 'properties.dataPlaneURI', 'type': 'str'}, } def __init__( self, *, location: str, tags: Optional[Dict[str, str]] = None, identity: Optional["SystemAssignedServiceIdentity"] = None, description: Optional[str] = None, **kwargs ): super(LoadTestResource, self).__init__(tags=tags, location=location, **kwargs) self.identity = identity self.description = description self.provisioning_state = None self.data_plane_uri = None class LoadTestResourcePageList(msrest.serialization.Model): """List of resources page result. :param value: List of resources in current page. :type value: list[~load_test_client.models.LoadTestResource] :param next_link: Link to next page of resources. :type next_link: str """ _attribute_map = { 'value': {'key': 'value', 'type': '[LoadTestResource]'}, 'next_link': {'key': 'nextLink', 'type': 'str'}, } def __init__( self, *, value: Optional[List["LoadTestResource"]] = None, next_link: Optional[str] = None, **kwargs ): super(LoadTestResourcePageList, self).__init__(**kwargs) self.value = value self.next_link = next_link class LoadTestResourcePatchRequestBody(msrest.serialization.Model): """LoadTest resource patch request body. :param tags: A set of tags. Resource tags. :type tags: any :param identity: The type of identity used for the resource. :type identity: ~load_test_client.models.SystemAssignedServiceIdentity :param properties: Load Test resource properties. :type properties: ~load_test_client.models.LoadTestResourcePatchRequestBodyProperties """ _attribute_map = { 'tags': {'key': 'tags', 'type': 'object'}, 'identity': {'key': 'identity', 'type': 'SystemAssignedServiceIdentity'}, 'properties': {'key': 'properties', 'type': 'LoadTestResourcePatchRequestBodyProperties'}, } def __init__( self, *, tags: Optional[Any] = None, identity: Optional["SystemAssignedServiceIdentity"] = None, properties: Optional["LoadTestResourcePatchRequestBodyProperties"] = None, **kwargs ): super(LoadTestResourcePatchRequestBody, self).__init__(**kwargs) self.tags = tags self.identity = identity self.properties = properties class LoadTestResourcePatchRequestBodyProperties(msrest.serialization.Model): """Load Test resource properties. :param description: Description of the resource. :type description: str """ _validation = { 'description': {'max_length': 512, 'min_length': 0}, } _attribute_map = { 'description': {'key': 'description', 'type': 'str'}, } def __init__( self, *, description: Optional[str] = None, **kwargs ): super(LoadTestResourcePatchRequestBodyProperties, self).__init__(**kwargs) self.description = description class Operation(msrest.serialization.Model): """Details of a REST API operation, returned from the Resource Provider Operations API. Variables are only populated by the server, and will be ignored when sending a request. :ivar name: The name of the operation, as per Resource-Based Access Control (RBAC). Examples: "Microsoft.Compute/virtualMachines/write", "Microsoft.Compute/virtualMachines/capture/action". :vartype name: str :ivar is_data_action: Whether the operation applies to data-plane. This is "true" for data-plane operations and "false" for ARM/control-plane operations. :vartype is_data_action: bool :param display: Localized display information for this particular operation. :type display: ~load_test_client.models.OperationDisplay :ivar origin: The intended executor of the operation; as in Resource Based Access Control (RBAC) and audit logs UX. Default value is "user,system". Possible values include: "user", "system", "user,system". :vartype origin: str or ~load_test_client.models.Origin :ivar action_type: Enum. Indicates the action type. "Internal" refers to actions that are for internal only APIs. Possible values include: "Internal". :vartype action_type: str or ~load_test_client.models.ActionType """ _validation = { 'name': {'readonly': True}, 'is_data_action': {'readonly': True}, 'origin': {'readonly': True}, 'action_type': {'readonly': True}, } _attribute_map = { 'name': {'key': 'name', 'type': 'str'}, 'is_data_action': {'key': 'isDataAction', 'type': 'bool'}, 'display': {'key': 'display', 'type': 'OperationDisplay'}, 'origin': {'key': 'origin', 'type': 'str'}, 'action_type': {'key': 'actionType', 'type': 'str'}, } def __init__( self, *, display: Optional["OperationDisplay"] = None, **kwargs ): super(Operation, self).__init__(**kwargs) self.name = None self.is_data_action = None self.display = display self.origin = None self.action_type = None class OperationDisplay(msrest.serialization.Model): """Localized display information for this particular operation. Variables are only populated by the server, and will be ignored when sending a request. :ivar provider: The localized friendly form of the resource provider name, e.g. "Microsoft Monitoring Insights" or "Microsoft Compute". :vartype provider: str :ivar resource: The localized friendly name of the resource type related to this operation. E.g. "Virtual Machines" or "Job Schedule Collections". :vartype resource: str :ivar operation: The concise, localized friendly name for the operation; suitable for dropdowns. E.g. "Create or Update Virtual Machine", "Restart Virtual Machine". :vartype operation: str :ivar description: The short, localized friendly description of the operation; suitable for tool tips and detailed views. :vartype description: str """ _validation = { 'provider': {'readonly': True}, 'resource': {'readonly': True}, 'operation': {'readonly': True}, 'description': {'readonly': True}, } _attribute_map = { 'provider': {'key': 'provider', 'type': 'str'}, 'resource': {'key': 'resource', 'type': 'str'}, 'operation': {'key': 'operation', 'type': 'str'}, 'description': {'key': 'description', 'type': 'str'}, } def __init__( self, **kwargs ): super(OperationDisplay, self).__init__(**kwargs) self.provider = None self.resource = None self.operation = None self.description = None class OperationListResult(msrest.serialization.Model): """A list of REST API operations supported by an Azure Resource Provider. It contains an URL link to get the next set of results. Variables are only populated by the server, and will be ignored when sending a request. :ivar value: List of operations supported by the resource provider. :vartype value: list[~load_test_client.models.Operation] :ivar next_link: URL to get the next set of operation list results (if there are any). :vartype next_link: str """ _validation = { 'value': {'readonly': True}, 'next_link': {'readonly': True}, } _attribute_map = { 'value': {'key': 'value', 'type': '[Operation]'}, 'next_link': {'key': 'nextLink', 'type': 'str'}, } def __init__( self, **kwargs ): super(OperationListResult, self).__init__(**kwargs) self.value = None self.next_link = None class SystemAssignedServiceIdentity(msrest.serialization.Model): """Managed service identity (either system assigned, or none). Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :ivar principal_id: The service principal ID of the system assigned identity. This property will only be provided for a system assigned identity. :vartype principal_id: str :ivar tenant_id: The tenant ID of the system assigned identity. This property will only be provided for a system assigned identity. :vartype tenant_id: str :param type: Required. Type of managed service identity (either system assigned, or none). Possible values include: "None", "SystemAssigned". :type type: str or ~load_test_client.models.SystemAssignedServiceIdentityType """ _validation = { 'principal_id': {'readonly': True}, 'tenant_id': {'readonly': True}, 'type': {'required': True}, } _attribute_map = { 'principal_id': {'key': 'principalId', 'type': 'str'}, 'tenant_id': {'key': 'tenantId', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, } def __init__( self, *, type: Union[str, "SystemAssignedServiceIdentityType"], **kwargs ): super(SystemAssignedServiceIdentity, self).__init__(**kwargs) self.principal_id = None self.tenant_id = None self.type = type class SystemData(msrest.serialization.Model): """Metadata pertaining to creation and last modification of the resource. :param created_by: The identity that created the resource. :type created_by: str :param created_by_type: The type of identity that created the resource. Possible values include: "User", "Application", "ManagedIdentity", "Key". :type created_by_type: str or ~load_test_client.models.CreatedByType :param created_at: The timestamp of resource creation (UTC). :type created_at: ~datetime.datetime :param last_modified_by: The identity that last modified the resource. :type last_modified_by: str :param last_modified_by_type: The type of identity that last modified the resource. Possible values include: "User", "Application", "ManagedIdentity", "Key". :type last_modified_by_type: str or ~load_test_client.models.CreatedByType :param last_modified_at: The timestamp of resource last modification (UTC). :type last_modified_at: ~datetime.datetime """ _attribute_map = { 'created_by': {'key': 'createdBy', 'type': 'str'}, 'created_by_type': {'key': 'createdByType', 'type': 'str'}, 'created_at': {'key': 'createdAt', 'type': 'iso-8601'}, 'last_modified_by': {'key': 'lastModifiedBy', 'type': 'str'}, 'last_modified_by_type': {'key': 'lastModifiedByType', 'type': 'str'}, 'last_modified_at': {'key': 'lastModifiedAt', 'type': 'iso-8601'}, } def __init__( self, *, created_by: Optional[str] = None, created_by_type: Optional[Union[str, "CreatedByType"]] = None, created_at: Optional[datetime.datetime] = None, last_modified_by: Optional[str] = None, last_modified_by_type: Optional[Union[str, "CreatedByType"]] = None, last_modified_at: Optional[datetime.datetime] = None, **kwargs ): super(SystemData, self).__init__(**kwargs) self.created_by = created_by self.created_by_type = created_by_type self.created_at = created_at self.last_modified_by = last_modified_by self.last_modified_by_type = last_modified_by_type self.last_modified_at = last_modified_at
# Copyright 2011 OpenStack Foundation # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ A connection to the VMware vCloud platform. """ import os import subprocess import shutil import time import urllib2 from oslo.config import cfg import sshclient from nova.compute import power_state from nova.compute import task_states from nova import image from nova.openstack.common import log as logging from nova.openstack.common import fileutils as fileutils from nova.i18n import _ from nova.virt.hybrid.common import fake_driver from nova.virt.hybrid.common import common_tools from nova.virt.hybrid.vcloud import hyper_agent_api from nova.virt.hybrid.vcloud import util from nova.virt.hybrid.vcloud.vcloud import VCLOUD_STATUS from nova.virt.hybrid.vcloud.vcloud_client import VCloudClient from nova.volume.cinder import API as cinder_api from nova.network import neutronv2 vcloudapi_opts = [ cfg.StrOpt('vcloud_node_name', default='vcloud_node_01', help='node name, which a node is a vcloud vcd' 'host.'), cfg.StrOpt('vcloud_host_ip', help='Hostname or IP address for connection to VMware VCD ' 'host.'), cfg.IntOpt('vcloud_host_port', default=443, help='Host port for cnnection to VMware VCD ' 'host.'), cfg.StrOpt('vcloud_host_username', help='Host username for connection to VMware VCD ' 'host.'), cfg.StrOpt('vcloud_host_password', help='Host password for connection to VMware VCD ' 'host.'), cfg.StrOpt('vcloud_org', help='User org for connection to VMware VCD ' 'host.'), cfg.StrOpt('vcloud_vdc', help='Vdc for connection to VMware VCD ' 'host.'), cfg.StrOpt('vcloud_version', default='5.5', help='Version for connection to VMware VCD ' 'host.'), cfg.StrOpt('vcloud_service', default='85-719', help='Service for connection to VMware VCD ' 'host.'), cfg.BoolOpt('vcloud_verify', default=False, help='Verify for connection to VMware VCD ' 'host.'), cfg.BoolOpt('use_link_clone', default=True, help='Use link clone or not '), cfg.StrOpt('vcloud_service_type', default='vcd', help='Service type for connection to VMware VCD ' 'host.'), cfg.IntOpt('vcloud_api_retry_count', default=2, help='Api retry count for connection to VMware VCD ' 'host.'), cfg.StrOpt('vcloud_conversion_dir', default='/vcloud/convert_tmp', help='the directory where images are converted in '), cfg.StrOpt('vcloud_volumes_dir', default='/vcloud/volumes', help='the directory of volume files'), cfg.StrOpt('vcloud_vm_naming_rule', default='openstack_vm_id', help='the rule to name vcloud VMs, valid options:' 'openstack_vm_id, openstack_vm_name, cascaded_openstack_rule'), cfg.DictOpt('vcloud_flavor_map', default={ 'm1.tiny': '1', 'm1.small': '2', 'm1.medium': '3', 'm1.large': '4', 'm1.xlarge': '5'}, help='map nova flavor name to vcloud vm specification id'), cfg.StrOpt('metadata_iso_catalog', default='metadata-isos', help='The metadata iso cotalog.'), cfg.StrOpt('provider_base_network_name', help='The provider network name which base provider network use.'), cfg.StrOpt('provider_tunnel_network_name', help='The provider network name which tunnel provider network use.'), cfg.StrOpt('image_user', default='', help=''), cfg.StrOpt('image_password', default='', help=''), cfg.StrOpt('tunnel_cidr', help='The tunnel cidr of provider network.'), cfg.StrOpt('route_gw', help='The route gw of the provider network.') ] status_dict_vapp_to_instance = { VCLOUD_STATUS.FAILED_CREATION: power_state.CRASHED, VCLOUD_STATUS.UNRESOLVED: power_state.NOSTATE, VCLOUD_STATUS.RESOLVED: power_state.NOSTATE, VCLOUD_STATUS.DEPLOYED: power_state.NOSTATE, VCLOUD_STATUS.SUSPENDED: power_state.SUSPENDED, VCLOUD_STATUS.POWERED_ON: power_state.RUNNING, VCLOUD_STATUS.WAITING_FOR_INPUT: power_state.NOSTATE, VCLOUD_STATUS.UNKNOWN: power_state.NOSTATE, VCLOUD_STATUS.UNRECOGNIZED: power_state.NOSTATE, VCLOUD_STATUS.POWERED_OFF: power_state.SHUTDOWN, VCLOUD_STATUS.INCONSISTENT_STATE: power_state.NOSTATE, VCLOUD_STATUS.MIXED: power_state.NOSTATE, VCLOUD_STATUS.DESCRIPTOR_PENDING: power_state.NOSTATE, VCLOUD_STATUS.COPYING_CONTENTS: power_state.NOSTATE, VCLOUD_STATUS.DISK_CONTENTS_PENDING: power_state.NOSTATE, VCLOUD_STATUS.QUARANTINED: power_state.NOSTATE, VCLOUD_STATUS.QUARANTINE_EXPIRED: power_state.NOSTATE, VCLOUD_STATUS.REJECTED: power_state.NOSTATE, VCLOUD_STATUS.TRANSFER_TIMEOUT: power_state.NOSTATE, VCLOUD_STATUS.VAPP_UNDEPLOYED: power_state.NOSTATE, VCLOUD_STATUS.VAPP_PARTIALLY_DEPLOYED: power_state.NOSTATE, } CONF = cfg.CONF CONF.register_opts(vcloudapi_opts, 'vcloud') LOG = logging.getLogger(__name__) IMAGE_API = image.API() class VCloudDriver(fake_driver.FakeNovaDriver): """The VCloud host connection object.""" def __init__(self, virtapi, scheme="https"): self._node_name = CONF.vcloud.vcloud_node_name self._vcloud_client = VCloudClient(scheme=scheme) self.cinder_api = cinder_api() if not os.path.exists(CONF.vcloud.vcloud_conversion_dir): os.makedirs(CONF.vcloud.vcloud_conversion_dir) if not os.path.exists(CONF.vcloud.vcloud_volumes_dir): os.makedirs(CONF.vcloud.vcloud_volumes_dir) self.hyper_agent_api = hyper_agent_api.HyperAgentAPI() super(VCloudDriver, self).__init__(virtapi) def _update_vm_task_state(self, instance, task_state): instance.task_state = task_state instance.save() def spawn(self, context, instance, image_meta, injected_files, admin_password, network_info=None, block_device_info=None): LOG.info('begin time of vcloud create vm is %s' % (time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()))) image_cache_dir = CONF.vcloud.vcloud_conversion_dir volume_cache_dir = CONF.vcloud.vcloud_volumes_dir # update port bind host self._binding_host(context, network_info, instance.uuid) this_conversion_dir = '%s/%s' % (CONF.vcloud.vcloud_conversion_dir, instance.uuid) fileutils.ensure_tree(this_conversion_dir) os.chdir(this_conversion_dir) #0: create metadata iso and upload to vcloud rabbit_host = CONF.rabbit_host if 'localhost' in rabbit_host or '127.0.0.1' in rabbit_host: rabbit_host = CONF.rabbit_hosts[0] if ':' in rabbit_host: rabbit_host = rabbit_host[0:rabbit_host.find(':')] iso_file = common_tools.create_user_data_iso( "userdata.iso", {"rabbit_userid": CONF.rabbit_userid, "rabbit_password": <PASSWORD>, "rabbit_host": rabbit_host, "host": instance.uuid, "tunnel_cidr": CONF.vcloud.tunnel_cidr, "route_gw": CONF.vcloud.route_gw}, this_conversion_dir) vapp_name = self._get_vcloud_vapp_name(instance) metadata_iso = self._vcloud_client.upload_metadata_iso(iso_file, vapp_name) # 0.get vorg, user name,password vdc from configuration file (only one # org) # 1.1 get image id, vm info ,flavor info # image_uuid = instance.image_ref if 'id' in image_meta: # create from image image_uuid = image_meta['id'] else: # create from volume image_uuid = image_meta['properties']['image_id'] #NOTE(nkapotoxin): create vapp with vapptemplate network_names = [CONF.vcloud.provider_tunnel_network_name, CONF.vcloud.provider_base_network_name] network_configs = self._vcloud_client.get_network_configs(network_names) # create vapp if CONF.vcloud.use_link_clone: vapp = self._vcloud_client.create_vapp(vapp_name, image_uuid , network_configs) else: vapp = self._vcloud_client.create_vapp(vapp_name,image_uuid , network_configs, root_gb=instance.get_flavor().root_gb) # generate the network_connection network_connections = self._vcloud_client.get_network_connections(vapp, network_names) # update network self._vcloud_client.update_vms_connections(vapp, network_connections) # update vm specification self._vcloud_client.modify_vm_cpu(vapp, instance.get_flavor().vcpus) self._vcloud_client.modify_vm_memory(vapp, instance.get_flavor().memory_mb) # mount it self._vcloud_client.insert_media(vapp_name, metadata_iso) # power on it self._vcloud_client.power_on_vapp(vapp_name) # 7. clean up shutil.rmtree(this_conversion_dir, ignore_errors=True) LOG.info('end time of vcloud create vm is %s' % (time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()))) # update port bind host self._binding_host(context, network_info, instance.uuid) @staticmethod def _binding_host(context, network_info, host_id): neutron = neutronv2.get_client(context, admin=True) port_req_body = {'port': {'binding:host_id': host_id}} for vif in network_info: neutron.update_port(vif.get('id'), port_req_body) def _get_vcloud_vapp_name(self, instance): if CONF.vcloud.vcloud_vm_naming_rule == 'openstack_vm_id': return instance.uuid elif CONF.vcloud.vcloud_vm_naming_rule == 'openstack_vm_name': return instance.display_name elif CONF.vcloud.vcloud_vm_naming_rule == 'cascaded_openstack_rule': return instance.display_name else: return instance.uuid def _get_vcloud_volume_name(self, volume_id, volume_name): prefix = 'volume@' if volume_name.startswith(prefix): vcloud_volume_name = volume_name[len(prefix):] else: vcloud_volume_name = volume_id return vcloud_volume_name def _download_vmdk_from_vcloud(self, context, src_url, dst_file_name): # local_file_handle = open(dst_file_name, "wb") local_file_handle = fileutils.file_open(dst_file_name, "wb") remote_file_handle = urllib2.urlopen(src_url) file_size = remote_file_handle.headers['content-length'] util.start_transfer(context, remote_file_handle, file_size, write_file_handle=local_file_handle) def _upload_image_to_glance( self, context, src_file_name, image_id, instance): vm_task_state = instance.task_state file_size = os.path.getsize(src_file_name) read_file_handle = fileutils.file_open(src_file_name, "rb") metadata = IMAGE_API.get(context, image_id) # The properties and other fields that we need to set for the image. image_metadata = {"disk_format": "qcow2", "is_public": "false", "name": metadata['name'], "status": "active", "container_format": "bare", "size": file_size, "properties": {"owner_id": instance['project_id']}} util.start_transfer(context, read_file_handle, file_size, image_id=metadata['id'], image_meta=image_metadata, task_state=task_states.IMAGE_UPLOADING, instance=instance) self._update_vm_task_state(instance, task_state=vm_task_state) #TODO: test it def snapshot(self, context, instance, image_id, update_task_state): update_task_state(task_state=task_states.IMAGE_PENDING_UPLOAD) # 1. get vmdk url vapp_name = self._get_vcloud_vapp_name(instance) remote_vmdk_url = self._vcloud_client.query_vmdk_url(vapp_name) # 2. download vmdk temp_dir = '%s/%s' % (CONF.vcloud.vcloud_conversion_dir, instance.uuid) fileutils.ensure_tree(temp_dir) vmdk_name = remote_vmdk_url.split('/')[-1] local_file_name = '%s/%s' % (temp_dir, vmdk_name) self._download_vmdk_from_vcloud( context, remote_vmdk_url, local_file_name) # 3. convert vmdk to qcow2 converted_file_name = temp_dir + '/converted-file.qcow2' convert_commond = "qemu-img convert -f %s -O %s %s %s" % \ ('vmdk', 'qcow2', local_file_name, converted_file_name) convert_result = subprocess.call([convert_commond], shell=True) if convert_result != 0: # do something, change metadata LOG.error('converting file failed') # 4. upload qcow2 to image repository\ update_task_state(task_state=task_states.IMAGE_UPLOADING, expected_state=task_states.IMAGE_PENDING_UPLOAD) self._upload_image_to_glance( context, converted_file_name, image_id, instance) # 5. delete temporary files shutil.rmtree(temp_dir, ignore_errors=True) def reboot(self, context, instance, network_info, reboot_type, block_device_info=None, bad_volumes_callback=None): LOG.debug('[vcloud nova driver] begin reboot instance: %s' % instance.uuid) vapp_name = self._get_vcloud_vapp_name(instance) try: self._vcloud_client.reboot_vapp(vapp_name) except Exception as e: LOG.error('reboot instance %s failed, %s' % (vapp_name, e)) def power_off(self, instance, shutdown_timeout=0, shutdown_attempts=0): LOG.debug('[vcloud nova driver] begin reboot instance: %s' % instance.uuid) vapp_name = self._get_vcloud_vapp_name(instance) try: self._vcloud_client.power_off_vapp(vapp_name) except Exception as e: LOG.error('power off failed, %s' % e) def power_on(self, context, instance, network_info, block_device_info): vapp_name = self._get_vcloud_vapp_name(instance) self._vcloud_client.power_on_vapp(vapp_name) def _do_destroy_vm(self, context, instance, network_info, block_device_info=None, destroy_disks=True, migrate_data=None): vapp_name = self._get_vcloud_vapp_name(instance) try: self._vcloud_client.power_off_vapp(vapp_name) except Exception as e: LOG.error('power off failed, %s' % e) vm_task_state = instance.task_state self._update_vm_task_state(instance, vm_task_state) try: self._vcloud_client.delete_vapp(vapp_name) except Exception as e: LOG.error('delete vapp failed %s' % e) try: self._vcloud_client.delete_metadata_iso(vapp_name) except Exception as e: LOG.error('delete metadata iso failed %s' % e) def destroy(self, context, instance, network_info, block_device_info=None, destroy_disks=True, migrate_data=None): LOG.debug('[vcloud nova driver] destroy: %s' % instance.uuid) self._do_destroy_vm(context, instance, network_info, block_device_info, destroy_disks, migrate_data) self.cleanup(context, instance, network_info, block_device_info, destroy_disks, migrate_data) # delete agent instance_id = instance.uuid neutron_client = neutronv2.get_client(context=None, admin=True) agent = neutron_client.list_agents(host=instance_id) if len(agent['agents']) == 1: neutron_client.delete_agent(agent['agents'][0]['id']) def cleanup(self, context, instance, network_info, block_device_info=None, destroy_disks=True, migrate_data=None, destroy_vifs=True): if destroy_vifs: self.unplug_vifs(instance, network_info) LOG.debug("Cleanup network finished", instance=instance) def attach_interface(self, instance, image_meta, vif): LOG.debug("attach_interface: %s, %s" % (instance, vif)) def detach_interface(self, instance, vif): LOG.debug("detach_interface: %s, %s" % (instance, vif)) def _get_vapp_ip(self, instance): instance_id = instance.uuid neutron_client = neutronv2.get_client(context=None, admin=True) agent = neutron_client.list_agents(host=instance_id) times=10 while len(agent['agents']) == 0: if times==0: break time.sleep(10) agent = neutron_client.list_agents(host=instance_id) times = times - 1 if times==0: return None else: return agent['agents'][0]['configurations']['tunneling_ip'] def _attach_volume_iscsi(self, instance, connection_info): user = CONF.vcloud.image_user pwd = <PASSWORD> vapp_ip = self._get_vapp_ip(instance) if vapp_ip: host = vapp_ip else: LOG.error("vapp_ip is None ,attach volume failed") raise Exception(_("vapp_ip is None ,attach volume failed")) ssh_client = sshclient.SSH(user, host, password=<PASSWORD>) target_iqn = connection_info['data']['target_iqn'] target_portal = connection_info['data']['target_portal'] cmd1 = "sudo iscsiadm -m node -T %s -p %s" % (target_iqn, target_portal) while True: try: cmd1_status, cmd1_out, cmd1_err = ssh_client.execute(cmd1) LOG.debug("sudo cmd1 info status=%s ,out=%s, err=%s " % (cmd1_status, cmd1_out, cmd1_err)) if cmd1_status in [21, 255]: cmd2 = "sudo iscsiadm -m node -T %s -p %s --op new" % (target_iqn, target_portal) cmd2_status, cmd2_out, cmd2_err = ssh_client.execute(cmd2) LOG.debug("sudo cmd2 info status=%s ,out=%s, err=%s " % (cmd2_status, cmd2_out, cmd2_err)) break except sshclient.SSHError: LOG.debug("wait for vm to initialize network") time.sleep(5) cmd3 = "sudo iscsiadm -m session" cmd3_status, cmd3_out, cmd3_err = ssh_client.execute(cmd3) portals = [{'portal': p.split(" ")[2], 'iqn': p.split(" ")[3]} for p in cmd3_out.splitlines() if p.startswith("tcp:")] stripped_portal = connection_info['data']['target_portal'].split(",")[0] if len(portals) == 0 or len([s for s in portals if stripped_portal == s['portal'].split(",")[0] and s['iqn'] == connection_info['data']['target_iqn']] ) == 0: cmd4 = "sudo iscsiadm -m node -T %s -p %s --login" % (target_iqn, target_portal) cmd4_status, cmd4_out, cmd4_err = ssh_client.execute(cmd4) LOG.debug("sudo cmd4 info status=%s ,out=%s, err=%s " % (cmd4_status, cmd4_out, cmd4_err)) cmd5 = "sudo iscsiadm -m node -T %s -p %s --op update -n node.startup -v automatic" % \ (target_iqn, target_portal) cmd5_status, cmd5_out, cmd5_err = ssh_client.execute(cmd5) LOG.debug("sudo cmd5 info status=%s ,out=%s, err=%s " % (cmd5_status, cmd5_out, cmd5_err)) ssh_client.close() def attach_volume(self, context, connection_info, instance, mountpoint, disk_bus=None, device_type=None, encryption=None): """Attach volume storage to VM instance.""" instance_name = instance['display_name'] LOG.debug("Attach_volume: %(connection_info)s to %(instance_name)s", {'connection_info': connection_info, 'instance_name': instance_name}) volume_id = connection_info['data']['volume_id'] driver_type = connection_info['driver_volume_type'] volume = self.cinder_api.get(context, volume_id) volume_name = volume['display_name'] # use volume_name as vcloud disk name, remove prefix str `volume@` # if volume_name does not start with volume@, then use volume id instead vcloud_volume_name = self._get_vcloud_volume_name(volume_id, volume_name) # find volume reference by it's name vapp_name = self._get_vcloud_vapp_name(instance) if driver_type == 'iscsi': self._attach_volume_iscsi(instance, connection_info) return result, resp = self._vcloud_client.get_disk_ref(vcloud_volume_name) if result: LOG.debug("Find volume successful, disk name is: %(disk_name)s" "disk ref's href is: %(disk_href)s.", {'disk_name': vcloud_volume_name, 'disk_href': resp.href}) else: LOG.error(_('Unable to find volume %s to instance'), vcloud_volume_name) if self._vcloud_client.attach_disk_to_vm(vapp_name, resp): LOG.info("Volume %(volume_name)s attached to: %(instance_name)s", {'volume_name': vcloud_volume_name, 'instance_name': instance_name}) def _detach_volume_iscsi(self, instance, connection_info): user = CONF.vcloud.image_user pwd = CONF.vcloud.image_password vapp_ip = self._get_vapp_ip(instance) if vapp_ip: host = vapp_ip else: LOG.debug("vapp_ip is None ,attach volume failed") raise ssh_client = sshclient.SSH(user, host, password=<PASSWORD>) target_iqn = connection_info['data']['target_iqn'] target_portal = connection_info['data']['target_portal'] cmd1 = "ls -l /dev/disk/by-path/ | grep %s | awk -F '/' '{print $NF}'" % target_iqn cmd1_status, cmd1_out, cmd1_err = ssh_client.execute(cmd1) LOG.debug(" cmd1 info status=%s ,out=%s, err=%s " % (cmd1_status, cmd1_out, cmd1_err)) device = "/dev/" + cmd1_out.split('\n')[0] path = "/sys/block/" + cmd1_out.split('\n')[0] + "/device/delete" cmd2 = "sudo blockdev --flushbufs %s" % device cmd2_status, cmd2_out, cmd2_err = ssh_client.execute(cmd2) LOG.debug(" cmd2 info status=%s ,out=%s, err=%s " % (cmd2_status, cmd2_out, cmd2_err)) cmd3 = "echo 1 | sudo tee -a %s" % path cmd3_status, cmd3_out, cmd3_err = ssh_client.execute(cmd3) LOG.debug("sudo cmd3 info status=%s ,out=%s, err=%s " % (cmd3_status, cmd3_out, cmd3_err)) cmd4 = "sudo iscsiadm -m node -T %s -p %s --op update -n node.startup -v manual" % (target_iqn, target_portal) cmd4_status, cmd4_out, cmd4_err = ssh_client.execute(cmd4) LOG.debug("sudo cmd4 info status=%s ,out=%s, err=%s " % (cmd4_status, cmd4_out, cmd4_err)) cmd5 = "sudo iscsiadm -m node -T %s -p %s --logout" % (target_iqn, target_portal) cmd5_status, cmd5_out, cmd5_err = ssh_client.execute(cmd5) LOG.debug("sudo cmd5 info status=%s ,out=%s, err=%s " % (cmd5_status, cmd5_out, cmd5_err)) cmd6 = "sudo iscsiadm -m node -T %s -p %s --op delete" % (target_iqn, target_portal) cmd6_status, cmd6_out, cmd6_err = ssh_client.execute(cmd6) LOG.debug("sudo cmd6 info status=%s ,out=%s, err=%s " % (cmd6_status, cmd6_out, cmd6_err)) def detach_volume(self, connection_info, instance, mountpoint, encryption=None): """Detach the disk attached to the instance.""" instance_name = instance['display_name'] LOG.debug("Detach_volume: %(connection_info)s to %(instance_name)s", {'connection_info': connection_info, 'instance_name': instance_name}) volume_id = connection_info['data']['volume_id'] driver_type = connection_info['driver_volume_type'] if driver_type == 'iscsi': self._detach_volume_iscsi(instance, connection_info) return volume_name = connection_info['data']['display_name'] # use volume_name as vcloud disk name, remove prefix str `volume@` # if volume_name does not start with volume@, then use volume id instead vcloud_volume_name = self._get_vcloud_volume_name(volume_id, volume_name) # find volume reference by it's name vapp_name = self._get_vcloud_vapp_name(instance) #if driver_type == 'iscsi': # self._detach_volume_iscsi(instance, connection_info) # return result, resp = self._vcloud_client.get_disk_ref(vcloud_volume_name) if result: LOG.debug("Find volume successful, disk name is: %(disk_name)s" "disk ref's href is: %(disk_href)s.", {'disk_name': vcloud_volume_name, 'disk_href': resp.href}) else: LOG.error(_('Unable to find volume from instance %s'), vcloud_volume_name) if self._vcloud_client.detach_disk_from_vm(vapp_name, resp): LOG.info("Volume %(volume_name)s detached from: %(instance_name)s", {'volume_name': vcloud_volume_name, 'instance_name': instance_name}) def get_info(self, instance): vapp_name = self._get_vcloud_vapp_name(instance) state = self._vcloud_client.get_vcloud_vapp_status(vapp_name) return {'state': state, 'max_mem': 0, 'mem': 0, 'num_cpu': 1, 'cpu_time': 0} def get_available_nodes(self, refresh=False): return [self._node_name] def plug_vifs(self, instance, network_info): LOG.debug("plug_vifs") # TODO: retrieve provider info ips/macs for vcloud for vif in network_info: self.hyper_agent_api.plug(instance.uuid, vif, None) def unplug_vifs(self, instance, network_info): LOG.debug("unplug_vifs") for vif in network_info: self.hyper_agent_api.unplug(instance.uuid, vif)
#!/usr/bin/python ''' Example of inverse kinematics using the simple gradient descent method ''' from riglib.bmi import robot_arms import imp imp.reload(robot_arms) import numpy as np import matplotlib.pyplot as plt import time from riglib.stereo_opengl import ik import cProfile pi = np.pi q = np.array([0, 90, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) * pi/180 q_sub = q[1::3] chain = robot_arms.KinematicChain([15, 15, 5, 5]) [t, allt] = chain.forward_kinematics(q); planar_chain = robot_arms.PlanarXZKinematicChain([15, 15, 5, 5]) [t, allt] = planar_chain.forward_kinematics(q_sub); # TODO check the sign for the finger joint limits inf = np.inf planar_chain.joint_limits = [(-pi, pi), (-pi, 0), (-pi/2, pi/2), (-pi/2, 10*pi/180)] # target_pos = np.array([10, 0, 10]) shoulder_anchor = np.array([2, 0, -15]) x_target_pos = (np.random.randn() - 0.5)*25 z_target_pos = (np.random.randn() - 0.5)*14 target_pos = np.array([x_target_pos, 0, z_target_pos]) - shoulder_anchor target_pos = np.array([-14.37130744, 0. , 22.97472612]) q = q_sub[:] def cost(q, q_start, weight=10): return np.linalg.norm(q - q_start) + weight*np.linalg.norm(planar_chain.endpoint_pos(q) - target_pos) def stuff(): # Initialize the particles; n_particles = 10 n_joints = planar_chain.n_joints q_start = np.array([np.random.uniform(-pi, pi), np.random.uniform(0, pi), np.random.uniform(-pi/2, pi/2), np.random.uniform(-pi/2, 10*pi/180)]) noise = 5*np.random.randn(3) noise[1] = 0 angles = ik.inv_kin_2D(target_pos + noise, 15., 25.) q_start_constr = np.array([-angles[0][1], -angles[0][3], 0, 0]) n_iter = 10 particles_q = np.tile(q_start_constr, [n_particles, 1]) particles_v = np.random.randn(n_particles, n_joints) cost_fn = lambda x: cost(x, q_start) gbest = particles_q.copy() gbestcost = np.array(list(map(cost_fn, gbest))) pbest = gbest[np.argmin(gbestcost)] pbestcost = cost_fn(pbest) min_limits = np.array([x[0] for x in planar_chain.joint_limits]) max_limits = np.array([x[1] for x in planar_chain.joint_limits]) min_limits = np.tile(min_limits, [n_particles, 1]) max_limits = np.tile(max_limits, [n_particles, 1]) start_time = time.time() for k in range(n_iter): # update positions of particles particles_q += particles_v # apply joint limits # particles_q = np.array(map(lambda x: planar_chain.apply_joint_limits(x)[0], particles_q)) min_viol = particles_q < min_limits max_viol = particles_q > max_limits particles_q[min_viol] = min_limits[min_viol] particles_q[max_viol] = max_limits[max_viol] # update the costs costs = np.array(list(map(cost_fn, particles_q))) # update the 'bests' gbest[gbestcost > costs] = particles_q[gbestcost > costs] gbestcost = list(map(cost_fn, gbest)) pbest = gbest[np.argmin(gbestcost)] pbestcost = cost_fn(pbest) # update the velocity phi1 = 1#np.random.rand() phi2 = 1#np.random.rand() w=0.25 c1=0.5 c2=0.25 particles_v = w*particles_v + c1*phi1*(np.tile(pbest, [n_particles, 1]) - particles_q) + c2*phi2*(gbest - particles_q) if np.linalg.norm(planar_chain.endpoint_pos(pbest) - target_pos) < 0.5: break end_time = time.time() print("Runtime = %g" % (end_time-start_time)) return pbest starting_pos = np.array([-5., 0, 5]) target_pos = starting_pos - shoulder_anchor q_start = planar_chain.random_sample() noise = 5*np.random.randn(3) noise[1] = 0 angles = ik.inv_kin_2D(target_pos + noise, 15., 25.) q_start_constr = np.array([-angles[0][1], -angles[0][3], 0, 0]) pbest = planar_chain.inverse_kinematics_pso(q_start_constr, target_pos, verbose=True, time_limit=1.) # cProfile.run('planar_chain.inverse_kinematics_pso(q_start_constr, target_pos)', timeunit=0.001) import cProfile, pstats, io pr = cProfile.Profile(timeunit=0.001) pr.enable() planar_chain.inverse_kinematics_pso(q_start_constr, target_pos) pr.disable() s = io.StringIO() sortby = 'time' ps = pstats.Stats(pr, stream=s).sort_stats(sortby) ps.print_stats() print(s.getvalue()) # print planar_chain.endpoint_pos(pbest) print("target position") print(target_pos) print("error = %g" % np.linalg.norm(planar_chain.endpoint_pos(pbest) - target_pos)) # print "q_start_constr" # print q_start_constr * 180/np.pi # print "q_start" # print q_start * 180/np.pi
<filename>mailchimp_marketing_asyncio/models/rss_options1.py # coding: utf-8 """ Mailchimp Marketing API No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) # noqa: E501 OpenAPI spec version: 3.0.74 Contact: <EMAIL> Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six class RSSOptions1(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'feed_url': 'str', 'frequency': 'str', 'schedule': 'SendingSchedule', 'constrain_rss_img': 'bool' } attribute_map = { 'feed_url': 'feed_url', 'frequency': 'frequency', 'schedule': 'schedule', 'constrain_rss_img': 'constrain_rss_img' } def __init__(self, feed_url=None, frequency=None, schedule=None, constrain_rss_img=None): # noqa: E501 """RSSOptions1 - a model defined in Swagger""" # noqa: E501 self._feed_url = None self._frequency = None self._schedule = None self._constrain_rss_img = None self.discriminator = None self.feed_url = feed_url self.frequency = frequency if schedule is not None: self.schedule = schedule if constrain_rss_img is not None: self.constrain_rss_img = constrain_rss_img @property def feed_url(self): """Gets the feed_url of this RSSOptions1. # noqa: E501 The URL for the RSS feed. # noqa: E501 :return: The feed_url of this RSSOptions1. # noqa: E501 :rtype: str """ return self._feed_url @feed_url.setter def feed_url(self, feed_url): """Sets the feed_url of this RSSOptions1. The URL for the RSS feed. # noqa: E501 :param feed_url: The feed_url of this RSSOptions1. # noqa: E501 :type: str """ if feed_url is None: raise ValueError("Invalid value for `feed_url`, must not be `None`") # noqa: E501 self._feed_url = feed_url @property def frequency(self): """Gets the frequency of this RSSOptions1. # noqa: E501 The frequency of the RSS Campaign. # noqa: E501 :return: The frequency of this RSSOptions1. # noqa: E501 :rtype: str """ return self._frequency @frequency.setter def frequency(self, frequency): """Sets the frequency of this RSSOptions1. The frequency of the RSS Campaign. # noqa: E501 :param frequency: The frequency of this RSSOptions1. # noqa: E501 :type: str """ if frequency is None: raise ValueError("Invalid value for `frequency`, must not be `None`") # noqa: E501 allowed_values = ["daily", "weekly", "monthly"] # noqa: E501 if frequency not in allowed_values: raise ValueError( "Invalid value for `frequency` ({0}), must be one of {1}" # noqa: E501 .format(frequency, allowed_values) ) self._frequency = frequency @property def schedule(self): """Gets the schedule of this RSSOptions1. # noqa: E501 :return: The schedule of this RSSOptions1. # noqa: E501 :rtype: SendingSchedule """ return self._schedule @schedule.setter def schedule(self, schedule): """Sets the schedule of this RSSOptions1. :param schedule: The schedule of this RSSOptions1. # noqa: E501 :type: SendingSchedule """ self._schedule = schedule @property def constrain_rss_img(self): """Gets the constrain_rss_img of this RSSOptions1. # noqa: E501 Whether to add CSS to images in the RSS feed to constrain their width in campaigns. # noqa: E501 :return: The constrain_rss_img of this RSSOptions1. # noqa: E501 :rtype: bool """ return self._constrain_rss_img @constrain_rss_img.setter def constrain_rss_img(self, constrain_rss_img): """Sets the constrain_rss_img of this RSSOptions1. Whether to add CSS to images in the RSS feed to constrain their width in campaigns. # noqa: E501 :param constrain_rss_img: The constrain_rss_img of this RSSOptions1. # noqa: E501 :type: bool """ self._constrain_rss_img = constrain_rss_img def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(RSSOptions1, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, RSSOptions1): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
# Copyright (c) 2009-2010 Six Apart Ltd. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of Six Apart Ltd. nor the names of its contributors may # be used to endorse or promote products derived from this software without # specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. import cgi import httplib import logging import threading import urlparse import batchhttp.client import httplib2 from oauth import oauth import typepad __all__ = ('OAuthAuthentication', 'OAuthClient', 'OAuthHttp', 'log') log = logging.getLogger(__name__) class OAuthAuthentication(httplib2.Authentication): """An `httplib2.Authentication` module that provides OAuth authentication. The OAuth authentication will be tried automatically, but to use OAuth authentication with a particular user agent (`Http` instance), it must have the OAuth consumer and access token set as one of its sets of credentials. For instance: >>> csr = oauth.OAuthConsumer(key='blah', secret='moo') >>> token = get_access_token_for(user) >>> http.add_credentials(csr, token) """ def request(self, method, request_uri, headers, content): """Add the HTTP Authorization header to the headers for this request. In this implementation, the Authorization header contains the OAuth signing information and signature. """ # httplib2 only gives us the URI in parts, so rebuild it from the # partial uri and host. partial_uri = urlparse.urlsplit(request_uri) # Check the query to see if the URI is already signed. query = partial_uri[3] querydict = cgi.parse_qs(query) if 'oauth_signature' in querydict: # The URI is already signed. Don't do anything. return uri = urlparse.urlunsplit((self.http.default_scheme, self.host) + partial_uri[2:]) req = self.signed_request(uri, method) headers.update(req.to_header()) def signed_request(self, uri, method): """Returns an `OAuthRequest` for the given URL and HTTP method, signed with this `OAuthAuthentication` instance's credentials.""" csr, token = self.credentials assert token.secret is not None req = oauth.OAuthRequest.from_consumer_and_token(csr, token, http_method=method, http_url=uri) sign_method = oauth.OAuthSignatureMethod_HMAC_SHA1() req.set_parameter('oauth_signature_method', sign_method.get_name()) log.debug('Signing base string %r for web request %s' % (sign_method.build_signature_base_string(req, csr, token), uri)) req.sign_request(sign_method, csr, token) return req httplib2.AUTH_SCHEME_CLASSES['oauth'] = OAuthAuthentication httplib2.AUTH_SCHEME_ORDER[0:0] = ('oauth',) # unshift onto front class OAuthHttp(httplib2.Http): """An HTTP user agent for an OAuth web service.""" default_scheme = 'https' def add_credentials(self, name, password, domain=""): """Adds a name (or `OAuthConsumer` instance) and password (or `OAuthToken` instance) to this user agent's available credentials. If ``name`` is an `OAuthConsumer` instance and the ``domain`` parameter is provided, the `OAuthHttp` instance will be configured to provide the given OAuth credentials, even upon the first request to that domain. (Normally the user agent will make the request unauthenticated first, receive a challenge from the server, then make the request again with the credentials.) """ super(OAuthHttp, self).add_credentials(name, password, domain) log.debug("Setting credentials for name %s password %s" % (name, password)) if isinstance(name, oauth.OAuthConsumer) and domain: if self.default_scheme is None: self.default_scheme = urlparse.urlsplit(typepad.client.endpoint)[0] # Preauthorize these credentials for any request at that domain. cred = (name, password) domain = domain.lower() auth = OAuthAuthentication(cred, domain, "%s://%s/" % ( self.default_scheme, domain ), {}, None, None, self) self.authorizations.append(auth) def url_for_signed_request(self, uri, method=None, headers=None, body=None): """Prepares to perform a request on the given URL with the given parameters by signing the URL with any OAuth credentials available for that URL. If no such credentials are available, a `ValueError` is raised. """ if method is None: method = 'GET' uriparts = list(urlparse.urlparse(uri)) host = uriparts[1] request_uri = urlparse.urlunparse([None, None] + uriparts[2:]) # find OAuthAuthentication for this uri auths = [(auth.depth(request_uri), auth) for auth in self.authorizations if auth.inscope(host, request_uri)] if not auths: raise ValueError('No authorizations with which to sign a request to %r are available' % uri) auth = sorted(auths)[0][1] # use it to make a signed uri instead req = auth.signed_request(uri, method) return req.to_url() def signed_request(self, uri, method=None, headers=None, body=None): """Performs a request on the given URL with the given parameters, after signing the URL with any OAuth credentials available for that URL. If no such credentials are available, a `ValueError` is raised. """ uri = self.url_for_signed_request(uri, method=method, headers=headers, body=body) return self.request(uri=uri, method=method, headers=headers, body=body) def interactive_authorize(self, consumer, app, **kwargs): from textwrap import fill # Suppress batchhttp.client's no-log-handler warning. class NullHandler(logging.Handler): def emit(self, record): pass logging.getLogger().addHandler(NullHandler()) if not isinstance(consumer, oauth.OAuthConsumer): consumer = oauth.OAuthConsumer(*consumer) if not isinstance(app, typepad.Application): app = typepad.Application.get_by_id(app) # Set up an oauth client for our signed requestses. oauth_client = OAuthClient(consumer, None) oauth_client.request_token_url = app.oauth_request_token_url oauth_client.access_token_url = app.oauth_access_token_url oauth_client.authorization_url = app.oauth_authorization_url # Get a request token for the viewer to interactively authorize. request_token = oauth_client.fetch_request_token(None) log.debug("Got request token %r", request_token) # Ask the viewer to authorize it. approve_url = oauth_client.authorize_token(params=kwargs) log.debug("Asking viewer to authorize token with URL %r", approve_url) print fill("""To join your application %r, follow this link and click "Allow":""" % app.name, width=78) print print "<%s>" % approve_url print try: verifier = raw_input('Enter the verifier code TypePad gave you: ') except KeyboardInterrupt: print return # Exchange the authorized request token for an access token. access_token = oauth_client.fetch_access_token(verifier=verifier) # Re-authorize ourselves using that access token, so we can make authenticated requests with it. domain = urlparse.urlsplit(self.endpoint)[1] self.add_credentials(consumer, access_token, domain=domain) # Make sure the key works. typepad.client.batch_request() user = typepad.User.get_self() typepad.client.complete_batch() # Yay! Give the access token to the viewer for their reference. print print fill("""Yay! This new access token authorizes this typepad.client to act as %s (%s). Here's the token:""" % (user.display_name, user.url_id), width=78) print """ Key: %s Secret: %s """ % (access_token.key, access_token.secret) print fill("""Pass this access token to typepad.client.add_credentials() to re-authorize as %s later.""" % user.display_name, width=78) print return access_token class OAuthClient(oauth.OAuthClient): """An `OAuthClient` for interacting with the TypePad API.""" consumer = None request_token_url = None access_token_url = None authorization_url = None callback_url = None def set_consumer(self, key, secret): self.consumer = oauth.OAuthConsumer( key = key, secret = secret, ) def set_token_from_string(self, token_str): self.token = oauth.OAuthToken.from_string(token_str) def fetch_request_token(self, callback): if not callback: callback = 'oob' h = typepad.client h.clear_credentials() req = oauth.OAuthRequest.from_consumer_and_token( self.consumer, http_method='GET', http_url=self.request_token_url, callback=callback, ) sign_method = oauth.OAuthSignatureMethod_HMAC_SHA1() req.set_parameter('oauth_signature_method', sign_method.get_name()) log.debug('Signing base string %r in fetch_request_token()' % (sign_method.build_signature_base_string(req, self.consumer, self.token),)) req.sign_request(sign_method, self.consumer, self.token) log.debug('Asking for request token from %r', req.to_url()) resp, content = h.request(req.to_url(), method=req.get_normalized_http_method()) if resp.status != 200: log.debug(content) raise httplib.HTTPException('WHAT %d %s?!' % (resp.status, resp.reason)) self.token = oauth.OAuthToken.from_string(content) return self.token def fetch_access_token(self, request_token_str=None, verifier=None): # -> OAuthToken h = typepad.client req = oauth.OAuthRequest.from_consumer_and_token( self.consumer, token = self.token, http_url = self.access_token_url, verifier = verifier, ) sign_method = oauth.OAuthSignatureMethod_HMAC_SHA1() req.set_parameter('oauth_signature_method', sign_method.get_name()) log.debug('Signing base string %r in fetch_access_token()' % (sign_method.build_signature_base_string(req, self.consumer, self.token),)) req.sign_request(sign_method, self.consumer, self.token) resp, content = h.request(req.to_url(), method=req.get_normalized_http_method()) self.token = oauth.OAuthToken.from_string(content) return self.token def authorize_token(self, params=None): """Returns the URL at which an interactive user can authorize this instance's request token.""" if params is None: params = {} req = oauth.OAuthRequest.from_token_and_callback( self.token, http_url=self.authorization_url, parameters=params, ) return req.to_url() def get_file_upload_url(self, upload_url): """Returns the given upload URL, signed for performing an HTTP ``POST`` against it, with this instance's OAuth credentials. Such a signed URL can be used for uploading asset files to TypePad. """ # oauth GET params for file upload url # since the form is multipart/form-data req = oauth.OAuthRequest.from_consumer_and_token( self.consumer, token = self.token, http_method = 'POST', http_url = upload_url, ) sign_method = oauth.OAuthSignatureMethod_HMAC_SHA1() req.set_parameter('oauth_signature_method', sign_method.get_name()) log.debug('Signing base string %r in get_file_upload_url()' % (sign_method.build_signature_base_string(req, self.consumer, self.token),)) req.sign_request(sign_method, self.consumer, self.token) return req.to_url() class TypePadClient(batchhttp.client.BatchClient, OAuthHttp): """An HTTP user agent for performing TypePad API requests. A `TypePadClient` instance supports the same interface as `httplib2.Http` instances, plus some special methods for performing OAuth authenticated requests, and using TypePad's batch HTTP endpoint. Each `TypePadClient` instance also has a `cookies` member, a dictionary containing any additional HTTP cookies to send when making API requests. """ endpoint = 'http://api.typepad.com' """The URL against which to perform TypePad API requests.""" subrequest_limit = 20 """The number of subrequests permitted for a given batch.""" def __init__(self, *args, **kwargs): self.cookies = dict() self._consumer = None self._token = None kwargs['endpoint'] = self.endpoint super(TypePadClient, self).__init__(*args, **kwargs) self.follow_redirects = False def request(self, uri, method="GET", body=None, headers=None, redirections=httplib2.DEFAULT_MAX_REDIRECTS, connection_type=None): """Makes the given HTTP request, as specified. If the instance's ``cookies`` dictionary contains any cookies, they will be sent along with the request. See `httplib2.Http.request()` for more information. """ if self.cookies: if headers is None: headers = {} else: headers = dict(headers) cookies = ['='.join((key, value)) for key, value in self.cookies.items()] headers['cookie'] = '; '.join(cookies) return super(TypePadClient, self).request(uri, method, body, headers, redirections, connection_type) def add_credentials(self, name, password, domain=""): endparts = urlparse.urlsplit(self.endpoint) if domain == '': domain = endparts[1] if isinstance(name, oauth.OAuthConsumer) and domain == endparts[1]: # We're adding TypePad credentials, so upgrade to HTTPS. self.endpoint = urlparse.urlunsplit(('https',) + endparts[1:]) super(TypePadClient, self).add_credentials(name, password, domain) def clear_credentials(self): super(TypePadClient, self).clear_credentials() # We cleared our TypePad credentials too, so downgrade to HTTP. endparts = urlparse.urlsplit(self.endpoint) self.endpoint = urlparse.urlunsplit(('http',) + endparts[1:]) def signed_request(self, uri, method=None, body=None, headers=None): """Performs the given request, after signing the URL with the user agent's configured OAuth credentials. If the given URL is not an absolute URL, it is taken as relative to this instance's endpoint first. """ host = urlparse.urlparse(uri)[1] if not host: uri = urlparse.urljoin(self.endpoint, uri) return super(TypePadClient, self).signed_request(uri=uri, method=method, body=body, headers=headers) def _get_consumer(self): return self._consumer def _set_consumer(self, consumer): if isinstance(consumer, tuple): consumer = oauth.OAuthConsumer(consumer[0], consumer[1]) assert(consumer is None or isinstance(consumer, oauth.OAuthConsumer)) if self._consumer != consumer: self._consumer = consumer if consumer is None: self.clear_credentials() else: self._reauthorize() consumer = property(_get_consumer, _set_consumer) def _get_token(self): return self._token def _set_token(self, token): if isinstance(token, tuple): token = oauth.OAuthToken(token[0], token[1]) assert(token is None or isinstance(token, oauth.OAuthToken)) if self._token != token: self._token = token # if token is None, forcibly clear credentials if token is None: self.clear_credentials() else: self._reauthorize() token = property(_get_token, _set_token) def _reauthorize(self): if self._consumer is not None and self._token is not None: self.clear_credentials() self.add_credentials(self._consumer, self._token) class ThreadAwareTypePadClientProxy(object): def __init__(self): self._local = threading.local() def _get_client(self): if not hasattr(self._local, 'client'): self.client = typepad.client_factory() return self._local.client def _set_client(self, new_client): self._local.client = new_client client = property(_get_client, _set_client) """Property for accessing the real client instance. Constructs a TypePadClient if the active thread doesn't have one.""" def __getattr__(self, name): if name in ('_local', 'client'): return super(ThreadAwareTypePadClientProxy, self).__getattr__(name) else: return getattr(self.client, name) def __setattr__(self, name, value): if name in ('_local', 'client'): super(ThreadAwareTypePadClientProxy, self).__setattr__(name, value) else: setattr(self.client, name, value)
import tensorflow as tf from utils import FLAT_COLOR_DIMS, COLOR_DIMS IMAGE_SIZE = 416 # TODO(indutny): there is no reason to not calculate grid_size automatically GRID_SIZE = 13 GRID_CHANNELS = 7 PRIOR_SIZES = [ [ 0.14377480392797287, 0.059023397839700086 ], [ 0.20904473801128326, 0.08287369797830041 ], [ 0.2795802996888472, 0.11140121237843759 ], [ 0.3760081365223815, 0.1493933380505552 ], [ 0.5984967942142249, 0.2427157057261726 ], ] class Model: def __init__(self, config, prior_sizes=PRIOR_SIZES): self.config = config self.prior_sizes = tf.constant(prior_sizes, dtype=tf.float32, name='prior_sizes') self.iou_threshold = config.iou_threshold self.weight_decay = config.weight_decay self.grid_depth = config.grid_depth self.lambda_angle = config.lambda_angle self.lambda_obj = config.lambda_obj self.lambda_no_obj = config.lambda_no_obj self.lambda_coord = config.lambda_coord self.trainable_variables = None def forward(self, image, training=False, coreml=False): with tf.variable_scope('resistenz', reuse=tf.AUTO_REUSE, \ values=[ image ]) as scope: x = image x = self.conv_bn(x, filters=16, size=3, name='1', training=training) x = self.max_pool(x, size=2, stride=2, name='1') x = self.conv_bn(x, filters=32, size=3, name='2', training=training) x = self.max_pool(x, size=2, stride=2, name='2') x = self.conv_bn(x, filters=64, size=3, name='3', training=training) x = self.max_pool(x, size=2, stride=2, name='3') x = self.conv_bn(x, filters=128, size=3, name='4', training=training) x = self.max_pool(x, size=2, stride=2, name='4') x = self.conv_bn(x, filters=256, size=3, name='5', training=training) x = self.max_pool(x, size=2, stride=2, name='5') x = self.conv_bn(x, filters=512, size=3, name='6', training=training) x = self.max_pool(x, size=2, stride=1, name='6') # TODO(indutny): residual routes if not self.config.minimal: x = self.conv_bn(x, filters=1024, size=3, name='pre_final', training=training) #### if not self.config.minimal: x = self.conv_bn(x, filters=256, size=1, name='final_1', training=training) x = self.conv_bn(x, filters=512, size=3, name='final_2', training=training) else: x = self.conv_bn(x, filters=128, size=3, name='final_2', training=training) x = self.conv_bn(x, filters=self.grid_depth * GRID_CHANNELS + \ FLAT_COLOR_DIMS, size=1, name='last', activation=None, training=training) x, colors, raw_colors = self.output(x, coreml=coreml) self.trainable_variables = scope.trainable_variables() return x, colors, raw_colors def loss_and_metrics(self, prediction, prediction_raw_colors, labels, \ tag='train'): # Just a helpers def sum_over_cells(x, name=None, max=False): if max: return tf.reduce_max(x, axis=3, name=name) else: return tf.reduce_sum(x, axis=3, name=name) def sum_over_grid(x, name=None, max=False): if max: return tf.reduce_max(tf.reduce_max(x, axis=2), axis=1, name=name) else: return tf.reduce_sum(tf.reduce_sum(x, axis=2), axis=1, name=name) with tf.variable_scope('resistenz_loss_{}'.format(tag), reuse=False, \ values=[ prediction, prediction_raw_colors, labels ]): labels, label_colors = tf.split(labels, \ [ GRID_CHANNELS, FLAT_COLOR_DIMS ], axis=-1) prediction = self.parse_box(prediction, 'prediction') labels = self.parse_box(labels, 'labels') iou = self.iou(prediction, labels) # (cos x - cos y)^2 + (sin x - sin y)^2 = 2 ( 1 - cos [ x - y ] ) angle_diff = tf.reduce_mean( (prediction['angle'] - labels['angle']) ** 2, axis=-1, name='angle_diff') abs_cos_diff = tf.abs(1.0 - angle_diff, name='abs_cos_diff') iou *= abs_cos_diff # Compute masks active_anchors = tf.one_hot(tf.argmax(iou, axis=-1), depth=self.grid_depth, axis=-1, on_value=1.0, off_value=0.0, dtype=tf.float32, name='active_anchors') active_anchors *= labels['confidence'] # Disable training for anchors with high IoU passive_anchors = labels['confidence'] passive_anchors *= tf.cast(iou >= self.iou_threshold, dtype=tf.float32) inactive_anchors = 1.0 - tf.maximum(active_anchors, passive_anchors) inactive_anchors = tf.identity(inactive_anchors, name='inactive_anchors') expected_confidence = active_anchors # Confidence loss confidence_loss = \ (prediction['confidence'] - expected_confidence) ** 2 / 2.0 obj_loss = sum_over_cells( \ self.lambda_obj * active_anchors * confidence_loss, name='obj_loss') no_obj_loss = sum_over_cells( \ self.lambda_no_obj * inactive_anchors * confidence_loss, name='no_obj_loss') # Coordinate loss center_loss = tf.reduce_mean( (GRID_SIZE * (prediction['center'] - labels['center'])) ** 2, axis=-1, name='center_loss') size_loss = tf.reduce_mean( (tf.sqrt(prediction['size']) - tf.sqrt(labels['size'])) ** 2, axis=-1, name='size_loss') angle_loss = self.lambda_angle * (1.0 - abs_cos_diff) coord_loss = self.lambda_coord * active_anchors * \ (center_loss + size_loss + angle_loss) coord_loss = sum_over_cells(coord_loss, name='coord_loss') # Color loss label_colors = tf.split(label_colors, COLOR_DIMS, axis=-1, name='split_label_colors') color_loss = 0.0 for l_colors, p_colors in zip(label_colors, prediction_raw_colors): color_loss += tf.nn.softmax_cross_entropy_with_logits_v2( \ labels=l_colors, logits=p_colors) # Mean for each group color_loss /= len(label_colors) + 1e-23 color_loss *= tf.squeeze(labels['confidence'], axis=-1) color_loss = tf.identity(color_loss, name='color_loss') # To batch losses obj_loss = sum_over_grid(obj_loss) no_obj_loss = sum_over_grid(no_obj_loss) coord_loss = sum_over_grid(coord_loss) color_loss = sum_over_grid(color_loss) # To scalars obj_loss = tf.reduce_mean(obj_loss) no_obj_loss = tf.reduce_mean(no_obj_loss) coord_loss = tf.reduce_mean(coord_loss) color_loss = tf.reduce_mean(color_loss) # Weight decay weight_loss = 0.0 for var in self.trainable_variables: if not 'bn_' in var.name: weight_loss += tf.nn.l2_loss(var) weight_loss *= self.weight_decay # Total total_loss = obj_loss + no_obj_loss + coord_loss + color_loss regularization_loss = weight_loss # Count objects for metrics below active_count = sum_over_grid(sum_over_cells(active_anchors), name='active_count') active_count = tf.expand_dims(active_count, axis=-1) active_count = tf.expand_dims(active_count, axis=-1) active_count = tf.expand_dims(active_count, axis=-1) # Some metrics mean_anchors = active_anchors / (active_count + 1e-23) mean_iou = sum_over_grid(sum_over_cells(iou * mean_anchors)) mean_iou = tf.reduce_mean(mean_iou) center_loss = self.lambda_coord * center_loss * active_anchors size_loss = self.lambda_coord * size_loss * active_anchors angle_loss = self.lambda_coord * angle_loss * active_anchors center_loss = sum_over_grid(sum_over_cells(center_loss)) size_loss = sum_over_grid(sum_over_cells(size_loss)) angle_loss = sum_over_grid(sum_over_cells(angle_loss)) center_loss = tf.reduce_mean(center_loss) size_loss = tf.reduce_mean(size_loss) angle_loss = tf.reduce_mean(angle_loss) # NOTE: create metrics outside of variable scope for clearer name metrics = [ tf.summary.scalar('{}/iou'.format(tag), mean_iou), tf.summary.scalar('{}/obj_loss'.format(tag), obj_loss), tf.summary.scalar('{}/no_obj_loss'.format(tag), no_obj_loss), tf.summary.scalar('{}/coord_loss'.format(tag), coord_loss), tf.summary.scalar('{}/center_loss'.format(tag), center_loss), tf.summary.scalar('{}/size_loss'.format(tag), size_loss), tf.summary.scalar('{}/angle_loss'.format(tag), angle_loss), tf.summary.scalar('{}/loss'.format(tag), total_loss), tf.summary.scalar('{}/weight_loss'.format(tag), weight_loss), tf.summary.scalar('{}/color_loss'.format(tag), color_loss), ] return total_loss + regularization_loss, tf.summary.merge(metrics) # Helpers def conv_bn(self, input, filters, size, name, training, \ activation=lambda x: tf.nn.leaky_relu(x, alpha=0.1)) : x = tf.layers.conv2d(input, filters=filters, kernel_size=size, \ padding='SAME', name='conv_{}'.format(name)) if not activation is None: x = tf.layers.batch_normalization(x, momentum=0.9, epsilon=1e-5, training=training, name='bn_{}'.format(name)) x = activation(x) return x def max_pool(self, input, size, stride, name): return tf.layers.max_pooling2d(input, pool_size=size, strides=stride, padding='SAME') def output(self, x, coreml=False): with tf.name_scope('output', values=[ x ]): batch_size = tf.shape(x)[0] if coreml: # CoreML does not support rank-5 tensors, strided slices, and so on x = tf.reshape(x, [ batch_size, GRID_SIZE, GRID_SIZE, FLAT_COLOR_DIMS + self.grid_depth * GRID_CHANNELS, ], name='output') return x x, colors = tf.split(x, \ [ self.grid_depth * GRID_CHANNELS, FLAT_COLOR_DIMS ], axis=-1) x = tf.reshape(x, [ batch_size, GRID_SIZE, GRID_SIZE, self.grid_depth, GRID_CHANNELS, ]) center, size, angle, confidence = \ tf.split(x, [ 2, 2, 2, 1 ], axis=-1) center = tf.sigmoid(center) size = tf.exp(size) angle = tf.nn.l2_normalize(angle, axis=-1) confidence = tf.sigmoid(confidence) # Apply softmax over each color group raw_colors = tf.split(colors, COLOR_DIMS, axis=-1) split_colors = [ tf.nn.softmax(l, axis=-1) for l in raw_colors ] colors = tf.concat(split_colors, axis=-1) # Apply priors with tf.name_scope('apply_prior_sizes', values=[ size, self.prior_sizes ]): size *= self.prior_sizes x = tf.concat([ center, size, angle, confidence ], axis=-1, name='output') # Return raw_colors for use in the loss return x, colors, raw_colors def parse_box(self, input, name): center, size, angle, confidence = tf.split(input, \ [ 2, 2, 2, 1 ], \ axis=-1, name='{}_box_split'.format(name)) confidence = tf.squeeze(confidence, axis=-1, name='{}_confidence'.format(name)) center /= GRID_SIZE half_size = size / 2.0 return { 'center': center, 'size': size, 'angle': angle, 'confidence': confidence, 'top_left': center - half_size, 'bottom_right': center + half_size, 'area': self.area(size, name), } def area(self, size, name): width, height = tf.split(size, [ 1, 1 ], axis=-1) return tf.squeeze(width * height, axis=-1, name='{}_area'.format(name)) def iou(self, a, b): top_left = tf.maximum(a['top_left'], b['top_left'], name='iou_top_left') bottom_right = tf.minimum(a['bottom_right'], b['bottom_right'], name='iou_bottom_right') size = tf.nn.relu(bottom_right - top_left, name='iou_size') intersection = self.area(size, 'iou_area') union = a['area'] + b['area'] - intersection return intersection / (union + 1e-23)
<reponame>brianhie/trajectorama<filename>bin/dataset_zeisel_adolescent_brain.py from anndata import AnnData import loompy import numpy as np import os from scanorama import * import scanpy as sc from scipy.sparse import vstack from sklearn.preprocessing import normalize from process import process, load_names, merge_datasets from utils import * NAMESPACE = 'zeisel_adolescent_brain' DIMRED = 100 DR_METHOD = 'svd' data_names = [ 'data/mouse_brain/zeisel/amygdala', 'data/mouse_brain/zeisel/cerebellum', 'data/mouse_brain/zeisel/cortex1', 'data/mouse_brain/zeisel/cortex2', 'data/mouse_brain/zeisel/cortex3', 'data/mouse_brain/zeisel/hippocampus', 'data/mouse_brain/zeisel/hypothalamus', 'data/mouse_brain/zeisel/medulla', 'data/mouse_brain/zeisel/midbraindorsal', 'data/mouse_brain/zeisel/midbrainventral', 'data/mouse_brain/zeisel/olfactory', 'data/mouse_brain/zeisel/pons', 'data/mouse_brain/zeisel/striatumdorsal', 'data/mouse_brain/zeisel/striatumventral', 'data/mouse_brain/zeisel/thalamus', ] def keep_valid(datasets): barcode_sub_type = {} with loompy.connect('data/mouse_brain/zeisel/l6_r1.loom') as ds: for barcode, sub_type in zip(ds.ca['CellID'], ds.ca['ClusterName']): #for barcode, sub_type in zip(ds.ca['CellID'], ds.ca['Taxonomy_group']): barcode_sub_type[barcode] = sub_type valid_idx = [] cell_types = [] sub_types = [] ages = [] for data_name in data_names: with open('{}/meta.tsv'.format(data_name)) as f: excluded = set([ 'Blood', 'Excluded', 'Immune', 'Vascular', ]) for j, line in enumerate(f): fields = line.rstrip().split('\t') if fields[1] == 'Neurons' and fields[2] != '?': valid_idx.append(j) cell_types.append(fields[1]) if fields[0] in barcode_sub_type: sub_types.append(barcode_sub_type[fields[0]]) else: sub_types.append('NA') try: age = float(fields[2][1:]) except ValueError: age = fields[2] if age == 'p12, p35': age = (12 + 35) / 2. elif age == 'p16, p24': age = (16 + 24) / 2. elif age == 'p19, p21': age = (19 + 21) / 2. elif age == 'p21-23' or age == 'p21, p23': age = (21 + 23) / 2. elif age == 'p22-24': age = (22 + 24) / 2. elif age == 'p25-27': age = (25 + 27) / 2. elif age == '6w': age = 7 * 6. else: continue min_age = 19. max_age = 60. offset = (age - min_age) / (max_age - min_age) * 3 ages.append(19 + offset) return valid_idx, np.array(cell_types), np.array(ages), np.array(sub_types) datasets, genes_list, n_cells = load_names(data_names, norm=False) qc_idx, cell_types, ages, sub_types = keep_valid(datasets) datasets, genes = merge_datasets(datasets, genes_list) X = vstack(datasets) X = X[qc_idx] qc_idx = [ i for i, s in enumerate(np.sum(X != 0, axis=1)) if s >= 500 ] tprint('Found {} valid cells among all datasets'.format(len(qc_idx))) X = X[qc_idx] cell_types = cell_types[qc_idx] sub_types = sub_types[qc_idx] ages = ages[qc_idx] if not os.path.isfile('data/dimred/{}_{}.txt' .format(DR_METHOD, NAMESPACE)): mkdir_p('data/dimred') tprint('Dimension reduction with {}...'.format(DR_METHOD)) X_dimred = reduce_dimensionality(normalize(X), dim_red_k=DIMRED) tprint('Dimensionality = {}'.format(X_dimred.shape[1])) np.savetxt('data/dimred/{}_{}.txt' .format(DR_METHOD, NAMESPACE), X_dimred) else: X_dimred = np.loadtxt('data/dimred/{}_{}.txt' .format(DR_METHOD, NAMESPACE)) dataset = AnnData(X) dataset.var['gene_symbols'] = genes dataset.obs['cell_types'] = [ NAMESPACE + '_' + l for l in cell_types ] dataset.obs['sub_types'] = [ NAMESPACE + '_' + l for l in sub_types ] dataset.obs['ages'] = ages datasets = [ dataset ] namespaces = [ NAMESPACE ]
#!/usr/bin/env python from __future__ import print_function import matplotlib as mpl #mpl.use("Agg") import numpy as np import matplotlib.pyplot as plt from costar_models import * from costar_models.planner import GetOrderedList, PrintTopQ from costar_models.sampler2 import PredictionSampler2 from costar_models.datasets.npz import NpzDataset from costar_models.datasets.npy_generator import NpzGeneratorDataset from costar_models.datasets.h5f_generator import H5fGeneratorDataset from costar_models.planner import * from costar_models.multi import * def main(args): ''' Tool for running model training without the rest of the simulation/planning/ROS code. This should be more or less independent and only rely on a couple external features. ''' ConfigureGPU(args) np.random.seed(0) data_file_info = args['data_file'].split('.') data_type = data_file_info[-1] root = "" for i, tok in enumerate(data_file_info[:-1]): if i < len(data_file_info)-1 and i > 0: root += '.' root += tok if data_type == "npz": dataset = NpzGeneratorDataset(root) data = dataset.load(success_only = args['success_only']) elif data_type == "h5f": dataset = H5fGeneratorDataset(root) data = dataset.load(success_only = args['success_only']) else: raise NotImplementedError('data type not implemented: %s'%data_type) if 'model' in args and args['model'] is not None: model = MakeModel(taskdef=None, **args) model.validate = True model.load(world=None,**data) train_generator = model.trainGenerator(dataset) test_generator = model.testGenerator(dataset) print(">>> GOAL_CLASSIFIER") image_discriminator = LoadGoalClassifierWeights(model, make_classifier_fn=MakeImageClassifier, img_shape=(64, 64, 3)) image_discriminator.compile(loss="categorical_crossentropy", metrics=["accuracy"], optimizer=model.getOptimizer()) show = False correct_g1 = 0 correct_g2 = 0 total = 0 err1_sum = 0. err2_sum = 0. v_sum = 0. osum = 0. ii = 0 for filename in dataset.test: print(filename) data = dataset.loadFile(filename) length = data['example'].shape[0] features, targets = model._getData(**data) [I0, I, o1, o2, oin] = features [I_target, I_target2, o1_1h, value, qa, ga, o2_1h] = targets for i in range(length): ii += 1 xi = np.expand_dims(I[i],axis=0) x0 = np.expand_dims(I0[i],axis=0) prev_option = np.array([oin[i]]) h = model.encode(xi) h0 = model.encode(x0) h_goal = model.transform(h0, h, np.array([o1[i]])) h_goal2 = model.transform(h0, h_goal, np.array([o2[i]])) p = model.pnext(h0, h_goal, np.array([o1[i]]))[0] xg = model.decode(h_goal) xg2 = model.decode(h_goal2) if show: plt.subplot(1,4,1); plt.imshow(x0[0]) plt.subplot(1,4,2); plt.imshow(xi[0]) plt.subplot(1,4,3); plt.imshow(xg[0]) plt.subplot(1,4,4); plt.imshow(xg2[0]) plt.show() res1 = np.argmax(image_discriminator.predict([x0, xg]), axis=1) res2 = np.argmax(image_discriminator.predict([x0, xg2]), axis=1) if res1[0] == o1[i]: correct_g1 += 1 if res2[0] == o2[i]: correct_g2 += 1 err1 = np.mean(np.abs((xg[0] - I_target[i]))) err2 = np.mean(np.abs((xg2[0] - I_target2[i]))) v = model.value(h_goal2) if v[0] > 0.5 and value[i] > 0.5: vacc = 1. elif v[0] < 0.5 and value[i] < 0.5: vacc = 1. else: vacc = 0. if p[0,o2[i]] > 0.1: osum += 1. else: #print(GetOrderedList(p[0])) #print(p[0,o2[i]], o2[i]) pass err1_sum += err1 err2_sum += err2 total += 1 v_sum += vacc mean1 = err1_sum / total mean2 = err2_sum / total print(correct_g1, "/", total, correct_g2, "/", total, "...", o1[i], o2[i], res1[0], res2[0], #"errs =", err1, err2, "means =", mean1, mean2, "next =", osum, (osum/total), "value =", v, value[i], "avg =", (v_sum/total)) else: raise RuntimeError('Must provide a model to load') if __name__ == '__main__': args = ParseModelArgs() if args['profile']: import cProfile cProfile.run('main(args)') else: main(args)
End of preview. Expand in Data Studio
README.md exists but content is empty.
Downloads last month
0