File size: 12,786 Bytes
bcd86b7
abbd38c
0ea086a
abbd38c
 
0ea086a
abbd38c
0ea086a
abbd38c
0ea086a
 
bcd86b7
c2bc1f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef6aba7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a05031
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8129f22
 
 
 
 
 
 
 
 
 
 
 
 
 
39d7a54
 
 
 
 
 
 
 
 
 
 
 
 
 
1726b26
 
 
 
 
 
 
 
 
 
 
 
 
 
0182391
 
 
 
 
 
 
 
 
 
 
 
 
 
f8cf796
 
 
 
 
 
 
 
 
 
 
 
 
 
d7475b3
 
 
 
 
 
 
 
 
 
 
 
 
 
c29d436
 
 
 
 
 
 
 
 
 
 
 
 
 
bcd86b7
c2bc1f3
 
 
 
ef6aba7
 
 
 
5a05031
 
 
 
8129f22
 
 
 
39d7a54
 
 
 
1726b26
 
 
 
0182391
 
 
 
f8cf796
 
 
 
d7475b3
 
 
 
c29d436
 
 
 
bcd86b7
abbd38c
 
 
 
 
e422d09
 
abbd38c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc0cadf
372c1fa
 
 
 
631c709
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e422d09
 
 
d39d9fe
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
---
annotations_creators:
- no-annotation
license: other
source_datasets:
- original
task_categories:
- time-series-forecasting
task_ids:
- univariate-time-series-forecasting
- multivariate-time-series-forecasting
dataset_info:
- config_name: ETT_15T
  features:
  - name: id
    dtype: string
  - name: timestamp
    sequence: timestamp[ms]
  - name: HUFL
    sequence: float32
  - name: HULL
    sequence: float32
  - name: MUFL
    sequence: float32
  - name: MULL
    sequence: float32
  - name: LUFL
    sequence: float32
  - name: LULL
    sequence: float32
  - name: OT
    sequence: float32
  splits:
  - name: train
    num_bytes: 5017042
    num_examples: 2
  download_size: 1964373
  dataset_size: 5017042
- config_name: ETT_1H
  features:
  - name: id
    dtype: string
  - name: timestamp
    sequence: timestamp[ms]
  - name: HUFL
    sequence: float32
  - name: HULL
    sequence: float32
  - name: MUFL
    sequence: float32
  - name: MULL
    sequence: float32
  - name: LUFL
    sequence: float32
  - name: LULL
    sequence: float32
  - name: OT
    sequence: float32
  splits:
  - name: train
    num_bytes: 1254322
    num_examples: 2
  download_size: 531145
  dataset_size: 1254322
- config_name: ETTh
  features:
  - name: id
    dtype: string
  - name: timestamp
    sequence: timestamp[ns]
  - name: HUFL
    sequence: float64
  - name: HULL
    sequence: float64
  - name: MUFL
    sequence: float64
  - name: MULL
    sequence: float64
  - name: LUFL
    sequence: float64
  - name: LULL
    sequence: float64
  - name: OT
    sequence: float64
  splits:
  - name: train
    num_bytes: 2229842
    num_examples: 2
  download_size: 569100
  dataset_size: 2229842
- config_name: LOOP_SEATTLE_1D
  features:
  - name: target
    sequence: float32
  - name: id
    dtype: string
  - name: timestamp
    sequence: timestamp[ms]
  splits:
  - name: train
    num_bytes: 1419475
    num_examples: 323
  download_size: 750221
  dataset_size: 1419475
- config_name: LOOP_SEATTLE_1H
  features:
  - name: target
    sequence: float32
  - name: id
    dtype: string
  - name: timestamp
    sequence: timestamp[ms]
  splits:
  - name: train
    num_bytes: 33958495
    num_examples: 323
  download_size: 16373920
  dataset_size: 33958495
- config_name: LOOP_SEATTLE_5T
  features:
  - name: target
    sequence: float32
  - name: id
    dtype: string
  - name: timestamp
    sequence: timestamp[ms]
  splits:
  - name: train
    num_bytes: 407449855
    num_examples: 323
  download_size: 209147833
  dataset_size: 407449855
- config_name: M_DENSE_1D
  features:
  - name: target
    sequence: float32
  - name: id
    dtype: string
  - name: timestamp
    sequence: timestamp[ms]
  splits:
  - name: train
    num_bytes: 263210
    num_examples: 30
  download_size: 132084
  dataset_size: 263210
- config_name: M_DENSE_1H
  features:
  - name: target
    sequence: float32
  - name: id
    dtype: string
  - name: timestamp
    sequence: timestamp[ms]
  splits:
  - name: train
    num_bytes: 6307610
    num_examples: 30
  download_size: 2055774
  dataset_size: 6307610
- config_name: SZ_TAXI_15T
  features:
  - name: target
    sequence: float32
  - name: id
    dtype: string
  - name: timestamp
    sequence: timestamp[ms]
  splits:
  - name: train
    num_bytes: 5573777
    num_examples: 156
  download_size: 2632475
  dataset_size: 5573777
- config_name: SZ_TAXI_1H
  features:
  - name: target
    sequence: float32
  - name: id
    dtype: string
  - name: timestamp
    sequence: timestamp[ms]
  splits:
  - name: train
    num_bytes: 1395473
    num_examples: 156
  download_size: 728438
  dataset_size: 1395473
configs:
- config_name: ETT_15T
  data_files:
  - split: train
    path: ETT/15T/train-*
- config_name: ETT_1H
  data_files:
  - split: train
    path: ETT/1H/train-*
- config_name: ETTh
  data_files:
  - split: train
    path: ETTh/train-*
- config_name: LOOP_SEATTLE_1D
  data_files:
  - split: train
    path: LOOP_SEATTLE/1D/train-*
- config_name: LOOP_SEATTLE_1H
  data_files:
  - split: train
    path: LOOP_SEATTLE/1H/train-*
- config_name: LOOP_SEATTLE_5T
  data_files:
  - split: train
    path: LOOP_SEATTLE/5T/train-*
- config_name: M_DENSE_1D
  data_files:
  - split: train
    path: M_DENSE/1D/train-*
- config_name: M_DENSE_1H
  data_files:
  - split: train
    path: M_DENSE/1H/train-*
- config_name: SZ_TAXI_15T
  data_files:
  - split: train
    path: SZ_TAXI/15T/train-*
- config_name: SZ_TAXI_1H
  data_files:
  - split: train
    path: SZ_TAXI/1H/train-*
---

## Forecast evaluation datasets

This repository contains time series datasets that can be used for evaluation of univariate & multivariate forecasting models.

The main focus of this repository is on datasets that reflect real-world forecasting scenarios, such as those involving covariates, missing values, and other practical complexities.

The datasets follow a format that is compatible with the [`fev`](https://github.com/autogluon/fev) package.

## Data format and usage

Each dataset satisfies the following schema:
- each dataset entry (=row) represents a single univariate or multivariate time series
- each entry contains
  - 1/ a field of type `Sequence(timestamp)` that contains the timestamps of observations
  - 2/ at least one field of type `Sequence(float)` that can be used as the target time series or dynamic covariates
  - 3/ a field of type `string` that contains the unique ID of each time series
- all fields of type `Sequence` have the same length

Datasets can be loaded using the [🤗 `datasets`](https://huggingface.co/docs/datasets/en/index) library.

```python
import datasets

ds = datasets.load_dataset("autogluon/fev_datasets", "epf_electricity_de", split="train")
ds.set_format("numpy")  # sequences returned as numpy arrays
```
Example entry in the `epf_electricity_de` dataset
```python
>>> ds[0]
{'id': 'DE',
 'timestamp': array(['2012-01-09T00:00:00.000000', '2012-01-09T01:00:00.000000',
        '2012-01-09T02:00:00.000000', ..., '2017-12-31T21:00:00.000000',
        '2017-12-31T22:00:00.000000', '2017-12-31T23:00:00.000000'],
       dtype='datetime64[us]'),
 'target': array([34.97, 33.43, 32.74, ...,  5.3 ,  1.86, -0.92], dtype=float32),
 'Ampirion Load Forecast': array([16382. , 15410.5, 15595. , ..., 15715. , 15876. , 15130. ],
       dtype=float32),
 'PV+Wind Forecast': array([ 3569.5276,  3315.275 ,  3107.3076, ..., 29653.008 , 29520.33  ,
        29466.408 ], dtype=float32)}
```

For more details about the dataset format and usage, check out the [`fev` documentation on GitHub](https://github.com/autogluon/fev?tab=readme-ov-file#tutorials).

## Dataset statistics

**Disclaimer:** These datasets have been converted into a unified format from external sources. Please refer to the original sources for licensing and citation terms. We do not claim any rights to the original data. Unless otherwise specified, the datasets are provided only for research purposes.


| config                  | freq   |   # items |     # obs |   # dynamic cols |   # static cols | source                                                                  | citation                                                                                         |
|:------------------------|:-------|----------:|----------:|-----------------:|----------------:|:------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|
| `ETTh`                  | h      |         2 |    243880 |                7 |               0 | https://github.com/zhouhaoyi/ETDataset                                  | [[1]](https://arxiv.org/abs/2012.07436)                                                          |
| `ETTm`                  | 15min  |         2 |    975520 |                7 |               0 | https://github.com/zhouhaoyi/ETDataset                                  | [[1]](https://arxiv.org/abs/2012.07436)                                                          |
| `epf_electricity_be`    | h      |         1 |    157248 |                3 |               0 | https://zenodo.org/records/4624805                                      | [[2]](https://doi.org/10.1016/j.apenergy.2021.116983)                                            |
| `epf_electricity_de`    | h      |         1 |    157248 |                3 |               0 | https://zenodo.org/records/4624805                                      | [[2]](https://doi.org/10.1016/j.apenergy.2021.116983)                                            |
| `epf_electricity_fr`    | h      |         1 |    157248 |                3 |               0 | https://zenodo.org/records/4624805                                      | [[2]](https://doi.org/10.1016/j.apenergy.2021.116983)                                            |
| `epf_electricity_np`    | h      |         1 |    157248 |                3 |               0 | https://zenodo.org/records/4624805                                      | [[2]](https://doi.org/10.1016/j.apenergy.2021.116983)                                            |
| `epf_electricity_pjm`   | h      |         1 |    157248 |                3 |               0 | https://zenodo.org/records/4624805                                      | [[2]](https://doi.org/10.1016/j.apenergy.2021.116983)                                            |
| `favorita_store_sales`  | D      |      1782 |  12032064 |                4 |               6 | https://www.kaggle.com/competitions/store-sales-time-series-forecasting | [[3]](https://www.kaggle.com/competitions/store-sales-time-series-forecasting/overview/citation) |
| `favorita_transactions` | D      |        54 |    273456 |                3 |               5 | https://www.kaggle.com/competitions/store-sales-time-series-forecasting | [[3]](https://www.kaggle.com/competitions/store-sales-time-series-forecasting/overview/citation) |
| `m5_with_covariates`    | D      |     30490 | 428849460 |                9 |               5 | https://www.kaggle.com/competitions/m5-forecasting-accuracy             | [[4]](https://doi.org/10.1016/j.ijforecast.2021.07.007)                                          |
| `proenfo_bull`          | h      |        41 |   2877216 |                4 |               0 | https://github.com/Leo-VK/EnFoAV                                        | [[5]](https://doi.org/10.48550/arXiv.2307.07191)                                                 |
| `proenfo_cockatoo`      | h      |         1 |    105264 |                6 |               0 | https://github.com/Leo-VK/EnFoAV                                        | [[5]](https://doi.org/10.48550/arXiv.2307.07191)                                                 |
| `proenfo_covid19`       | h      |         1 |    223384 |                7 |               0 | https://github.com/Leo-VK/EnFoAV                                        | [[5]](https://doi.org/10.48550/arXiv.2307.07191)                                                 |
| `proenfo_gfc12_load`    | h      |        11 |    867108 |                2 |               0 | https://github.com/Leo-VK/EnFoAV                                        | [[5]](https://doi.org/10.48550/arXiv.2307.07191)                                                 |
| `proenfo_gfc14_load`    | h      |         1 |     35040 |                2 |               0 | https://github.com/Leo-VK/EnFoAV                                        | [[5]](https://doi.org/10.48550/arXiv.2307.07191)                                                 |
| `proenfo_gfc17_load`    | h      |         8 |    280704 |                2 |               0 | https://github.com/Leo-VK/EnFoAV                                        | [[5]](https://doi.org/10.48550/arXiv.2307.07191)                                                 |
| `proenfo_hog`           | h      |        24 |   2526336 |                6 |               0 | https://github.com/Leo-VK/EnFoAV                                        | [[5]](https://doi.org/10.48550/arXiv.2307.07191)                                                 |
| `proenfo_pdb`           | h      |         1 |     35040 |                2 |               0 | https://github.com/Leo-VK/EnFoAV                                        | [[5]](https://doi.org/10.48550/arXiv.2307.07191)                                                 |
| `proenfo_spain`         | h      |         1 |    736344 |               21 |               0 | https://github.com/Leo-VK/EnFoAV                                        | [[5]](https://doi.org/10.48550/arXiv.2307.07191)                                                 |

## Publications using these datasets

- ["ChronosX: Adapting Pretrained Time Series Models with Exogenous Variables"](https://arxiv.org/abs/2503.12107)