Datasets:
File size: 12,786 Bytes
bcd86b7 abbd38c 0ea086a abbd38c 0ea086a abbd38c 0ea086a abbd38c 0ea086a bcd86b7 c2bc1f3 ef6aba7 5a05031 8129f22 39d7a54 1726b26 0182391 f8cf796 d7475b3 c29d436 bcd86b7 c2bc1f3 ef6aba7 5a05031 8129f22 39d7a54 1726b26 0182391 f8cf796 d7475b3 c29d436 bcd86b7 abbd38c e422d09 abbd38c cc0cadf 372c1fa 631c709 e422d09 d39d9fe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 |
---
annotations_creators:
- no-annotation
license: other
source_datasets:
- original
task_categories:
- time-series-forecasting
task_ids:
- univariate-time-series-forecasting
- multivariate-time-series-forecasting
dataset_info:
- config_name: ETT_15T
features:
- name: id
dtype: string
- name: timestamp
sequence: timestamp[ms]
- name: HUFL
sequence: float32
- name: HULL
sequence: float32
- name: MUFL
sequence: float32
- name: MULL
sequence: float32
- name: LUFL
sequence: float32
- name: LULL
sequence: float32
- name: OT
sequence: float32
splits:
- name: train
num_bytes: 5017042
num_examples: 2
download_size: 1964373
dataset_size: 5017042
- config_name: ETT_1H
features:
- name: id
dtype: string
- name: timestamp
sequence: timestamp[ms]
- name: HUFL
sequence: float32
- name: HULL
sequence: float32
- name: MUFL
sequence: float32
- name: MULL
sequence: float32
- name: LUFL
sequence: float32
- name: LULL
sequence: float32
- name: OT
sequence: float32
splits:
- name: train
num_bytes: 1254322
num_examples: 2
download_size: 531145
dataset_size: 1254322
- config_name: ETTh
features:
- name: id
dtype: string
- name: timestamp
sequence: timestamp[ns]
- name: HUFL
sequence: float64
- name: HULL
sequence: float64
- name: MUFL
sequence: float64
- name: MULL
sequence: float64
- name: LUFL
sequence: float64
- name: LULL
sequence: float64
- name: OT
sequence: float64
splits:
- name: train
num_bytes: 2229842
num_examples: 2
download_size: 569100
dataset_size: 2229842
- config_name: LOOP_SEATTLE_1D
features:
- name: target
sequence: float32
- name: id
dtype: string
- name: timestamp
sequence: timestamp[ms]
splits:
- name: train
num_bytes: 1419475
num_examples: 323
download_size: 750221
dataset_size: 1419475
- config_name: LOOP_SEATTLE_1H
features:
- name: target
sequence: float32
- name: id
dtype: string
- name: timestamp
sequence: timestamp[ms]
splits:
- name: train
num_bytes: 33958495
num_examples: 323
download_size: 16373920
dataset_size: 33958495
- config_name: LOOP_SEATTLE_5T
features:
- name: target
sequence: float32
- name: id
dtype: string
- name: timestamp
sequence: timestamp[ms]
splits:
- name: train
num_bytes: 407449855
num_examples: 323
download_size: 209147833
dataset_size: 407449855
- config_name: M_DENSE_1D
features:
- name: target
sequence: float32
- name: id
dtype: string
- name: timestamp
sequence: timestamp[ms]
splits:
- name: train
num_bytes: 263210
num_examples: 30
download_size: 132084
dataset_size: 263210
- config_name: M_DENSE_1H
features:
- name: target
sequence: float32
- name: id
dtype: string
- name: timestamp
sequence: timestamp[ms]
splits:
- name: train
num_bytes: 6307610
num_examples: 30
download_size: 2055774
dataset_size: 6307610
- config_name: SZ_TAXI_15T
features:
- name: target
sequence: float32
- name: id
dtype: string
- name: timestamp
sequence: timestamp[ms]
splits:
- name: train
num_bytes: 5573777
num_examples: 156
download_size: 2632475
dataset_size: 5573777
- config_name: SZ_TAXI_1H
features:
- name: target
sequence: float32
- name: id
dtype: string
- name: timestamp
sequence: timestamp[ms]
splits:
- name: train
num_bytes: 1395473
num_examples: 156
download_size: 728438
dataset_size: 1395473
configs:
- config_name: ETT_15T
data_files:
- split: train
path: ETT/15T/train-*
- config_name: ETT_1H
data_files:
- split: train
path: ETT/1H/train-*
- config_name: ETTh
data_files:
- split: train
path: ETTh/train-*
- config_name: LOOP_SEATTLE_1D
data_files:
- split: train
path: LOOP_SEATTLE/1D/train-*
- config_name: LOOP_SEATTLE_1H
data_files:
- split: train
path: LOOP_SEATTLE/1H/train-*
- config_name: LOOP_SEATTLE_5T
data_files:
- split: train
path: LOOP_SEATTLE/5T/train-*
- config_name: M_DENSE_1D
data_files:
- split: train
path: M_DENSE/1D/train-*
- config_name: M_DENSE_1H
data_files:
- split: train
path: M_DENSE/1H/train-*
- config_name: SZ_TAXI_15T
data_files:
- split: train
path: SZ_TAXI/15T/train-*
- config_name: SZ_TAXI_1H
data_files:
- split: train
path: SZ_TAXI/1H/train-*
---
## Forecast evaluation datasets
This repository contains time series datasets that can be used for evaluation of univariate & multivariate forecasting models.
The main focus of this repository is on datasets that reflect real-world forecasting scenarios, such as those involving covariates, missing values, and other practical complexities.
The datasets follow a format that is compatible with the [`fev`](https://github.com/autogluon/fev) package.
## Data format and usage
Each dataset satisfies the following schema:
- each dataset entry (=row) represents a single univariate or multivariate time series
- each entry contains
- 1/ a field of type `Sequence(timestamp)` that contains the timestamps of observations
- 2/ at least one field of type `Sequence(float)` that can be used as the target time series or dynamic covariates
- 3/ a field of type `string` that contains the unique ID of each time series
- all fields of type `Sequence` have the same length
Datasets can be loaded using the [🤗 `datasets`](https://huggingface.co/docs/datasets/en/index) library.
```python
import datasets
ds = datasets.load_dataset("autogluon/fev_datasets", "epf_electricity_de", split="train")
ds.set_format("numpy") # sequences returned as numpy arrays
```
Example entry in the `epf_electricity_de` dataset
```python
>>> ds[0]
{'id': 'DE',
'timestamp': array(['2012-01-09T00:00:00.000000', '2012-01-09T01:00:00.000000',
'2012-01-09T02:00:00.000000', ..., '2017-12-31T21:00:00.000000',
'2017-12-31T22:00:00.000000', '2017-12-31T23:00:00.000000'],
dtype='datetime64[us]'),
'target': array([34.97, 33.43, 32.74, ..., 5.3 , 1.86, -0.92], dtype=float32),
'Ampirion Load Forecast': array([16382. , 15410.5, 15595. , ..., 15715. , 15876. , 15130. ],
dtype=float32),
'PV+Wind Forecast': array([ 3569.5276, 3315.275 , 3107.3076, ..., 29653.008 , 29520.33 ,
29466.408 ], dtype=float32)}
```
For more details about the dataset format and usage, check out the [`fev` documentation on GitHub](https://github.com/autogluon/fev?tab=readme-ov-file#tutorials).
## Dataset statistics
**Disclaimer:** These datasets have been converted into a unified format from external sources. Please refer to the original sources for licensing and citation terms. We do not claim any rights to the original data. Unless otherwise specified, the datasets are provided only for research purposes.
| config | freq | # items | # obs | # dynamic cols | # static cols | source | citation |
|:------------------------|:-------|----------:|----------:|-----------------:|----------------:|:------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|
| `ETTh` | h | 2 | 243880 | 7 | 0 | https://github.com/zhouhaoyi/ETDataset | [[1]](https://arxiv.org/abs/2012.07436) |
| `ETTm` | 15min | 2 | 975520 | 7 | 0 | https://github.com/zhouhaoyi/ETDataset | [[1]](https://arxiv.org/abs/2012.07436) |
| `epf_electricity_be` | h | 1 | 157248 | 3 | 0 | https://zenodo.org/records/4624805 | [[2]](https://doi.org/10.1016/j.apenergy.2021.116983) |
| `epf_electricity_de` | h | 1 | 157248 | 3 | 0 | https://zenodo.org/records/4624805 | [[2]](https://doi.org/10.1016/j.apenergy.2021.116983) |
| `epf_electricity_fr` | h | 1 | 157248 | 3 | 0 | https://zenodo.org/records/4624805 | [[2]](https://doi.org/10.1016/j.apenergy.2021.116983) |
| `epf_electricity_np` | h | 1 | 157248 | 3 | 0 | https://zenodo.org/records/4624805 | [[2]](https://doi.org/10.1016/j.apenergy.2021.116983) |
| `epf_electricity_pjm` | h | 1 | 157248 | 3 | 0 | https://zenodo.org/records/4624805 | [[2]](https://doi.org/10.1016/j.apenergy.2021.116983) |
| `favorita_store_sales` | D | 1782 | 12032064 | 4 | 6 | https://www.kaggle.com/competitions/store-sales-time-series-forecasting | [[3]](https://www.kaggle.com/competitions/store-sales-time-series-forecasting/overview/citation) |
| `favorita_transactions` | D | 54 | 273456 | 3 | 5 | https://www.kaggle.com/competitions/store-sales-time-series-forecasting | [[3]](https://www.kaggle.com/competitions/store-sales-time-series-forecasting/overview/citation) |
| `m5_with_covariates` | D | 30490 | 428849460 | 9 | 5 | https://www.kaggle.com/competitions/m5-forecasting-accuracy | [[4]](https://doi.org/10.1016/j.ijforecast.2021.07.007) |
| `proenfo_bull` | h | 41 | 2877216 | 4 | 0 | https://github.com/Leo-VK/EnFoAV | [[5]](https://doi.org/10.48550/arXiv.2307.07191) |
| `proenfo_cockatoo` | h | 1 | 105264 | 6 | 0 | https://github.com/Leo-VK/EnFoAV | [[5]](https://doi.org/10.48550/arXiv.2307.07191) |
| `proenfo_covid19` | h | 1 | 223384 | 7 | 0 | https://github.com/Leo-VK/EnFoAV | [[5]](https://doi.org/10.48550/arXiv.2307.07191) |
| `proenfo_gfc12_load` | h | 11 | 867108 | 2 | 0 | https://github.com/Leo-VK/EnFoAV | [[5]](https://doi.org/10.48550/arXiv.2307.07191) |
| `proenfo_gfc14_load` | h | 1 | 35040 | 2 | 0 | https://github.com/Leo-VK/EnFoAV | [[5]](https://doi.org/10.48550/arXiv.2307.07191) |
| `proenfo_gfc17_load` | h | 8 | 280704 | 2 | 0 | https://github.com/Leo-VK/EnFoAV | [[5]](https://doi.org/10.48550/arXiv.2307.07191) |
| `proenfo_hog` | h | 24 | 2526336 | 6 | 0 | https://github.com/Leo-VK/EnFoAV | [[5]](https://doi.org/10.48550/arXiv.2307.07191) |
| `proenfo_pdb` | h | 1 | 35040 | 2 | 0 | https://github.com/Leo-VK/EnFoAV | [[5]](https://doi.org/10.48550/arXiv.2307.07191) |
| `proenfo_spain` | h | 1 | 736344 | 21 | 0 | https://github.com/Leo-VK/EnFoAV | [[5]](https://doi.org/10.48550/arXiv.2307.07191) |
## Publications using these datasets
- ["ChronosX: Adapting Pretrained Time Series Models with Exogenous Variables"](https://arxiv.org/abs/2503.12107)
|