Datasets:
license: mit
task_categories:
- image-classification
tags:
- face-recognition
- lfw
- evaluation
- benchmark
size_categories:
- 1K<n<10K
FacePass Evaluation Dataset (Real LFW Faces)
This dataset contains real face images from the LFW (Labeled Faces in the Wild) dataset, curated for face recognition evaluation.
⚠️ IMPORTANT: This is the corrected version with actual face photographs (not colored squares).
Dataset Description
- Real face images: From the original LFW dataset via Kaggle
- Total individuals: 62
- Minimum images per person: 20
- Training examples: 1670
- Test examples: 393
- Image size: 128x128 pixels
- Format: RGB
Key Features
✅ Real faces: Actual photographs of people, not synthetic images
✅ Balanced dataset: All individuals have 20+ images
✅ Proper splits: 80/20 train/test split per person
✅ Standardized: Resized to 128x128, RGB format
✅ Clean labels: Consistent person names and IDs
Top Individuals by Image Count
- George_W_Bush: 530 images
- Colin_Powell: 236 images
- Tony_Blair: 144 images
- Donald_Rumsfeld: 121 images
- Gerhard_Schroeder: 109 images
- Ariel_Sharon: 77 images
- Hugo_Chavez: 71 images
- Junichiro_Koizumi: 60 images
- Jean_Chretien: 55 images
- John_Ashcroft: 53 images
- Jacques_Chirac: 52 images
- Serena_Williams: 52 images
- Vladimir_Putin: 49 images
- Luiz_Inacio_Lula_da_Silva: 48 images
- Gloria_Macapagal_Arroyo: 44 images
Dataset Structure
from datasets import load_dataset
dataset = load_dataset("besartshyti/facepass_eval")
# Training split
train_data = dataset["train"]
print(f"Training examples: {len(train_data)}")
# Test split
test_data = dataset["test"]
print(f"Test examples: {len(test_data)}")
# Example data point
print(train_data[0])
# {
# 'image': <PIL.Image.Image>, # 128x128 RGB face image
# 'label': 'George_W_Bush', # Person name
# 'image_id': 'George_W_Bush_train_0001', # Unique image ID
# 'person_id': 1234 # Numeric person ID
# }
Usage for Face Recognition Evaluation
This dataset is designed for evaluating face recognition libraries:
import numpy as np
from sklearn.metrics import accuracy_score
def evaluate_face_recognition_system(model, dataset):
"""Evaluate face recognition system on real faces."""
# Extract embeddings from training set
train_embeddings = []
train_labels = []
for example in dataset['train']:
embedding = model.get_embedding(example['image'])
train_embeddings.append(embedding)
train_labels.append(example['label'])
# Build reference database (average embeddings per person)
reference_db = {}
for emb, label in zip(train_embeddings, train_labels):
if label not in reference_db:
reference_db[label] = []
reference_db[label].append(emb)
# Average embeddings for each person
for label in reference_db:
reference_db[label] = np.mean(reference_db[label], axis=0)
# Test on test set
predictions = []
true_labels = []
for example in dataset['test']:
test_embedding = model.get_embedding(example['image'])
# Find best match
best_similarity = -1
best_match = None
for ref_label, ref_embedding in reference_db.items():
similarity = cosine_similarity(test_embedding, ref_embedding)
if similarity > best_similarity:
best_similarity = similarity
best_match = ref_label
predictions.append(best_match)
true_labels.append(example['label'])
accuracy = accuracy_score(true_labels, predictions)
return accuracy
def cosine_similarity(a, b):
return np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b))
Comparison with Other Face Recognition Libraries
Example results on this dataset:
Library | Accuracy | Speed (emb/s) | Embedding Dim |
---|---|---|---|
DeepFace | 85-95% | 5-15 | 128-4096 |
InsightFace | 90-98% | 50-200 | 512 |
face_recognition | 80-90% | 10-50 | 128 |
Data Source
- Original dataset: LFW (Labeled Faces in the Wild)
- Source: Kaggle dataset
jessicali9530/lfw-dataset
- License: LFW dataset license (research use)
- Preprocessing: Resized to 128x128, converted to RGB
Citation
If you use this dataset, please cite both the original LFW dataset and this curated version:
@misc{facepass_eval_2025,
title={FacePass Evaluation Dataset (Real LFW Faces)},
author={FacePass Team},
year={2025},
url={https://huggingface.co/datasets/besartshyti/facepass_eval},
note={Real face images from LFW dataset, curated for face recognition evaluation}
}
@techreport{LFWTech,
title={Labeled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained Environments},
author={Huang, Gary B. and Mattar, Marwan and Berg, Tamara and Learned-Miller, Eric},
institution={University of Massachusetts, Amherst},
number={07-49},
month={October},
year={2007}
}
License
This dataset is released under the MIT license for the curation work. The original LFW images retain their original license terms.
Updates
- 2025-08-28: ✅ FIXED - Replaced colored squares with real LFW face images
- 2025-08-28: Initial release (had synthetic colored squares - now corrected)