Datasets:
annotations_creators:
- no-annotation
license: other
source_datasets:
- original
task_categories:
- time-series-forecasting
task_ids:
- univariate-time-series-forecasting
- multivariate-time-series-forecasting
dataset_info:
- config_name: ETT_15T
features:
- name: id
dtype: string
- name: timestamp
sequence: timestamp[ms]
- name: HUFL
sequence: float32
- name: HULL
sequence: float32
- name: MUFL
sequence: float32
- name: MULL
sequence: float32
- name: LUFL
sequence: float32
- name: LULL
sequence: float32
- name: OT
sequence: float32
splits:
- name: train
num_bytes: 5017042
num_examples: 2
download_size: 1964373
dataset_size: 5017042
- config_name: ETT_1H
features:
- name: id
dtype: string
- name: timestamp
sequence: timestamp[ms]
- name: HUFL
sequence: float32
- name: HULL
sequence: float32
- name: MUFL
sequence: float32
- name: MULL
sequence: float32
- name: LUFL
sequence: float32
- name: LULL
sequence: float32
- name: OT
sequence: float32
splits:
- name: train
num_bytes: 1254322
num_examples: 2
download_size: 531145
dataset_size: 1254322
- config_name: ETTh
features:
- name: id
dtype: string
- name: timestamp
sequence: timestamp[ns]
- name: HUFL
sequence: float64
- name: HULL
sequence: float64
- name: MUFL
sequence: float64
- name: MULL
sequence: float64
- name: LUFL
sequence: float64
- name: LULL
sequence: float64
- name: OT
sequence: float64
splits:
- name: train
num_bytes: 2229842
num_examples: 2
download_size: 569100
dataset_size: 2229842
- config_name: LOOP_SEATTLE_1D
features:
- name: target
sequence: float32
- name: id
dtype: string
- name: timestamp
sequence: timestamp[ms]
splits:
- name: train
num_bytes: 1419475
num_examples: 323
download_size: 750221
dataset_size: 1419475
- config_name: LOOP_SEATTLE_1H
features:
- name: target
sequence: float32
- name: id
dtype: string
- name: timestamp
sequence: timestamp[ms]
splits:
- name: train
num_bytes: 33958495
num_examples: 323
download_size: 16373920
dataset_size: 33958495
- config_name: LOOP_SEATTLE_5T
features:
- name: target
sequence: float32
- name: id
dtype: string
- name: timestamp
sequence: timestamp[ms]
splits:
- name: train
num_bytes: 407449855
num_examples: 323
download_size: 209147833
dataset_size: 407449855
- config_name: M_DENSE_1D
features:
- name: target
sequence: float32
- name: id
dtype: string
- name: timestamp
sequence: timestamp[ms]
splits:
- name: train
num_bytes: 263210
num_examples: 30
download_size: 132084
dataset_size: 263210
- config_name: M_DENSE_1H
features:
- name: target
sequence: float32
- name: id
dtype: string
- name: timestamp
sequence: timestamp[ms]
splits:
- name: train
num_bytes: 6307610
num_examples: 30
download_size: 2055774
dataset_size: 6307610
- config_name: SZ_TAXI_15T
features:
- name: target
sequence: float32
- name: id
dtype: string
- name: timestamp
sequence: timestamp[ms]
splits:
- name: train
num_bytes: 5573777
num_examples: 156
download_size: 2632475
dataset_size: 5573777
- config_name: SZ_TAXI_1H
features:
- name: target
sequence: float32
- name: id
dtype: string
- name: timestamp
sequence: timestamp[ms]
splits:
- name: train
num_bytes: 1395473
num_examples: 156
download_size: 728438
dataset_size: 1395473
configs:
- config_name: ETT_15T
data_files:
- split: train
path: ETT/15T/train-*
- config_name: ETT_1H
data_files:
- split: train
path: ETT/1H/train-*
- config_name: ETTh
data_files:
- split: train
path: ETTh/train-*
- config_name: LOOP_SEATTLE_1D
data_files:
- split: train
path: LOOP_SEATTLE/1D/train-*
- config_name: LOOP_SEATTLE_1H
data_files:
- split: train
path: LOOP_SEATTLE/1H/train-*
- config_name: LOOP_SEATTLE_5T
data_files:
- split: train
path: LOOP_SEATTLE/5T/train-*
- config_name: M_DENSE_1D
data_files:
- split: train
path: M_DENSE/1D/train-*
- config_name: M_DENSE_1H
data_files:
- split: train
path: M_DENSE/1H/train-*
- config_name: SZ_TAXI_15T
data_files:
- split: train
path: SZ_TAXI/15T/train-*
- config_name: SZ_TAXI_1H
data_files:
- split: train
path: SZ_TAXI/1H/train-*
Forecast evaluation datasets
This repository contains time series datasets that can be used for evaluation of univariate & multivariate forecasting models.
The main focus of this repository is on datasets that reflect real-world forecasting scenarios, such as those involving covariates, missing values, and other practical complexities.
The datasets follow a format that is compatible with the fev
package.
Data format and usage
Each dataset satisfies the following schema:
- each dataset entry (=row) represents a single univariate or multivariate time series
- each entry contains
- 1/ a field of type
Sequence(timestamp)
that contains the timestamps of observations - 2/ at least one field of type
Sequence(float)
that can be used as the target time series or dynamic covariates - 3/ a field of type
string
that contains the unique ID of each time series
- 1/ a field of type
- all fields of type
Sequence
have the same length
Datasets can be loaded using the 🤗 datasets
library.
import datasets
ds = datasets.load_dataset("autogluon/fev_datasets", "epf_electricity_de", split="train")
ds.set_format("numpy") # sequences returned as numpy arrays
Example entry in the epf_electricity_de
dataset
>>> ds[0]
{'id': 'DE',
'timestamp': array(['2012-01-09T00:00:00.000000', '2012-01-09T01:00:00.000000',
'2012-01-09T02:00:00.000000', ..., '2017-12-31T21:00:00.000000',
'2017-12-31T22:00:00.000000', '2017-12-31T23:00:00.000000'],
dtype='datetime64[us]'),
'target': array([34.97, 33.43, 32.74, ..., 5.3 , 1.86, -0.92], dtype=float32),
'Ampirion Load Forecast': array([16382. , 15410.5, 15595. , ..., 15715. , 15876. , 15130. ],
dtype=float32),
'PV+Wind Forecast': array([ 3569.5276, 3315.275 , 3107.3076, ..., 29653.008 , 29520.33 ,
29466.408 ], dtype=float32)}
For more details about the dataset format and usage, check out the fev
documentation on GitHub.
Dataset statistics
Disclaimer: These datasets have been converted into a unified format from external sources. Please refer to the original sources for licensing and citation terms. We do not claim any rights to the original data. Unless otherwise specified, the datasets are provided only for research purposes.