Dataset Viewer
Auto-converted to Parquet
image
imagewidth (px)
128
128
label
stringclasses
62 values
image_id
stringlengths
20
36
person_id
int64
77
9.67k
George_W_Bush
George_W_Bush_train_0000
6,402
George_W_Bush
George_W_Bush_train_0001
6,402
George_W_Bush
George_W_Bush_train_0002
6,402
George_W_Bush
George_W_Bush_train_0003
6,402
George_W_Bush
George_W_Bush_train_0004
6,402
George_W_Bush
George_W_Bush_train_0005
6,402
George_W_Bush
George_W_Bush_train_0006
6,402
George_W_Bush
George_W_Bush_train_0007
6,402
George_W_Bush
George_W_Bush_train_0008
6,402
George_W_Bush
George_W_Bush_train_0009
6,402
George_W_Bush
George_W_Bush_train_0010
6,402
George_W_Bush
George_W_Bush_train_0011
6,402
George_W_Bush
George_W_Bush_train_0012
6,402
George_W_Bush
George_W_Bush_train_0013
6,402
George_W_Bush
George_W_Bush_train_0014
6,402
George_W_Bush
George_W_Bush_train_0015
6,402
George_W_Bush
George_W_Bush_train_0016
6,402
George_W_Bush
George_W_Bush_train_0017
6,402
George_W_Bush
George_W_Bush_train_0018
6,402
George_W_Bush
George_W_Bush_train_0019
6,402
George_W_Bush
George_W_Bush_train_0020
6,402
George_W_Bush
George_W_Bush_train_0021
6,402
George_W_Bush
George_W_Bush_train_0022
6,402
George_W_Bush
George_W_Bush_train_0023
6,402
George_W_Bush
George_W_Bush_train_0024
6,402
George_W_Bush
George_W_Bush_train_0025
6,402
George_W_Bush
George_W_Bush_train_0026
6,402
George_W_Bush
George_W_Bush_train_0027
6,402
George_W_Bush
George_W_Bush_train_0028
6,402
George_W_Bush
George_W_Bush_train_0029
6,402
George_W_Bush
George_W_Bush_train_0030
6,402
George_W_Bush
George_W_Bush_train_0031
6,402
George_W_Bush
George_W_Bush_train_0032
6,402
George_W_Bush
George_W_Bush_train_0033
6,402
George_W_Bush
George_W_Bush_train_0034
6,402
George_W_Bush
George_W_Bush_train_0035
6,402
George_W_Bush
George_W_Bush_train_0036
6,402
George_W_Bush
George_W_Bush_train_0037
6,402
George_W_Bush
George_W_Bush_train_0038
6,402
George_W_Bush
George_W_Bush_train_0039
6,402
Luiz_Inacio_Lula_da_Silva
Luiz_Inacio_Lula_da_Silva_train_0000
1,996
Luiz_Inacio_Lula_da_Silva
Luiz_Inacio_Lula_da_Silva_train_0001
1,996
Luiz_Inacio_Lula_da_Silva
Luiz_Inacio_Lula_da_Silva_train_0002
1,996
Luiz_Inacio_Lula_da_Silva
Luiz_Inacio_Lula_da_Silva_train_0003
1,996
Luiz_Inacio_Lula_da_Silva
Luiz_Inacio_Lula_da_Silva_train_0004
1,996
Luiz_Inacio_Lula_da_Silva
Luiz_Inacio_Lula_da_Silva_train_0005
1,996
Luiz_Inacio_Lula_da_Silva
Luiz_Inacio_Lula_da_Silva_train_0006
1,996
Luiz_Inacio_Lula_da_Silva
Luiz_Inacio_Lula_da_Silva_train_0007
1,996
Luiz_Inacio_Lula_da_Silva
Luiz_Inacio_Lula_da_Silva_train_0008
1,996
Luiz_Inacio_Lula_da_Silva
Luiz_Inacio_Lula_da_Silva_train_0009
1,996
Luiz_Inacio_Lula_da_Silva
Luiz_Inacio_Lula_da_Silva_train_0010
1,996
Luiz_Inacio_Lula_da_Silva
Luiz_Inacio_Lula_da_Silva_train_0011
1,996
Luiz_Inacio_Lula_da_Silva
Luiz_Inacio_Lula_da_Silva_train_0012
1,996
Luiz_Inacio_Lula_da_Silva
Luiz_Inacio_Lula_da_Silva_train_0013
1,996
Luiz_Inacio_Lula_da_Silva
Luiz_Inacio_Lula_da_Silva_train_0014
1,996
Luiz_Inacio_Lula_da_Silva
Luiz_Inacio_Lula_da_Silva_train_0015
1,996
Luiz_Inacio_Lula_da_Silva
Luiz_Inacio_Lula_da_Silva_train_0016
1,996
Luiz_Inacio_Lula_da_Silva
Luiz_Inacio_Lula_da_Silva_train_0017
1,996
Luiz_Inacio_Lula_da_Silva
Luiz_Inacio_Lula_da_Silva_train_0018
1,996
Luiz_Inacio_Lula_da_Silva
Luiz_Inacio_Lula_da_Silva_train_0019
1,996
Luiz_Inacio_Lula_da_Silva
Luiz_Inacio_Lula_da_Silva_train_0020
1,996
Luiz_Inacio_Lula_da_Silva
Luiz_Inacio_Lula_da_Silva_train_0021
1,996
Luiz_Inacio_Lula_da_Silva
Luiz_Inacio_Lula_da_Silva_train_0022
1,996
Luiz_Inacio_Lula_da_Silva
Luiz_Inacio_Lula_da_Silva_train_0023
1,996
Luiz_Inacio_Lula_da_Silva
Luiz_Inacio_Lula_da_Silva_train_0024
1,996
Luiz_Inacio_Lula_da_Silva
Luiz_Inacio_Lula_da_Silva_train_0025
1,996
Luiz_Inacio_Lula_da_Silva
Luiz_Inacio_Lula_da_Silva_train_0026
1,996
Luiz_Inacio_Lula_da_Silva
Luiz_Inacio_Lula_da_Silva_train_0027
1,996
Luiz_Inacio_Lula_da_Silva
Luiz_Inacio_Lula_da_Silva_train_0028
1,996
Luiz_Inacio_Lula_da_Silva
Luiz_Inacio_Lula_da_Silva_train_0029
1,996
Luiz_Inacio_Lula_da_Silva
Luiz_Inacio_Lula_da_Silva_train_0030
1,996
Luiz_Inacio_Lula_da_Silva
Luiz_Inacio_Lula_da_Silva_train_0031
1,996
Luiz_Inacio_Lula_da_Silva
Luiz_Inacio_Lula_da_Silva_train_0032
1,996
Luiz_Inacio_Lula_da_Silva
Luiz_Inacio_Lula_da_Silva_train_0033
1,996
Luiz_Inacio_Lula_da_Silva
Luiz_Inacio_Lula_da_Silva_train_0034
1,996
Luiz_Inacio_Lula_da_Silva
Luiz_Inacio_Lula_da_Silva_train_0035
1,996
Luiz_Inacio_Lula_da_Silva
Luiz_Inacio_Lula_da_Silva_train_0036
1,996
Luiz_Inacio_Lula_da_Silva
Luiz_Inacio_Lula_da_Silva_train_0037
1,996
Luiz_Inacio_Lula_da_Silva
Luiz_Inacio_Lula_da_Silva_train_0038
1,996
Naomi_Watts
Naomi_Watts_train_0000
6,895
Naomi_Watts
Naomi_Watts_train_0001
6,895
Naomi_Watts
Naomi_Watts_train_0002
6,895
Naomi_Watts
Naomi_Watts_train_0003
6,895
Naomi_Watts
Naomi_Watts_train_0004
6,895
Naomi_Watts
Naomi_Watts_train_0005
6,895
Naomi_Watts
Naomi_Watts_train_0006
6,895
Naomi_Watts
Naomi_Watts_train_0007
6,895
Naomi_Watts
Naomi_Watts_train_0008
6,895
Naomi_Watts
Naomi_Watts_train_0009
6,895
Naomi_Watts
Naomi_Watts_train_0010
6,895
Naomi_Watts
Naomi_Watts_train_0011
6,895
Naomi_Watts
Naomi_Watts_train_0012
6,895
Naomi_Watts
Naomi_Watts_train_0013
6,895
Naomi_Watts
Naomi_Watts_train_0014
6,895
Naomi_Watts
Naomi_Watts_train_0015
6,895
Naomi_Watts
Naomi_Watts_train_0016
6,895
Naomi_Watts
Naomi_Watts_train_0017
6,895
Laura_Bush
Laura_Bush_train_0000
8,191
Laura_Bush
Laura_Bush_train_0001
8,191
Laura_Bush
Laura_Bush_train_0002
8,191
End of preview. Expand in Data Studio

FacePass Evaluation Dataset (Real LFW Faces)

This dataset contains real face images from the LFW (Labeled Faces in the Wild) dataset, curated for face recognition evaluation.

⚠️ IMPORTANT: This is the corrected version with actual face photographs (not colored squares).

Key Features

Real faces: Actual photographs of people, not synthetic images
Balanced dataset: All individuals have 20+ images
Proper splits: 80/20 train/test split per person
Standardized: Resized to 128x128, RGB format
Clean labels: Consistent person names and IDs

Top Individuals by Image Count

  1. George_W_Bush: 530 images
  2. Colin_Powell: 236 images
  3. Tony_Blair: 144 images
  4. Donald_Rumsfeld: 121 images
  5. Gerhard_Schroeder: 109 images
  6. Ariel_Sharon: 77 images
  7. Hugo_Chavez: 71 images
  8. Junichiro_Koizumi: 60 images
  9. Jean_Chretien: 55 images
  10. John_Ashcroft: 53 images
  11. Jacques_Chirac: 52 images
  12. Serena_Williams: 52 images
  13. Vladimir_Putin: 49 images
  14. Luiz_Inacio_Lula_da_Silva: 48 images
  15. Gloria_Macapagal_Arroyo: 44 images

Dataset Structure

from datasets import load_dataset

dataset = load_dataset("besartshyti/facepass_eval")

# Training split
train_data = dataset["train"]
print(f"Training examples: {len(train_data)}")

# Test split  
test_data = dataset["test"]
print(f"Test examples: {len(test_data)}")

# Example data point
print(train_data[0])
# {
#     'image': <PIL.Image.Image>,        # 128x128 RGB face image
#     'label': 'George_W_Bush',          # Person name
#     'image_id': 'George_W_Bush_train_0001',  # Unique image ID
#     'person_id': 1234                  # Numeric person ID
# }

Usage for Face Recognition Evaluation

This dataset is designed for evaluating face recognition libraries:

import numpy as np
from sklearn.metrics import accuracy_score

def evaluate_face_recognition_system(model, dataset):
    """Evaluate face recognition system on real faces."""
    
    # Extract embeddings from training set
    train_embeddings = []
    train_labels = []
    
    for example in dataset['train']:
        embedding = model.get_embedding(example['image'])
        train_embeddings.append(embedding)
        train_labels.append(example['label'])
    
    # Build reference database (average embeddings per person)
    reference_db = {}
    for emb, label in zip(train_embeddings, train_labels):
        if label not in reference_db:
            reference_db[label] = []
        reference_db[label].append(emb)
    
    # Average embeddings for each person
    for label in reference_db:
        reference_db[label] = np.mean(reference_db[label], axis=0)
    
    # Test on test set
    predictions = []
    true_labels = []
    
    for example in dataset['test']:
        test_embedding = model.get_embedding(example['image'])
        
        # Find best match
        best_similarity = -1
        best_match = None
        
        for ref_label, ref_embedding in reference_db.items():
            similarity = cosine_similarity(test_embedding, ref_embedding)
            if similarity > best_similarity:
                best_similarity = similarity
                best_match = ref_label
        
        predictions.append(best_match)
        true_labels.append(example['label'])
    
    accuracy = accuracy_score(true_labels, predictions)
    return accuracy

def cosine_similarity(a, b):
    return np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b))

Comparison with Other Face Recognition Libraries

Example results on this dataset:

Library Accuracy Speed (emb/s) Embedding Dim
DeepFace 85-95% 5-15 128-4096
InsightFace 90-98% 50-200 512
face_recognition 80-90% 10-50 128

Data Source

  • Original dataset: LFW (Labeled Faces in the Wild)
  • Source: Kaggle dataset jessicali9530/lfw-dataset
  • License: LFW dataset license (research use)
  • Preprocessing: Resized to 128x128, converted to RGB

Citation

If you use this dataset, please cite both the original LFW dataset and this curated version:

@misc{facepass_eval_2025,
  title={FacePass Evaluation Dataset (Real LFW Faces)},
  author={FacePass Team},
  year={2025},
  url={https://huggingface.co/datasets/besartshyti/facepass_eval},
  note={Real face images from LFW dataset, curated for face recognition evaluation}
}

@techreport{LFWTech,
  title={Labeled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained Environments},
  author={Huang, Gary B. and Mattar, Marwan and Berg, Tamara and Learned-Miller, Eric},
  institution={University of Massachusetts, Amherst},
  number={07-49},
  month={October},
  year={2007}
}

License

This dataset is released under the MIT license for the curation work. The original LFW images retain their original license terms.

Updates

  • 2025-08-28: ✅ FIXED - Replaced colored squares with real LFW face images
  • 2025-08-28: Initial release (had synthetic colored squares - now corrected)
Downloads last month
59