Index
stringlengths
1
5
Challenge
stringlengths
41
1.55k
Answer in Latex
stringclasses
122 values
Answer in Sympy
stringlengths
1
774
Variation
stringclasses
31 values
Source
stringclasses
61 values
801
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = e^{ x} \cdot \cos(B x)$
x**4*(B**4 - 6*B**2 + 1)/24 + x**3*(1 - 3*B**2)/6 + x**2*(1 - B**2)/2 + x + 1
Symbolic-1
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
802
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = e^{A x} \cdot \cos( x)$
A*x**3*(A**2 - 3)/6 + A*x + x**4*(A**4 - 6*A**2 + 1)/24 + x**2*(A**2 - 1)/2 + 1
Symbolic-1
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
803
Compute $\lim_{x \to 0}\frac{(2 \cos ( \left(- \sinh^{2}{\left(F x \right)} + \cosh^{2}{\left(F x \right)}\right) x)+4) \csc ( \left(- \sinh^{2}{\left(F x \right)} + \cosh^{2}{\left(F x \right)}\right) x)}{5 \left(\sin^{2}{\left(- A x \right)} + \cos^{2}{\left(A x \right)}\right) ( \left(- \sinh^{2}{\left(F x \right)} + \cosh^{2}{\left(F x \right)}\right) x)^3}-\frac{6}{5 \left(\sin^{2}{\left(- A x \right)} + \cos^{2}{\left(A x \right)}\right) ( \left(- \sinh^{2}{\left(F x \right)} + \cosh^{2}{\left(F x \right)}\right) x)^4}$
1/150
Equivalence-All-Easy
U-Math sequences_series 068e40ce-9108-4ef8-8ee5-0d1471ebbe43
804
Compute $\lim_{x \to 0}\frac{(2 \cos ( \left(\frac{\sinh{\left(\log{\left(F x + \sqrt{F^{2} x^{2} + 1} \right)} \right)}}{F x}\right) x)+4) \csc ( \left(\frac{\sinh{\left(\log{\left(F x + \sqrt{F^{2} x^{2} + 1} \right)} \right)}}{F x}\right) x)}{5 \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(A - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(A - 1\right) \right)} + 1\right) \tan{\left(A x \right)}}\right) ( \left(\frac{\sinh{\left(\log{\left(F x + \sqrt{F^{2} x^{2} + 1} \right)} \right)}}{F x}\right) x)^3}-\frac{6}{5 \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(A - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(A - 1\right) \right)} + 1\right) \tan{\left(A x \right)}}\right) ( \left(\frac{\sinh{\left(\log{\left(F x + \sqrt{F^{2} x^{2} + 1} \right)} \right)}}{F x}\right) x)^4}$
1/150
Equivalence-All-Hard
U-Math sequences_series 068e40ce-9108-4ef8-8ee5-0d1471ebbe43
805
Compute $\lim_{x \to 0}\frac{(2 \cos ( \left(\frac{\ln(x) \cdot \log_{x}(F)}{\ln(F)}\right) x)+4) \csc ( \left(\frac{\ln(x) \cdot \log_{x}(F)}{\ln(F)}\right) x)}{5 \left(\sin^{2}{\left(- A x \right)} + \cos^{2}{\left(A x \right)}\right) ( \left(\frac{\ln(x) \cdot \log_{x}(F)}{\ln(F)}\right) x)^3}-\frac{6}{5 \left(\sin^{2}{\left(- A x \right)} + \cos^{2}{\left(A x \right)}\right) ( \left(\frac{\ln(x) \cdot \log_{x}(F)}{\ln(F)}\right) x)^4}$
1/150
Equivalence-All-Easy
U-Math sequences_series 068e40ce-9108-4ef8-8ee5-0d1471ebbe43
806
Compute $\lim_{x \to 0}\frac{(2 \cos ( \left(\frac{\log_F\left(\frac{x}{e}\right) + \log_F(e)}{\log_F(x)}\right) x)+4) \csc ( \left(\frac{\log_F\left(\frac{x}{e}\right) + \log_F(e)}{\log_F(x)}\right) x)}{5 \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(A - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(A - 1\right) \right)} + 1\right) \tan{\left(A x \right)}}\right) ( \left(\frac{\log_F\left(\frac{x}{e}\right) + \log_F(e)}{\log_F(x)}\right) x)^3}-\frac{6}{5 \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(A - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(A - 1\right) \right)} + 1\right) \tan{\left(A x \right)}}\right) ( \left(\frac{\log_F\left(\frac{x}{e}\right) + \log_F(e)}{\log_F(x)}\right) x)^4}$
1/150
Equivalence-All-Hard
U-Math sequences_series 068e40ce-9108-4ef8-8ee5-0d1471ebbe43
807
Compute $\lim_{x \to 0}\frac{(2 \cos ( \left(\frac{F \sum_{N=1}^{\infty} \frac{2^{- N} x}{F}}{x}\right) x)+4) \csc ( \left(\frac{F \sum_{N=1}^{\infty} \frac{2^{- N} x}{F}}{x}\right) x)}{5 \left(\sin^{2}{\left(- A x \right)} + \cos^{2}{\left(A x \right)}\right) ( \left(\frac{F \sum_{N=1}^{\infty} \frac{2^{- N} x}{F}}{x}\right) x)^3}-\frac{6}{5 \left(\sin^{2}{\left(- A x \right)} + \cos^{2}{\left(A x \right)}\right) ( \left(\frac{F \sum_{N=1}^{\infty} \frac{2^{- N} x}{F}}{x}\right) x)^4}$
1/150
Equivalence-All-Easy
U-Math sequences_series 068e40ce-9108-4ef8-8ee5-0d1471ebbe43
808
Compute $\lim_{x \to 0}\frac{(2 \cos ( \left(\frac{F \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} F}}{x}\right) x)+4) \csc ( \left(\frac{F \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} F}}{x}\right) x)}{5 \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(A - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(A - 1\right) \right)} + 1\right) \tan{\left(A x \right)}}\right) ( \left(\frac{F \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} F}}{x}\right) x)^3}-\frac{6}{5 \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(A - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(A - 1\right) \right)} + 1\right) \tan{\left(A x \right)}}\right) ( \left(\frac{F \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} F}}{x}\right) x)^4}$
1/150
Equivalence-All-Hard
U-Math sequences_series 068e40ce-9108-4ef8-8ee5-0d1471ebbe43
809
Compute $\lim_{x \to 0}\frac{(2 \cos ( \left(- \frac{i \left(e^{i F x} - e^{- i F x}\right)}{2 \sin{\left(F x \right)}}\right) x)+4) \csc ( \left(- \frac{i \left(e^{i F x} - e^{- i F x}\right)}{2 \sin{\left(F x \right)}}\right) x)}{5 \left(\sin^{2}{\left(- A x \right)} + \cos^{2}{\left(A x \right)}\right) ( \left(- \frac{i \left(e^{i F x} - e^{- i F x}\right)}{2 \sin{\left(F x \right)}}\right) x)^3}-\frac{6}{5 \left(\sin^{2}{\left(- A x \right)} + \cos^{2}{\left(A x \right)}\right) ( \left(- \frac{i \left(e^{i F x} - e^{- i F x}\right)}{2 \sin{\left(F x \right)}}\right) x)^4}$
1/150
Equivalence-All-Easy
U-Math sequences_series 068e40ce-9108-4ef8-8ee5-0d1471ebbe43
810
Compute $\lim_{x \to 0}\frac{(2 \cos ( \left(- \frac{2 i \left(e^{4 i F x} + 1\right) \tan{\left(F x \right)}}{\left(1 - e^{4 i F x}\right) \left(1 - \tan^{2}{\left(F x \right)}\right)}\right) x)+4) \csc ( \left(- \frac{2 i \left(e^{4 i F x} + 1\right) \tan{\left(F x \right)}}{\left(1 - e^{4 i F x}\right) \left(1 - \tan^{2}{\left(F x \right)}\right)}\right) x)}{5 \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(A - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(A - 1\right) \right)} + 1\right) \tan{\left(A x \right)}}\right) ( \left(- \frac{2 i \left(e^{4 i F x} + 1\right) \tan{\left(F x \right)}}{\left(1 - e^{4 i F x}\right) \left(1 - \tan^{2}{\left(F x \right)}\right)}\right) x)^3}-\frac{6}{5 \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(A - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(A - 1\right) \right)} + 1\right) \tan{\left(A x \right)}}\right) ( \left(- \frac{2 i \left(e^{4 i F x} + 1\right) \tan{\left(F x \right)}}{\left(1 - e^{4 i F x}\right) \left(1 - \tan^{2}{\left(F x \right)}\right)}\right) x)^4}$
1/150
Equivalence-All-Hard
U-Math sequences_series 068e40ce-9108-4ef8-8ee5-0d1471ebbe43
811
Compute $\lim_{x \to 0}\frac{(2 \cos ( \left(\sin^{2}{\left(- F x \right)} + \cos^{2}{\left(F x \right)}\right) x)+4) \csc ( \left(\sin^{2}{\left(- F x \right)} + \cos^{2}{\left(F x \right)}\right) x)}{5 \left(- \sinh^{2}{\left(A x \right)} + \cosh^{2}{\left(A x \right)}\right) ( \left(\sin^{2}{\left(- F x \right)} + \cos^{2}{\left(F x \right)}\right) x)^3}-\frac{6}{5 \left(- \sinh^{2}{\left(A x \right)} + \cosh^{2}{\left(A x \right)}\right) ( \left(\sin^{2}{\left(- F x \right)} + \cos^{2}{\left(F x \right)}\right) x)^4}$
1/150
Equivalence-All-Easy
U-Math sequences_series 068e40ce-9108-4ef8-8ee5-0d1471ebbe43
812
Compute $\lim_{x \to 0}\frac{(2 \cos ( \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(F - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(F - 1\right) \right)} + 1\right) \tan{\left(F x \right)}}\right) x)+4) \csc ( \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(F - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(F - 1\right) \right)} + 1\right) \tan{\left(F x \right)}}\right) x)}{5 \left(\frac{\sinh{\left(\log{\left(A x + \sqrt{A^{2} x^{2} + 1} \right)} \right)}}{A x}\right) ( \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(F - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(F - 1\right) \right)} + 1\right) \tan{\left(F x \right)}}\right) x)^3}-\frac{6}{5 \left(\frac{\sinh{\left(\log{\left(A x + \sqrt{A^{2} x^{2} + 1} \right)} \right)}}{A x}\right) ( \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(F - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(F - 1\right) \right)} + 1\right) \tan{\left(F x \right)}}\right) x)^4}$
1/150
Equivalence-All-Hard
U-Math sequences_series 068e40ce-9108-4ef8-8ee5-0d1471ebbe43
813
Compute $\lim_{x \to 0}\frac{(2 \cos ( \left(\frac{\ln(x) \cdot \log_{x}(F)}{\ln(F)}\right) x)+4) \csc ( \left(\frac{\ln(x) \cdot \log_{x}(F)}{\ln(F)}\right) x)}{5 \left(- \sinh^{2}{\left(A x \right)} + \cosh^{2}{\left(A x \right)}\right) ( \left(\frac{\ln(x) \cdot \log_{x}(F)}{\ln(F)}\right) x)^3}-\frac{6}{5 \left(- \sinh^{2}{\left(A x \right)} + \cosh^{2}{\left(A x \right)}\right) ( \left(\frac{\ln(x) \cdot \log_{x}(F)}{\ln(F)}\right) x)^4}$
1/150
Equivalence-All-Easy
U-Math sequences_series 068e40ce-9108-4ef8-8ee5-0d1471ebbe43
814
Compute $\lim_{x \to 0}\frac{(2 \cos ( \left(\frac{\log_F\left(\frac{x}{e}\right) + \log_F(e)}{\log_F(x)}\right) x)+4) \csc ( \left(\frac{\log_F\left(\frac{x}{e}\right) + \log_F(e)}{\log_F(x)}\right) x)}{5 \left(\frac{\sinh{\left(\log{\left(A x + \sqrt{A^{2} x^{2} + 1} \right)} \right)}}{A x}\right) ( \left(\frac{\log_F\left(\frac{x}{e}\right) + \log_F(e)}{\log_F(x)}\right) x)^3}-\frac{6}{5 \left(\frac{\sinh{\left(\log{\left(A x + \sqrt{A^{2} x^{2} + 1} \right)} \right)}}{A x}\right) ( \left(\frac{\log_F\left(\frac{x}{e}\right) + \log_F(e)}{\log_F(x)}\right) x)^4}$
1/150
Equivalence-All-Hard
U-Math sequences_series 068e40ce-9108-4ef8-8ee5-0d1471ebbe43
815
Compute $\lim_{x \to 0}\frac{(2 \cos ( \left(\frac{F \sum_{N=1}^{\infty} \frac{2^{- N} x}{F}}{x}\right) x)+4) \csc ( \left(\frac{F \sum_{N=1}^{\infty} \frac{2^{- N} x}{F}}{x}\right) x)}{5 \left(- \sinh^{2}{\left(A x \right)} + \cosh^{2}{\left(A x \right)}\right) ( \left(\frac{F \sum_{N=1}^{\infty} \frac{2^{- N} x}{F}}{x}\right) x)^3}-\frac{6}{5 \left(- \sinh^{2}{\left(A x \right)} + \cosh^{2}{\left(A x \right)}\right) ( \left(\frac{F \sum_{N=1}^{\infty} \frac{2^{- N} x}{F}}{x}\right) x)^4}$
1/150
Equivalence-All-Easy
U-Math sequences_series 068e40ce-9108-4ef8-8ee5-0d1471ebbe43
816
Compute $\lim_{x \to 0}\frac{(2 \cos ( \left(\frac{F \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} F}}{x}\right) x)+4) \csc ( \left(\frac{F \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} F}}{x}\right) x)}{5 \left(\frac{\sinh{\left(\log{\left(A x + \sqrt{A^{2} x^{2} + 1} \right)} \right)}}{A x}\right) ( \left(\frac{F \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} F}}{x}\right) x)^3}-\frac{6}{5 \left(\frac{\sinh{\left(\log{\left(A x + \sqrt{A^{2} x^{2} + 1} \right)} \right)}}{A x}\right) ( \left(\frac{F \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} F}}{x}\right) x)^4}$
1/150
Equivalence-All-Hard
U-Math sequences_series 068e40ce-9108-4ef8-8ee5-0d1471ebbe43
817
Compute $\lim_{x \to 0}\frac{(2 \cos ( \left(- \frac{i \left(e^{i F x} - e^{- i F x}\right)}{2 \sin{\left(F x \right)}}\right) x)+4) \csc ( \left(- \frac{i \left(e^{i F x} - e^{- i F x}\right)}{2 \sin{\left(F x \right)}}\right) x)}{5 \left(- \sinh^{2}{\left(A x \right)} + \cosh^{2}{\left(A x \right)}\right) ( \left(- \frac{i \left(e^{i F x} - e^{- i F x}\right)}{2 \sin{\left(F x \right)}}\right) x)^3}-\frac{6}{5 \left(- \sinh^{2}{\left(A x \right)} + \cosh^{2}{\left(A x \right)}\right) ( \left(- \frac{i \left(e^{i F x} - e^{- i F x}\right)}{2 \sin{\left(F x \right)}}\right) x)^4}$
1/150
Equivalence-All-Easy
U-Math sequences_series 068e40ce-9108-4ef8-8ee5-0d1471ebbe43
818
Compute $\lim_{x \to 0}\frac{(2 \cos ( \left(- \frac{2 i \left(e^{4 i F x} + 1\right) \tan{\left(F x \right)}}{\left(1 - e^{4 i F x}\right) \left(1 - \tan^{2}{\left(F x \right)}\right)}\right) x)+4) \csc ( \left(- \frac{2 i \left(e^{4 i F x} + 1\right) \tan{\left(F x \right)}}{\left(1 - e^{4 i F x}\right) \left(1 - \tan^{2}{\left(F x \right)}\right)}\right) x)}{5 \left(\frac{\sinh{\left(\log{\left(A x + \sqrt{A^{2} x^{2} + 1} \right)} \right)}}{A x}\right) ( \left(- \frac{2 i \left(e^{4 i F x} + 1\right) \tan{\left(F x \right)}}{\left(1 - e^{4 i F x}\right) \left(1 - \tan^{2}{\left(F x \right)}\right)}\right) x)^3}-\frac{6}{5 \left(\frac{\sinh{\left(\log{\left(A x + \sqrt{A^{2} x^{2} + 1} \right)} \right)}}{A x}\right) ( \left(- \frac{2 i \left(e^{4 i F x} + 1\right) \tan{\left(F x \right)}}{\left(1 - e^{4 i F x}\right) \left(1 - \tan^{2}{\left(F x \right)}\right)}\right) x)^4}$
1/150
Equivalence-All-Hard
U-Math sequences_series 068e40ce-9108-4ef8-8ee5-0d1471ebbe43
819
Compute $\lim_{x \to 0}\frac{(2 \cos ( \left(\sin^{2}{\left(- F x \right)} + \cos^{2}{\left(F x \right)}\right) x)+4) \csc ( \left(\sin^{2}{\left(- F x \right)} + \cos^{2}{\left(F x \right)}\right) x)}{5 \left(\frac{\ln(x) \cdot \log_{x}(A)}{\ln(A)}\right) ( \left(\sin^{2}{\left(- F x \right)} + \cos^{2}{\left(F x \right)}\right) x)^3}-\frac{6}{5 \left(\frac{\ln(x) \cdot \log_{x}(A)}{\ln(A)}\right) ( \left(\sin^{2}{\left(- F x \right)} + \cos^{2}{\left(F x \right)}\right) x)^4}$
1/150
Equivalence-All-Easy
U-Math sequences_series 068e40ce-9108-4ef8-8ee5-0d1471ebbe43
820
Compute $\lim_{x \to 0}\frac{(2 \cos ( \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(F - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(F - 1\right) \right)} + 1\right) \tan{\left(F x \right)}}\right) x)+4) \csc ( \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(F - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(F - 1\right) \right)} + 1\right) \tan{\left(F x \right)}}\right) x)}{5 \left(\frac{\log_A\left(\frac{x}{e}\right) + \log_A(e)}{\log_A(x)}\right) ( \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(F - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(F - 1\right) \right)} + 1\right) \tan{\left(F x \right)}}\right) x)^3}-\frac{6}{5 \left(\frac{\log_A\left(\frac{x}{e}\right) + \log_A(e)}{\log_A(x)}\right) ( \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(F - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(F - 1\right) \right)} + 1\right) \tan{\left(F x \right)}}\right) x)^4}$
1/150
Equivalence-All-Hard
U-Math sequences_series 068e40ce-9108-4ef8-8ee5-0d1471ebbe43
821
Compute $\lim_{x \to 0}\frac{(2 \cos ( \left(- \sinh^{2}{\left(F x \right)} + \cosh^{2}{\left(F x \right)}\right) x)+4) \csc ( \left(- \sinh^{2}{\left(F x \right)} + \cosh^{2}{\left(F x \right)}\right) x)}{5 \left(\frac{\ln(x) \cdot \log_{x}(A)}{\ln(A)}\right) ( \left(- \sinh^{2}{\left(F x \right)} + \cosh^{2}{\left(F x \right)}\right) x)^3}-\frac{6}{5 \left(\frac{\ln(x) \cdot \log_{x}(A)}{\ln(A)}\right) ( \left(- \sinh^{2}{\left(F x \right)} + \cosh^{2}{\left(F x \right)}\right) x)^4}$
1/150
Equivalence-All-Easy
U-Math sequences_series 068e40ce-9108-4ef8-8ee5-0d1471ebbe43
822
Compute $\lim_{x \to 0}\frac{(2 \cos ( \left(\frac{\sinh{\left(\log{\left(F x + \sqrt{F^{2} x^{2} + 1} \right)} \right)}}{F x}\right) x)+4) \csc ( \left(\frac{\sinh{\left(\log{\left(F x + \sqrt{F^{2} x^{2} + 1} \right)} \right)}}{F x}\right) x)}{5 \left(\frac{\log_A\left(\frac{x}{e}\right) + \log_A(e)}{\log_A(x)}\right) ( \left(\frac{\sinh{\left(\log{\left(F x + \sqrt{F^{2} x^{2} + 1} \right)} \right)}}{F x}\right) x)^3}-\frac{6}{5 \left(\frac{\log_A\left(\frac{x}{e}\right) + \log_A(e)}{\log_A(x)}\right) ( \left(\frac{\sinh{\left(\log{\left(F x + \sqrt{F^{2} x^{2} + 1} \right)} \right)}}{F x}\right) x)^4}$
1/150
Equivalence-All-Hard
U-Math sequences_series 068e40ce-9108-4ef8-8ee5-0d1471ebbe43
823
Compute $\lim_{x \to 0}\frac{(2 \cos ( \left(\frac{F \sum_{N=1}^{\infty} \frac{2^{- N} x}{F}}{x}\right) x)+4) \csc ( \left(\frac{F \sum_{N=1}^{\infty} \frac{2^{- N} x}{F}}{x}\right) x)}{5 \left(\frac{\ln(x) \cdot \log_{x}(A)}{\ln(A)}\right) ( \left(\frac{F \sum_{N=1}^{\infty} \frac{2^{- N} x}{F}}{x}\right) x)^3}-\frac{6}{5 \left(\frac{\ln(x) \cdot \log_{x}(A)}{\ln(A)}\right) ( \left(\frac{F \sum_{N=1}^{\infty} \frac{2^{- N} x}{F}}{x}\right) x)^4}$
1/150
Equivalence-All-Easy
U-Math sequences_series 068e40ce-9108-4ef8-8ee5-0d1471ebbe43
824
Compute $\lim_{x \to 0}\frac{(2 \cos ( \left(\frac{F \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} F}}{x}\right) x)+4) \csc ( \left(\frac{F \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} F}}{x}\right) x)}{5 \left(\frac{\log_A\left(\frac{x}{e}\right) + \log_A(e)}{\log_A(x)}\right) ( \left(\frac{F \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} F}}{x}\right) x)^3}-\frac{6}{5 \left(\frac{\log_A\left(\frac{x}{e}\right) + \log_A(e)}{\log_A(x)}\right) ( \left(\frac{F \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} F}}{x}\right) x)^4}$
1/150
Equivalence-All-Hard
U-Math sequences_series 068e40ce-9108-4ef8-8ee5-0d1471ebbe43
825
Compute $\lim_{x \to 0}\frac{(2 \cos ( \left(- \frac{i \left(e^{i F x} - e^{- i F x}\right)}{2 \sin{\left(F x \right)}}\right) x)+4) \csc ( \left(- \frac{i \left(e^{i F x} - e^{- i F x}\right)}{2 \sin{\left(F x \right)}}\right) x)}{5 \left(\frac{\ln(x) \cdot \log_{x}(A)}{\ln(A)}\right) ( \left(- \frac{i \left(e^{i F x} - e^{- i F x}\right)}{2 \sin{\left(F x \right)}}\right) x)^3}-\frac{6}{5 \left(\frac{\ln(x) \cdot \log_{x}(A)}{\ln(A)}\right) ( \left(- \frac{i \left(e^{i F x} - e^{- i F x}\right)}{2 \sin{\left(F x \right)}}\right) x)^4}$
1/150
Equivalence-All-Easy
U-Math sequences_series 068e40ce-9108-4ef8-8ee5-0d1471ebbe43
826
Compute $\lim_{x \to 0}\frac{(2 \cos ( \left(- \frac{2 i \left(e^{4 i F x} + 1\right) \tan{\left(F x \right)}}{\left(1 - e^{4 i F x}\right) \left(1 - \tan^{2}{\left(F x \right)}\right)}\right) x)+4) \csc ( \left(- \frac{2 i \left(e^{4 i F x} + 1\right) \tan{\left(F x \right)}}{\left(1 - e^{4 i F x}\right) \left(1 - \tan^{2}{\left(F x \right)}\right)}\right) x)}{5 \left(\frac{\log_A\left(\frac{x}{e}\right) + \log_A(e)}{\log_A(x)}\right) ( \left(- \frac{2 i \left(e^{4 i F x} + 1\right) \tan{\left(F x \right)}}{\left(1 - e^{4 i F x}\right) \left(1 - \tan^{2}{\left(F x \right)}\right)}\right) x)^3}-\frac{6}{5 \left(\frac{\log_A\left(\frac{x}{e}\right) + \log_A(e)}{\log_A(x)}\right) ( \left(- \frac{2 i \left(e^{4 i F x} + 1\right) \tan{\left(F x \right)}}{\left(1 - e^{4 i F x}\right) \left(1 - \tan^{2}{\left(F x \right)}\right)}\right) x)^4}$
1/150
Equivalence-All-Hard
U-Math sequences_series 068e40ce-9108-4ef8-8ee5-0d1471ebbe43
827
Compute $\lim_{x \to 0}\frac{(2 \cos ( \left(\sin^{2}{\left(- F x \right)} + \cos^{2}{\left(F x \right)}\right) x)+4) \csc ( \left(\sin^{2}{\left(- F x \right)} + \cos^{2}{\left(F x \right)}\right) x)}{5 \left(\frac{A \sum_{N=1}^{\infty} \frac{2^{- N} x}{A}}{x}\right) ( \left(\sin^{2}{\left(- F x \right)} + \cos^{2}{\left(F x \right)}\right) x)^3}-\frac{6}{5 \left(\frac{A \sum_{N=1}^{\infty} \frac{2^{- N} x}{A}}{x}\right) ( \left(\sin^{2}{\left(- F x \right)} + \cos^{2}{\left(F x \right)}\right) x)^4}$
1/150
Equivalence-All-Easy
U-Math sequences_series 068e40ce-9108-4ef8-8ee5-0d1471ebbe43
828
Compute $\lim_{x \to 0}\frac{(2 \cos ( \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(F - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(F - 1\right) \right)} + 1\right) \tan{\left(F x \right)}}\right) x)+4) \csc ( \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(F - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(F - 1\right) \right)} + 1\right) \tan{\left(F x \right)}}\right) x)}{5 \left(\frac{A \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} A}}{x}\right) ( \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(F - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(F - 1\right) \right)} + 1\right) \tan{\left(F x \right)}}\right) x)^3}-\frac{6}{5 \left(\frac{A \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} A}}{x}\right) ( \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(F - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(F - 1\right) \right)} + 1\right) \tan{\left(F x \right)}}\right) x)^4}$
1/150
Equivalence-All-Hard
U-Math sequences_series 068e40ce-9108-4ef8-8ee5-0d1471ebbe43
829
Compute $\lim_{x \to 0}\frac{(2 \cos ( \left(- \sinh^{2}{\left(F x \right)} + \cosh^{2}{\left(F x \right)}\right) x)+4) \csc ( \left(- \sinh^{2}{\left(F x \right)} + \cosh^{2}{\left(F x \right)}\right) x)}{5 \left(\frac{A \sum_{N=1}^{\infty} \frac{2^{- N} x}{A}}{x}\right) ( \left(- \sinh^{2}{\left(F x \right)} + \cosh^{2}{\left(F x \right)}\right) x)^3}-\frac{6}{5 \left(\frac{A \sum_{N=1}^{\infty} \frac{2^{- N} x}{A}}{x}\right) ( \left(- \sinh^{2}{\left(F x \right)} + \cosh^{2}{\left(F x \right)}\right) x)^4}$
1/150
Equivalence-All-Easy
U-Math sequences_series 068e40ce-9108-4ef8-8ee5-0d1471ebbe43
830
Compute $\lim_{x \to 0}\frac{(2 \cos ( \left(\frac{\sinh{\left(\log{\left(F x + \sqrt{F^{2} x^{2} + 1} \right)} \right)}}{F x}\right) x)+4) \csc ( \left(\frac{\sinh{\left(\log{\left(F x + \sqrt{F^{2} x^{2} + 1} \right)} \right)}}{F x}\right) x)}{5 \left(\frac{A \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} A}}{x}\right) ( \left(\frac{\sinh{\left(\log{\left(F x + \sqrt{F^{2} x^{2} + 1} \right)} \right)}}{F x}\right) x)^3}-\frac{6}{5 \left(\frac{A \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} A}}{x}\right) ( \left(\frac{\sinh{\left(\log{\left(F x + \sqrt{F^{2} x^{2} + 1} \right)} \right)}}{F x}\right) x)^4}$
1/150
Equivalence-All-Hard
U-Math sequences_series 068e40ce-9108-4ef8-8ee5-0d1471ebbe43
831
Compute $\lim_{x \to 0}\frac{(2 \cos ( \left(\frac{\ln(x) \cdot \log_{x}(F)}{\ln(F)}\right) x)+4) \csc ( \left(\frac{\ln(x) \cdot \log_{x}(F)}{\ln(F)}\right) x)}{5 \left(\frac{A \sum_{N=1}^{\infty} \frac{2^{- N} x}{A}}{x}\right) ( \left(\frac{\ln(x) \cdot \log_{x}(F)}{\ln(F)}\right) x)^3}-\frac{6}{5 \left(\frac{A \sum_{N=1}^{\infty} \frac{2^{- N} x}{A}}{x}\right) ( \left(\frac{\ln(x) \cdot \log_{x}(F)}{\ln(F)}\right) x)^4}$
1/150
Equivalence-All-Easy
U-Math sequences_series 068e40ce-9108-4ef8-8ee5-0d1471ebbe43
832
Compute $\lim_{x \to 0}\frac{(2 \cos ( \left(\frac{\log_F\left(\frac{x}{e}\right) + \log_F(e)}{\log_F(x)}\right) x)+4) \csc ( \left(\frac{\log_F\left(\frac{x}{e}\right) + \log_F(e)}{\log_F(x)}\right) x)}{5 \left(\frac{A \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} A}}{x}\right) ( \left(\frac{\log_F\left(\frac{x}{e}\right) + \log_F(e)}{\log_F(x)}\right) x)^3}-\frac{6}{5 \left(\frac{A \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} A}}{x}\right) ( \left(\frac{\log_F\left(\frac{x}{e}\right) + \log_F(e)}{\log_F(x)}\right) x)^4}$
1/150
Equivalence-All-Hard
U-Math sequences_series 068e40ce-9108-4ef8-8ee5-0d1471ebbe43
833
Compute $\lim_{x \to 0}\frac{(2 \cos ( \left(- \frac{i \left(e^{i F x} - e^{- i F x}\right)}{2 \sin{\left(F x \right)}}\right) x)+4) \csc ( \left(- \frac{i \left(e^{i F x} - e^{- i F x}\right)}{2 \sin{\left(F x \right)}}\right) x)}{5 \left(\frac{A \sum_{N=1}^{\infty} \frac{2^{- N} x}{A}}{x}\right) ( \left(- \frac{i \left(e^{i F x} - e^{- i F x}\right)}{2 \sin{\left(F x \right)}}\right) x)^3}-\frac{6}{5 \left(\frac{A \sum_{N=1}^{\infty} \frac{2^{- N} x}{A}}{x}\right) ( \left(- \frac{i \left(e^{i F x} - e^{- i F x}\right)}{2 \sin{\left(F x \right)}}\right) x)^4}$
1/150
Equivalence-All-Easy
U-Math sequences_series 068e40ce-9108-4ef8-8ee5-0d1471ebbe43
834
Compute $\lim_{x \to 0}\frac{(2 \cos ( \left(- \frac{2 i \left(e^{4 i F x} + 1\right) \tan{\left(F x \right)}}{\left(1 - e^{4 i F x}\right) \left(1 - \tan^{2}{\left(F x \right)}\right)}\right) x)+4) \csc ( \left(- \frac{2 i \left(e^{4 i F x} + 1\right) \tan{\left(F x \right)}}{\left(1 - e^{4 i F x}\right) \left(1 - \tan^{2}{\left(F x \right)}\right)}\right) x)}{5 \left(\frac{A \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} A}}{x}\right) ( \left(- \frac{2 i \left(e^{4 i F x} + 1\right) \tan{\left(F x \right)}}{\left(1 - e^{4 i F x}\right) \left(1 - \tan^{2}{\left(F x \right)}\right)}\right) x)^3}-\frac{6}{5 \left(\frac{A \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} A}}{x}\right) ( \left(- \frac{2 i \left(e^{4 i F x} + 1\right) \tan{\left(F x \right)}}{\left(1 - e^{4 i F x}\right) \left(1 - \tan^{2}{\left(F x \right)}\right)}\right) x)^4}$
1/150
Equivalence-All-Hard
U-Math sequences_series 068e40ce-9108-4ef8-8ee5-0d1471ebbe43
835
Compute $\lim_{x \to 0}\frac{(2 \cos ( \left(\sin^{2}{\left(- F x \right)} + \cos^{2}{\left(F x \right)}\right) x)+4) \csc ( \left(\sin^{2}{\left(- F x \right)} + \cos^{2}{\left(F x \right)}\right) x)}{5 \left(- \frac{i \left(e^{i A x} - e^{- i A x}\right)}{2 \sin{\left(A x \right)}}\right) ( \left(\sin^{2}{\left(- F x \right)} + \cos^{2}{\left(F x \right)}\right) x)^3}-\frac{6}{5 \left(- \frac{i \left(e^{i A x} - e^{- i A x}\right)}{2 \sin{\left(A x \right)}}\right) ( \left(\sin^{2}{\left(- F x \right)} + \cos^{2}{\left(F x \right)}\right) x)^4}$
1/150
Equivalence-All-Easy
U-Math sequences_series 068e40ce-9108-4ef8-8ee5-0d1471ebbe43
836
Compute $\lim_{x \to 0}\frac{(2 \cos ( \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(F - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(F - 1\right) \right)} + 1\right) \tan{\left(F x \right)}}\right) x)+4) \csc ( \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(F - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(F - 1\right) \right)} + 1\right) \tan{\left(F x \right)}}\right) x)}{5 \left(- \frac{2 i \left(e^{4 i A x} + 1\right) \tan{\left(A x \right)}}{\left(1 - e^{4 i A x}\right) \left(1 - \tan^{2}{\left(A x \right)}\right)}\right) ( \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(F - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(F - 1\right) \right)} + 1\right) \tan{\left(F x \right)}}\right) x)^3}-\frac{6}{5 \left(- \frac{2 i \left(e^{4 i A x} + 1\right) \tan{\left(A x \right)}}{\left(1 - e^{4 i A x}\right) \left(1 - \tan^{2}{\left(A x \right)}\right)}\right) ( \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(F - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(F - 1\right) \right)} + 1\right) \tan{\left(F x \right)}}\right) x)^4}$
1/150
Equivalence-All-Hard
U-Math sequences_series 068e40ce-9108-4ef8-8ee5-0d1471ebbe43
837
Compute $\lim_{x \to 0}\frac{(2 \cos ( \left(- \sinh^{2}{\left(F x \right)} + \cosh^{2}{\left(F x \right)}\right) x)+4) \csc ( \left(- \sinh^{2}{\left(F x \right)} + \cosh^{2}{\left(F x \right)}\right) x)}{5 \left(- \frac{i \left(e^{i A x} - e^{- i A x}\right)}{2 \sin{\left(A x \right)}}\right) ( \left(- \sinh^{2}{\left(F x \right)} + \cosh^{2}{\left(F x \right)}\right) x)^3}-\frac{6}{5 \left(- \frac{i \left(e^{i A x} - e^{- i A x}\right)}{2 \sin{\left(A x \right)}}\right) ( \left(- \sinh^{2}{\left(F x \right)} + \cosh^{2}{\left(F x \right)}\right) x)^4}$
1/150
Equivalence-All-Easy
U-Math sequences_series 068e40ce-9108-4ef8-8ee5-0d1471ebbe43
838
Compute $\lim_{x \to 0}\frac{(2 \cos ( \left(\frac{\sinh{\left(\log{\left(F x + \sqrt{F^{2} x^{2} + 1} \right)} \right)}}{F x}\right) x)+4) \csc ( \left(\frac{\sinh{\left(\log{\left(F x + \sqrt{F^{2} x^{2} + 1} \right)} \right)}}{F x}\right) x)}{5 \left(- \frac{2 i \left(e^{4 i A x} + 1\right) \tan{\left(A x \right)}}{\left(1 - e^{4 i A x}\right) \left(1 - \tan^{2}{\left(A x \right)}\right)}\right) ( \left(\frac{\sinh{\left(\log{\left(F x + \sqrt{F^{2} x^{2} + 1} \right)} \right)}}{F x}\right) x)^3}-\frac{6}{5 \left(- \frac{2 i \left(e^{4 i A x} + 1\right) \tan{\left(A x \right)}}{\left(1 - e^{4 i A x}\right) \left(1 - \tan^{2}{\left(A x \right)}\right)}\right) ( \left(\frac{\sinh{\left(\log{\left(F x + \sqrt{F^{2} x^{2} + 1} \right)} \right)}}{F x}\right) x)^4}$
1/150
Equivalence-All-Hard
U-Math sequences_series 068e40ce-9108-4ef8-8ee5-0d1471ebbe43
839
Compute $\lim_{x \to 0}\frac{(2 \cos ( \left(\frac{\ln(x) \cdot \log_{x}(F)}{\ln(F)}\right) x)+4) \csc ( \left(\frac{\ln(x) \cdot \log_{x}(F)}{\ln(F)}\right) x)}{5 \left(- \frac{i \left(e^{i A x} - e^{- i A x}\right)}{2 \sin{\left(A x \right)}}\right) ( \left(\frac{\ln(x) \cdot \log_{x}(F)}{\ln(F)}\right) x)^3}-\frac{6}{5 \left(- \frac{i \left(e^{i A x} - e^{- i A x}\right)}{2 \sin{\left(A x \right)}}\right) ( \left(\frac{\ln(x) \cdot \log_{x}(F)}{\ln(F)}\right) x)^4}$
1/150
Equivalence-All-Easy
U-Math sequences_series 068e40ce-9108-4ef8-8ee5-0d1471ebbe43
840
Compute $\lim_{x \to 0}\frac{(2 \cos ( \left(\frac{\log_F\left(\frac{x}{e}\right) + \log_F(e)}{\log_F(x)}\right) x)+4) \csc ( \left(\frac{\log_F\left(\frac{x}{e}\right) + \log_F(e)}{\log_F(x)}\right) x)}{5 \left(- \frac{2 i \left(e^{4 i A x} + 1\right) \tan{\left(A x \right)}}{\left(1 - e^{4 i A x}\right) \left(1 - \tan^{2}{\left(A x \right)}\right)}\right) ( \left(\frac{\log_F\left(\frac{x}{e}\right) + \log_F(e)}{\log_F(x)}\right) x)^3}-\frac{6}{5 \left(- \frac{2 i \left(e^{4 i A x} + 1\right) \tan{\left(A x \right)}}{\left(1 - e^{4 i A x}\right) \left(1 - \tan^{2}{\left(A x \right)}\right)}\right) ( \left(\frac{\log_F\left(\frac{x}{e}\right) + \log_F(e)}{\log_F(x)}\right) x)^4}$
1/150
Equivalence-All-Hard
U-Math sequences_series 068e40ce-9108-4ef8-8ee5-0d1471ebbe43
841
Compute $\lim_{x \to 0}\frac{(2 \cos ( \left(\frac{F \sum_{N=1}^{\infty} \frac{2^{- N} x}{F}}{x}\right) x)+4) \csc ( \left(\frac{F \sum_{N=1}^{\infty} \frac{2^{- N} x}{F}}{x}\right) x)}{5 \left(- \frac{i \left(e^{i A x} - e^{- i A x}\right)}{2 \sin{\left(A x \right)}}\right) ( \left(\frac{F \sum_{N=1}^{\infty} \frac{2^{- N} x}{F}}{x}\right) x)^3}-\frac{6}{5 \left(- \frac{i \left(e^{i A x} - e^{- i A x}\right)}{2 \sin{\left(A x \right)}}\right) ( \left(\frac{F \sum_{N=1}^{\infty} \frac{2^{- N} x}{F}}{x}\right) x)^4}$
1/150
Equivalence-All-Easy
U-Math sequences_series 068e40ce-9108-4ef8-8ee5-0d1471ebbe43
842
Compute $\lim_{x \to 0}\frac{(2 \cos ( \left(\frac{F \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} F}}{x}\right) x)+4) \csc ( \left(\frac{F \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} F}}{x}\right) x)}{5 \left(- \frac{2 i \left(e^{4 i A x} + 1\right) \tan{\left(A x \right)}}{\left(1 - e^{4 i A x}\right) \left(1 - \tan^{2}{\left(A x \right)}\right)}\right) ( \left(\frac{F \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} F}}{x}\right) x)^3}-\frac{6}{5 \left(- \frac{2 i \left(e^{4 i A x} + 1\right) \tan{\left(A x \right)}}{\left(1 - e^{4 i A x}\right) \left(1 - \tan^{2}{\left(A x \right)}\right)}\right) ( \left(\frac{F \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} F}}{x}\right) x)^4}$
1/150
Equivalence-All-Hard
U-Math sequences_series 068e40ce-9108-4ef8-8ee5-0d1471ebbe43
843
Compute $\lim_{x \to 0}\frac{(2 \cos ( x)+4) \csc ( x)}{5 \left(\sin^{2}{\left(- A x \right)} + \cos^{2}{\left(A x \right)}\right) ( x)^3}-\frac{6}{5 \left(\sin^{2}{\left(- A x \right)} + \cos^{2}{\left(A x \right)}\right) ( x)^4}$
1/150
Equivalence-One-Easy
U-Math sequences_series 068e40ce-9108-4ef8-8ee5-0d1471ebbe43
844
Compute $\lim_{x \to 0}\frac{(2 \cos ( x)+4) \csc ( x)}{5 \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(A - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(A - 1\right) \right)} + 1\right) \tan{\left(A x \right)}}\right) ( x)^3}-\frac{6}{5 \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(A - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(A - 1\right) \right)} + 1\right) \tan{\left(A x \right)}}\right) ( x)^4}$
1/150
Equivalence-One-Hard
U-Math sequences_series 068e40ce-9108-4ef8-8ee5-0d1471ebbe43
845
Compute $\lim_{x \to 0}\frac{(2 \cos ( x)+4) \csc ( x)}{5 \left(- \sinh^{2}{\left(A x \right)} + \cosh^{2}{\left(A x \right)}\right) ( x)^3}-\frac{6}{5 \left(- \sinh^{2}{\left(A x \right)} + \cosh^{2}{\left(A x \right)}\right) ( x)^4}$
1/150
Equivalence-One-Easy
U-Math sequences_series 068e40ce-9108-4ef8-8ee5-0d1471ebbe43
846
Compute $\lim_{x \to 0}\frac{(2 \cos ( x)+4) \csc ( x)}{5 \left(\frac{\sinh{\left(\log{\left(A x + \sqrt{A^{2} x^{2} + 1} \right)} \right)}}{A x}\right) ( x)^3}-\frac{6}{5 \left(\frac{\sinh{\left(\log{\left(A x + \sqrt{A^{2} x^{2} + 1} \right)} \right)}}{A x}\right) ( x)^4}$
1/150
Equivalence-One-Hard
U-Math sequences_series 068e40ce-9108-4ef8-8ee5-0d1471ebbe43
847
Compute $\lim_{x \to 0}\frac{(2 \cos ( x)+4) \csc ( x)}{5 \left(\frac{\ln(x) \cdot \log_{x}(A)}{\ln(A)}\right) ( x)^3}-\frac{6}{5 \left(\frac{\ln(x) \cdot \log_{x}(A)}{\ln(A)}\right) ( x)^4}$
1/150
Equivalence-One-Easy
U-Math sequences_series 068e40ce-9108-4ef8-8ee5-0d1471ebbe43
848
Compute $\lim_{x \to 0}\frac{(2 \cos ( x)+4) \csc ( x)}{5 \left(\frac{\log_A\left(\frac{x}{e}\right) + \log_A(e)}{\log_A(x)}\right) ( x)^3}-\frac{6}{5 \left(\frac{\log_A\left(\frac{x}{e}\right) + \log_A(e)}{\log_A(x)}\right) ( x)^4}$
1/150
Equivalence-One-Hard
U-Math sequences_series 068e40ce-9108-4ef8-8ee5-0d1471ebbe43
849
Compute $\lim_{x \to 0}\frac{(2 \cos ( x)+4) \csc ( x)}{5 \left(\frac{A \sum_{N=1}^{\infty} \frac{2^{- N} x}{A}}{x}\right) ( x)^3}-\frac{6}{5 \left(\frac{A \sum_{N=1}^{\infty} \frac{2^{- N} x}{A}}{x}\right) ( x)^4}$
1/150
Equivalence-One-Easy
U-Math sequences_series 068e40ce-9108-4ef8-8ee5-0d1471ebbe43
850
Compute $\lim_{x \to 0}\frac{(2 \cos ( x)+4) \csc ( x)}{5 \left(\frac{A \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} A}}{x}\right) ( x)^3}-\frac{6}{5 \left(\frac{A \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} A}}{x}\right) ( x)^4}$
1/150
Equivalence-One-Hard
U-Math sequences_series 068e40ce-9108-4ef8-8ee5-0d1471ebbe43
851
Compute $\lim_{x \to 0}\frac{(2 \cos ( x)+4) \csc ( x)}{5 \left(- \frac{i \left(e^{i A x} - e^{- i A x}\right)}{2 \sin{\left(A x \right)}}\right) ( x)^3}-\frac{6}{5 \left(- \frac{i \left(e^{i A x} - e^{- i A x}\right)}{2 \sin{\left(A x \right)}}\right) ( x)^4}$
1/150
Equivalence-One-Easy
U-Math sequences_series 068e40ce-9108-4ef8-8ee5-0d1471ebbe43
852
Compute $\lim_{x \to 0}\frac{(2 \cos ( x)+4) \csc ( x)}{5 \left(- \frac{2 i \left(e^{4 i A x} + 1\right) \tan{\left(A x \right)}}{\left(1 - e^{4 i A x}\right) \left(1 - \tan^{2}{\left(A x \right)}\right)}\right) ( x)^3}-\frac{6}{5 \left(- \frac{2 i \left(e^{4 i A x} + 1\right) \tan{\left(A x \right)}}{\left(1 - e^{4 i A x}\right) \left(1 - \tan^{2}{\left(A x \right)}\right)}\right) ( x)^4}$
1/150
Equivalence-One-Hard
U-Math sequences_series 068e40ce-9108-4ef8-8ee5-0d1471ebbe43
853
Compute $\lim_{x \to 0}\frac{(2 \cos ( x)+4) \csc ( x)}{5 \left(1\right) ( x)^3}-\frac{6}{5 \left(1\right) ( x)^4}$
1**(-1)/150
Numeric-One-1
U-Math sequences_series 068e40ce-9108-4ef8-8ee5-0d1471ebbe43
854
Compute $\lim_{x \to 0}\frac{(2 \cos ( x)+4) \csc ( x)}{5 \left(19\right) ( x)^3}-\frac{6}{5 \left(19\right) ( x)^4}$
19**(-1)/150
Numeric-One-2
U-Math sequences_series 068e40ce-9108-4ef8-8ee5-0d1471ebbe43
855
Compute $\lim_{x \to 0}\frac{(2 \cos ( x)+4) \csc ( x)}{5 \left(290\right) ( x)^3}-\frac{6}{5 \left(290\right) ( x)^4}$
290**(-1)/150
Numeric-One-3
U-Math sequences_series 068e40ce-9108-4ef8-8ee5-0d1471ebbe43
856
Compute $\lim_{x \to 0}\frac{(2 \cos ( x)+4) \csc ( x)}{5 \left(9287\right) ( x)^3}-\frac{6}{5 \left(9287\right) ( x)^4}$
9287**(-1)/150
Numeric-One-4
U-Math sequences_series 068e40ce-9108-4ef8-8ee5-0d1471ebbe43
857
Compute $\lim_{x \to 0}\frac{(2 \cos ( x)+4) \csc ( x)}{5 \left(38103\right) ( x)^3}-\frac{6}{5 \left(38103\right) ( x)^4}$
38103**(-1)/150
Numeric-One-5
U-Math sequences_series 068e40ce-9108-4ef8-8ee5-0d1471ebbe43
858
Compute $\lim_{x \to 0}\frac{(2 \cos ( x)+4) \csc ( x)}{5 \left(441344\right) ( x)^3}-\frac{6}{5 \left(441344\right) ( x)^4}$
441344**(-1)/150
Numeric-One-6
U-Math sequences_series 068e40ce-9108-4ef8-8ee5-0d1471ebbe43
859
Compute $\lim_{x \to 0}\frac{(2 \cos ( x)+4) \csc ( x)}{5 \left(4721836\right) ( x)^3}-\frac{6}{5 \left(4721836\right) ( x)^4}$
4721836**(-1)/150
Numeric-One-7
U-Math sequences_series 068e40ce-9108-4ef8-8ee5-0d1471ebbe43
860
Compute $\lim_{x \to 0}\frac{(2 \cos ( x)+4) \csc ( x)}{5 \left(18419205\right) ( x)^3}-\frac{6}{5 \left(18419205\right) ( x)^4}$
18419205**(-1)/150
Numeric-One-8
U-Math sequences_series 068e40ce-9108-4ef8-8ee5-0d1471ebbe43
861
Compute $\lim_{x \to 0}\frac{(2 \cos ( x)+4) \csc ( x)}{5 \left(964636872\right) ( x)^3}-\frac{6}{5 \left(964636872\right) ( x)^4}$
964636872**(-1)/150
Numeric-One-9
U-Math sequences_series 068e40ce-9108-4ef8-8ee5-0d1471ebbe43
862
Compute $\lim_{x \to 0}\frac{(2 \cos ( x)+4) \csc ( x)}{5 \left(6724428116\right) ( x)^3}-\frac{6}{5 \left(6724428116\right) ( x)^4}$
6724428116**(-1)/150
Numeric-One-10
U-Math sequences_series 068e40ce-9108-4ef8-8ee5-0d1471ebbe43
863
Compute $\lim_{x \to 0}\frac{(2 \cos ( \left(\sin^{2}{\left(- F x \right)} + \cos^{2}{\left(F x \right)}\right) x)+4) \csc ( \left(\sin^{2}{\left(- F x \right)} + \cos^{2}{\left(F x \right)}\right) x)}{5 ( \left(\sin^{2}{\left(- F x \right)} + \cos^{2}{\left(F x \right)}\right) x)^3}-\frac{6}{5 ( \left(\sin^{2}{\left(- F x \right)} + \cos^{2}{\left(F x \right)}\right) x)^4}$
1/150
Equivalence-One-Easy
U-Math sequences_series 068e40ce-9108-4ef8-8ee5-0d1471ebbe43
864
Compute $\lim_{x \to 0}\frac{(2 \cos ( \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(F - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(F - 1\right) \right)} + 1\right) \tan{\left(F x \right)}}\right) x)+4) \csc ( \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(F - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(F - 1\right) \right)} + 1\right) \tan{\left(F x \right)}}\right) x)}{5 ( \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(F - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(F - 1\right) \right)} + 1\right) \tan{\left(F x \right)}}\right) x)^3}-\frac{6}{5 ( \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(F - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(F - 1\right) \right)} + 1\right) \tan{\left(F x \right)}}\right) x)^4}$
1/150
Equivalence-One-Hard
U-Math sequences_series 068e40ce-9108-4ef8-8ee5-0d1471ebbe43
865
Compute $\lim_{x \to 0}\frac{(2 \cos ( \left(- \sinh^{2}{\left(F x \right)} + \cosh^{2}{\left(F x \right)}\right) x)+4) \csc ( \left(- \sinh^{2}{\left(F x \right)} + \cosh^{2}{\left(F x \right)}\right) x)}{5 ( \left(- \sinh^{2}{\left(F x \right)} + \cosh^{2}{\left(F x \right)}\right) x)^3}-\frac{6}{5 ( \left(- \sinh^{2}{\left(F x \right)} + \cosh^{2}{\left(F x \right)}\right) x)^4}$
1/150
Equivalence-One-Easy
U-Math sequences_series 068e40ce-9108-4ef8-8ee5-0d1471ebbe43
866
Compute $\lim_{x \to 0}\frac{(2 \cos ( \left(\frac{\sinh{\left(\log{\left(F x + \sqrt{F^{2} x^{2} + 1} \right)} \right)}}{F x}\right) x)+4) \csc ( \left(\frac{\sinh{\left(\log{\left(F x + \sqrt{F^{2} x^{2} + 1} \right)} \right)}}{F x}\right) x)}{5 ( \left(\frac{\sinh{\left(\log{\left(F x + \sqrt{F^{2} x^{2} + 1} \right)} \right)}}{F x}\right) x)^3}-\frac{6}{5 ( \left(\frac{\sinh{\left(\log{\left(F x + \sqrt{F^{2} x^{2} + 1} \right)} \right)}}{F x}\right) x)^4}$
1/150
Equivalence-One-Hard
U-Math sequences_series 068e40ce-9108-4ef8-8ee5-0d1471ebbe43
867
Compute $\lim_{x \to 0}\frac{(2 \cos ( \left(\frac{\ln(x) \cdot \log_{x}(F)}{\ln(F)}\right) x)+4) \csc ( \left(\frac{\ln(x) \cdot \log_{x}(F)}{\ln(F)}\right) x)}{5 ( \left(\frac{\ln(x) \cdot \log_{x}(F)}{\ln(F)}\right) x)^3}-\frac{6}{5 ( \left(\frac{\ln(x) \cdot \log_{x}(F)}{\ln(F)}\right) x)^4}$
1/150
Equivalence-One-Easy
U-Math sequences_series 068e40ce-9108-4ef8-8ee5-0d1471ebbe43
868
Compute $\lim_{x \to 0}\frac{(2 \cos ( \left(\frac{\log_F\left(\frac{x}{e}\right) + \log_F(e)}{\log_F(x)}\right) x)+4) \csc ( \left(\frac{\log_F\left(\frac{x}{e}\right) + \log_F(e)}{\log_F(x)}\right) x)}{5 ( \left(\frac{\log_F\left(\frac{x}{e}\right) + \log_F(e)}{\log_F(x)}\right) x)^3}-\frac{6}{5 ( \left(\frac{\log_F\left(\frac{x}{e}\right) + \log_F(e)}{\log_F(x)}\right) x)^4}$
1/150
Equivalence-One-Hard
U-Math sequences_series 068e40ce-9108-4ef8-8ee5-0d1471ebbe43
869
Compute $\lim_{x \to 0}\frac{(2 \cos ( \left(\frac{F \sum_{N=1}^{\infty} \frac{2^{- N} x}{F}}{x}\right) x)+4) \csc ( \left(\frac{F \sum_{N=1}^{\infty} \frac{2^{- N} x}{F}}{x}\right) x)}{5 ( \left(\frac{F \sum_{N=1}^{\infty} \frac{2^{- N} x}{F}}{x}\right) x)^3}-\frac{6}{5 ( \left(\frac{F \sum_{N=1}^{\infty} \frac{2^{- N} x}{F}}{x}\right) x)^4}$
1/150
Equivalence-One-Easy
U-Math sequences_series 068e40ce-9108-4ef8-8ee5-0d1471ebbe43
870
Compute $\lim_{x \to 0}\frac{(2 \cos ( \left(\frac{F \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} F}}{x}\right) x)+4) \csc ( \left(\frac{F \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} F}}{x}\right) x)}{5 ( \left(\frac{F \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} F}}{x}\right) x)^3}-\frac{6}{5 ( \left(\frac{F \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} F}}{x}\right) x)^4}$
1/150
Equivalence-One-Hard
U-Math sequences_series 068e40ce-9108-4ef8-8ee5-0d1471ebbe43
871
Compute $\lim_{x \to 0}\frac{(2 \cos ( \left(- \frac{i \left(e^{i F x} - e^{- i F x}\right)}{2 \sin{\left(F x \right)}}\right) x)+4) \csc ( \left(- \frac{i \left(e^{i F x} - e^{- i F x}\right)}{2 \sin{\left(F x \right)}}\right) x)}{5 ( \left(- \frac{i \left(e^{i F x} - e^{- i F x}\right)}{2 \sin{\left(F x \right)}}\right) x)^3}-\frac{6}{5 ( \left(- \frac{i \left(e^{i F x} - e^{- i F x}\right)}{2 \sin{\left(F x \right)}}\right) x)^4}$
1/150
Equivalence-One-Easy
U-Math sequences_series 068e40ce-9108-4ef8-8ee5-0d1471ebbe43
872
Compute $\lim_{x \to 0}\frac{(2 \cos ( \left(- \frac{2 i \left(e^{4 i F x} + 1\right) \tan{\left(F x \right)}}{\left(1 - e^{4 i F x}\right) \left(1 - \tan^{2}{\left(F x \right)}\right)}\right) x)+4) \csc ( \left(- \frac{2 i \left(e^{4 i F x} + 1\right) \tan{\left(F x \right)}}{\left(1 - e^{4 i F x}\right) \left(1 - \tan^{2}{\left(F x \right)}\right)}\right) x)}{5 ( \left(- \frac{2 i \left(e^{4 i F x} + 1\right) \tan{\left(F x \right)}}{\left(1 - e^{4 i F x}\right) \left(1 - \tan^{2}{\left(F x \right)}\right)}\right) x)^3}-\frac{6}{5 ( \left(- \frac{2 i \left(e^{4 i F x} + 1\right) \tan{\left(F x \right)}}{\left(1 - e^{4 i F x}\right) \left(1 - \tan^{2}{\left(F x \right)}\right)}\right) x)^4}$
1/150
Equivalence-One-Hard
U-Math sequences_series 068e40ce-9108-4ef8-8ee5-0d1471ebbe43
873
Compute $\lim_{x \to 0}\frac{(2 \cos ( \left(4\right) x)+4) \csc ( \left(4\right) x)}{5 ( \left(4\right) x)^3}-\frac{6}{5 ( \left(4\right) x)^4}$
1/150
Numeric-One-1
U-Math sequences_series 068e40ce-9108-4ef8-8ee5-0d1471ebbe43
874
Compute $\lim_{x \to 0}\frac{(2 \cos ( \left(42\right) x)+4) \csc ( \left(42\right) x)}{5 ( \left(42\right) x)^3}-\frac{6}{5 ( \left(42\right) x)^4}$
1/150
Numeric-One-2
U-Math sequences_series 068e40ce-9108-4ef8-8ee5-0d1471ebbe43
875
Compute $\lim_{x \to 0}\frac{(2 \cos ( \left(660\right) x)+4) \csc ( \left(660\right) x)}{5 ( \left(660\right) x)^3}-\frac{6}{5 ( \left(660\right) x)^4}$
1/150
Numeric-One-3
U-Math sequences_series 068e40ce-9108-4ef8-8ee5-0d1471ebbe43
876
Compute $\lim_{x \to 0}\frac{(2 \cos ( \left(7545\right) x)+4) \csc ( \left(7545\right) x)}{5 ( \left(7545\right) x)^3}-\frac{6}{5 ( \left(7545\right) x)^4}$
1/150
Numeric-One-4
U-Math sequences_series 068e40ce-9108-4ef8-8ee5-0d1471ebbe43
877
Compute $\lim_{x \to 0}\frac{(2 \cos ( \left(21958\right) x)+4) \csc ( \left(21958\right) x)}{5 ( \left(21958\right) x)^3}-\frac{6}{5 ( \left(21958\right) x)^4}$
1/150
Numeric-One-5
U-Math sequences_series 068e40ce-9108-4ef8-8ee5-0d1471ebbe43
878
Compute $\lim_{x \to 0}\frac{(2 \cos ( \left(170983\right) x)+4) \csc ( \left(170983\right) x)}{5 ( \left(170983\right) x)^3}-\frac{6}{5 ( \left(170983\right) x)^4}$
1/150
Numeric-One-6
U-Math sequences_series 068e40ce-9108-4ef8-8ee5-0d1471ebbe43
879
Compute $\lim_{x \to 0}\frac{(2 \cos ( \left(3684654\right) x)+4) \csc ( \left(3684654\right) x)}{5 ( \left(3684654\right) x)^3}-\frac{6}{5 ( \left(3684654\right) x)^4}$
1/150
Numeric-One-7
U-Math sequences_series 068e40ce-9108-4ef8-8ee5-0d1471ebbe43
880
Compute $\lim_{x \to 0}\frac{(2 \cos ( \left(31500120\right) x)+4) \csc ( \left(31500120\right) x)}{5 ( \left(31500120\right) x)^3}-\frac{6}{5 ( \left(31500120\right) x)^4}$
1/150
Numeric-One-8
U-Math sequences_series 068e40ce-9108-4ef8-8ee5-0d1471ebbe43
881
Compute $\lim_{x \to 0}\frac{(2 \cos ( \left(328787282\right) x)+4) \csc ( \left(328787282\right) x)}{5 ( \left(328787282\right) x)^3}-\frac{6}{5 ( \left(328787282\right) x)^4}$
1/150
Numeric-One-9
U-Math sequences_series 068e40ce-9108-4ef8-8ee5-0d1471ebbe43
882
Compute $\lim_{x \to 0}\frac{(2 \cos ( \left(9159041214\right) x)+4) \csc ( \left(9159041214\right) x)}{5 ( \left(9159041214\right) x)^3}-\frac{6}{5 ( \left(9159041214\right) x)^4}$
1/150
Numeric-One-10
U-Math sequences_series 068e40ce-9108-4ef8-8ee5-0d1471ebbe43
883
Compute $\lim_{x \to 0}\frac{(2 \cos ( \left(2\right) x)+4) \csc ( \left(2\right) x)}{5 \left(3\right) ( \left(2\right) x)^3}-\frac{6}{5 \left(3\right) ( \left(2\right) x)^4}$
3**(-1)/150
Numeric-All-1
U-Math sequences_series 068e40ce-9108-4ef8-8ee5-0d1471ebbe43
884
Compute $\lim_{x \to 0}\frac{(2 \cos ( \left(17\right) x)+4) \csc ( \left(17\right) x)}{5 \left(17\right) ( \left(17\right) x)^3}-\frac{6}{5 \left(17\right) ( \left(17\right) x)^4}$
17**(-1)/150
Numeric-All-2
U-Math sequences_series 068e40ce-9108-4ef8-8ee5-0d1471ebbe43
885
Compute $\lim_{x \to 0}\frac{(2 \cos ( \left(240\right) x)+4) \csc ( \left(240\right) x)}{5 \left(436\right) ( \left(240\right) x)^3}-\frac{6}{5 \left(436\right) ( \left(240\right) x)^4}$
436**(-1)/150
Numeric-All-3
U-Math sequences_series 068e40ce-9108-4ef8-8ee5-0d1471ebbe43
886
Compute $\lim_{x \to 0}\frac{(2 \cos ( \left(3983\right) x)+4) \csc ( \left(3983\right) x)}{5 \left(5264\right) ( \left(3983\right) x)^3}-\frac{6}{5 \left(5264\right) ( \left(3983\right) x)^4}$
5264**(-1)/150
Numeric-All-4
U-Math sequences_series 068e40ce-9108-4ef8-8ee5-0d1471ebbe43
887
Compute $\lim_{x \to 0}\frac{(2 \cos ( \left(25076\right) x)+4) \csc ( \left(25076\right) x)}{5 \left(27299\right) ( \left(25076\right) x)^3}-\frac{6}{5 \left(27299\right) ( \left(25076\right) x)^4}$
27299**(-1)/150
Numeric-All-5
U-Math sequences_series 068e40ce-9108-4ef8-8ee5-0d1471ebbe43
888
Compute $\lim_{x \to 0}\frac{(2 \cos ( \left(227448\right) x)+4) \csc ( \left(227448\right) x)}{5 \left(569235\right) ( \left(227448\right) x)^3}-\frac{6}{5 \left(569235\right) ( \left(227448\right) x)^4}$
569235**(-1)/150
Numeric-All-6
U-Math sequences_series 068e40ce-9108-4ef8-8ee5-0d1471ebbe43
889
Compute $\lim_{x \to 0}\frac{(2 \cos ( \left(2793400\right) x)+4) \csc ( \left(2793400\right) x)}{5 \left(4949178\right) ( \left(2793400\right) x)^3}-\frac{6}{5 \left(4949178\right) ( \left(2793400\right) x)^4}$
4949178**(-1)/150
Numeric-All-7
U-Math sequences_series 068e40ce-9108-4ef8-8ee5-0d1471ebbe43
890
Compute $\lim_{x \to 0}\frac{(2 \cos ( \left(68563430\right) x)+4) \csc ( \left(68563430\right) x)}{5 \left(34731312\right) ( \left(68563430\right) x)^3}-\frac{6}{5 \left(34731312\right) ( \left(68563430\right) x)^4}$
34731312**(-1)/150
Numeric-All-8
U-Math sequences_series 068e40ce-9108-4ef8-8ee5-0d1471ebbe43
891
Compute $\lim_{x \to 0}\frac{(2 \cos ( \left(393062393\right) x)+4) \csc ( \left(393062393\right) x)}{5 \left(664679645\right) ( \left(393062393\right) x)^3}-\frac{6}{5 \left(664679645\right) ( \left(393062393\right) x)^4}$
664679645**(-1)/150
Numeric-All-9
U-Math sequences_series 068e40ce-9108-4ef8-8ee5-0d1471ebbe43
892
Compute $\lim_{x \to 0}\frac{(2 \cos ( \left(1761689734\right) x)+4) \csc ( \left(1761689734\right) x)}{5 \left(4161683371\right) ( \left(1761689734\right) x)^3}-\frac{6}{5 \left(4161683371\right) ( \left(1761689734\right) x)^4}$
4161683371**(-1)/150
Numeric-All-10
U-Math sequences_series 068e40ce-9108-4ef8-8ee5-0d1471ebbe43
893
Compute $\lim_{x \to 0}\frac{(2 \cos (F x)+4) \csc (F x)}{5 (F x)^3}-\frac{6}{5 (F x)^4}$
1/150
Symbolic-1
U-Math sequences_series 068e40ce-9108-4ef8-8ee5-0d1471ebbe43
894
Compute $\lim_{x \to 0}\frac{(2 \cos ( x)+4) \csc ( x)}{5 A ( x)^3}-\frac{6}{5 A ( x)^4}$
1/(150*A)
Symbolic-1
U-Math sequences_series 068e40ce-9108-4ef8-8ee5-0d1471ebbe43
895
Evaluate $ \lim_{x \to 0^+} \left(\sin^{2}{\left(- A x \right)} + \cos^{2}{\left(A x \right)}\right) \left( \frac{ \tan\left( \frac{ \left(- \sinh^{2}{\left(B x \right)} + \cosh^{2}{\left(B x \right)}\right) x}{2} \right) }{ \frac{ \left(- \sinh^{2}{\left(B x \right)} + \cosh^{2}{\left(B x \right)}\right) x}{2} } \right)^{ \frac{ \left(\frac{\ln(x) \cdot \log_{x}(F)}{\ln(F)}\right) 3}{( \left(- \sinh^{2}{\left(B x \right)} + \cosh^{2}{\left(B x \right)}\right) x)^2} } $
e**(1/4)
Equivalence-All-Easy
U-Math differential_calc 363dd580-f1fc-4867-a6ef-db2a03139745
896
Evaluate $ \lim_{x \to 0^+} \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(A - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(A - 1\right) \right)} + 1\right) \tan{\left(A x \right)}}\right) \left( \frac{ \tan\left( \frac{ \left(\frac{\sinh{\left(\log{\left(B x + \sqrt{B^{2} x^{2} + 1} \right)} \right)}}{B x}\right) x}{2} \right) }{ \frac{ \left(\frac{\sinh{\left(\log{\left(B x + \sqrt{B^{2} x^{2} + 1} \right)} \right)}}{B x}\right) x}{2} } \right)^{ \frac{ \left(\frac{\log_F\left(\frac{x}{e}\right) + \log_F(e)}{\log_F(x)}\right) 3}{( \left(\frac{\sinh{\left(\log{\left(B x + \sqrt{B^{2} x^{2} + 1} \right)} \right)}}{B x}\right) x)^2} } $
e**(1/4)
Equivalence-All-Hard
U-Math differential_calc 363dd580-f1fc-4867-a6ef-db2a03139745
897
Evaluate $ \lim_{x \to 0^+} \left(\sin^{2}{\left(- A x \right)} + \cos^{2}{\left(A x \right)}\right) \left( \frac{ \tan\left( \frac{ \left(- \sinh^{2}{\left(B x \right)} + \cosh^{2}{\left(B x \right)}\right) x}{2} \right) }{ \frac{ \left(- \sinh^{2}{\left(B x \right)} + \cosh^{2}{\left(B x \right)}\right) x}{2} } \right)^{ \frac{ \left(\frac{F \sum_{N=1}^{\infty} \frac{2^{- N} x}{F}}{x}\right) 3}{( \left(- \sinh^{2}{\left(B x \right)} + \cosh^{2}{\left(B x \right)}\right) x)^2} } $
e**(1/4)
Equivalence-All-Easy
U-Math differential_calc 363dd580-f1fc-4867-a6ef-db2a03139745
898
Evaluate $ \lim_{x \to 0^+} \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(A - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(A - 1\right) \right)} + 1\right) \tan{\left(A x \right)}}\right) \left( \frac{ \tan\left( \frac{ \left(\frac{\sinh{\left(\log{\left(B x + \sqrt{B^{2} x^{2} + 1} \right)} \right)}}{B x}\right) x}{2} \right) }{ \frac{ \left(\frac{\sinh{\left(\log{\left(B x + \sqrt{B^{2} x^{2} + 1} \right)} \right)}}{B x}\right) x}{2} } \right)^{ \frac{ \left(\frac{F \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} F}}{x}\right) 3}{( \left(\frac{\sinh{\left(\log{\left(B x + \sqrt{B^{2} x^{2} + 1} \right)} \right)}}{B x}\right) x)^2} } $
e**(1/4)
Equivalence-All-Hard
U-Math differential_calc 363dd580-f1fc-4867-a6ef-db2a03139745
899
Evaluate $ \lim_{x \to 0^+} \left(\sin^{2}{\left(- A x \right)} + \cos^{2}{\left(A x \right)}\right) \left( \frac{ \tan\left( \frac{ \left(- \sinh^{2}{\left(B x \right)} + \cosh^{2}{\left(B x \right)}\right) x}{2} \right) }{ \frac{ \left(- \sinh^{2}{\left(B x \right)} + \cosh^{2}{\left(B x \right)}\right) x}{2} } \right)^{ \frac{ \left(- \frac{i \left(e^{i F x} - e^{- i F x}\right)}{2 \sin{\left(F x \right)}}\right) 3}{( \left(- \sinh^{2}{\left(B x \right)} + \cosh^{2}{\left(B x \right)}\right) x)^2} } $
e**(1/4)
Equivalence-All-Easy
U-Math differential_calc 363dd580-f1fc-4867-a6ef-db2a03139745
900
Evaluate $ \lim_{x \to 0^+} \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(A - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(A - 1\right) \right)} + 1\right) \tan{\left(A x \right)}}\right) \left( \frac{ \tan\left( \frac{ \left(\frac{\sinh{\left(\log{\left(B x + \sqrt{B^{2} x^{2} + 1} \right)} \right)}}{B x}\right) x}{2} \right) }{ \frac{ \left(\frac{\sinh{\left(\log{\left(B x + \sqrt{B^{2} x^{2} + 1} \right)} \right)}}{B x}\right) x}{2} } \right)^{ \frac{ \left(- \frac{2 i \left(e^{4 i F x} + 1\right) \tan{\left(F x \right)}}{\left(1 - e^{4 i F x}\right) \left(1 - \tan^{2}{\left(F x \right)}\right)}\right) 3}{( \left(\frac{\sinh{\left(\log{\left(B x + \sqrt{B^{2} x^{2} + 1} \right)} \right)}}{B x}\right) x)^2} } $
e**(1/4)
Equivalence-All-Hard
U-Math differential_calc 363dd580-f1fc-4867-a6ef-db2a03139745