Index
stringlengths
1
5
Challenge
stringlengths
41
1.55k
Answer in Latex
stringclasses
122 values
Answer in Sympy
stringlengths
1
774
Variation
stringclasses
31 values
Source
stringclasses
61 values
601
Compute the first 6 nonzero terms of the Maclaurin series of $f(x) = F \left(\sin( x) \cdot \cos\left(\frac{ B \pi }{ 4 }\right) + \cos( x) \cdot \sin\left(\frac{ B \pi }{ 4 }\right)\right)$
F*(x**5*cos(pi*B/4) + 5*x**4*sin(pi*B/4) - 20*x**3*cos(pi*B/4) - 60*x**2*sin(pi*B/4) + 120*x*cos(pi*B/4) + 120*sin(pi*B/4))/120
Symbolic-2
U-Math sequences_series f89bd354-18c9-4f31-b91f-cf6421e24921
602
Compute the first 6 nonzero terms of the Maclaurin series of $f(x) = F \left(\sin(A x) \cdot \cos\left(\frac{ \pi }{ 4 }\right) + \cos(A x) \cdot \sin\left(\frac{ \pi }{ 4 }\right)\right)$
F*(sqrt(2)*A**5*x**5/2 + 5*sqrt(2)*A**4*x**4/2 - 10*sqrt(2)*A**3*x**3 - 30*sqrt(2)*A**2*x**2 + 60*sqrt(2)*A*x + 60*sqrt(2))/120
Symbolic-2
U-Math sequences_series f89bd354-18c9-4f31-b91f-cf6421e24921
603
Compute the first 6 nonzero terms of the Maclaurin series of $f(x) = \left(\sin(A x) \cdot \cos\left(\frac{ B \pi }{ 4 }\right) + \cos(A x) \cdot \sin\left(\frac{ B \pi }{ 4 }\right)\right)$
A**5*x**5*cos(pi*B/4)/120 + A**4*x**4*sin(pi*B/4)/24 - A**3*x**3*cos(pi*B/4)/6 - A**2*x**2*sin(pi*B/4)/2 + A*x*cos(pi*B/4) + sin(pi*B/4)
Symbolic-2
U-Math sequences_series f89bd354-18c9-4f31-b91f-cf6421e24921
604
Compute the first 6 nonzero terms of the Maclaurin series of $f(x) = F \left(\sin( x) \cdot \cos\left(\frac{ \pi }{ 4 }\right) + \cos( x) \cdot \sin\left(\frac{ \pi }{ 4 }\right)\right)$
F*(sqrt(2)*x**5/2 + 5*sqrt(2)*x**4/2 - 10*sqrt(2)*x**3 - 30*sqrt(2)*x**2 + 60*sqrt(2)*x + 60*sqrt(2))/120
Symbolic-1
U-Math sequences_series f89bd354-18c9-4f31-b91f-cf6421e24921
605
Compute the first 6 nonzero terms of the Maclaurin series of $f(x) = \left(\sin( x) \cdot \cos\left(\frac{ B \pi }{ 4 }\right) + \cos( x) \cdot \sin\left(\frac{ B \pi }{ 4 }\right)\right)$
x**5*cos(pi*B/4)/120 + x**4*sin(pi*B/4)/24 - x**3*cos(pi*B/4)/6 - x**2*sin(pi*B/4)/2 + x*cos(pi*B/4) + sin(pi*B/4)
Symbolic-1
U-Math sequences_series f89bd354-18c9-4f31-b91f-cf6421e24921
606
Compute the first 6 nonzero terms of the Maclaurin series of $f(x) = \left(\sin(A x) \cdot \cos\left(\frac{ \pi }{ 4 }\right) + \cos(A x) \cdot \sin\left(\frac{ \pi }{ 4 }\right)\right)$
sqrt(2)*A**5*x**5/240 + sqrt(2)*A**4*x**4/48 - sqrt(2)*A**3*x**3/12 - sqrt(2)*A**2*x**2/4 + sqrt(2)*A*x/2 + sqrt(2)/2
Symbolic-1
U-Math sequences_series f89bd354-18c9-4f31-b91f-cf6421e24921
607
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{\ln(x) \cdot \log_{x}(F)}{\ln(F)}\right) e^{ \left(\sin^{2}{\left(- A x \right)} + \cos^{2}{\left(A x \right)}\right) x} \cdot \cos( \left(- \sinh^{2}{\left(B x \right)} + \cosh^{2}{\left(B x \right)}\right) x)$
-x**4/6 - x**3/3 + x + 1
Equivalence-All-Easy
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
608
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{\log_F\left(\frac{x}{e}\right) + \log_F(e)}{\log_F(x)}\right) e^{ \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(A - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(A - 1\right) \right)} + 1\right) \tan{\left(A x \right)}}\right) x} \cdot \cos( \left(\frac{\sinh{\left(\log{\left(B x + \sqrt{B^{2} x^{2} + 1} \right)} \right)}}{B x}\right) x)$
-x**4/6 - x**3/3 + x + 1
Equivalence-All-Hard
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
609
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{F \sum_{N=1}^{\infty} \frac{2^{- N} x}{F}}{x}\right) e^{ \left(\sin^{2}{\left(- A x \right)} + \cos^{2}{\left(A x \right)}\right) x} \cdot \cos( \left(- \sinh^{2}{\left(B x \right)} + \cosh^{2}{\left(B x \right)}\right) x)$
-x**4/6 - x**3/3 + x + 1
Equivalence-All-Easy
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
610
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{F \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} F}}{x}\right) e^{ \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(A - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(A - 1\right) \right)} + 1\right) \tan{\left(A x \right)}}\right) x} \cdot \cos( \left(\frac{\sinh{\left(\log{\left(B x + \sqrt{B^{2} x^{2} + 1} \right)} \right)}}{B x}\right) x)$
-x**4/6 - x**3/3 + x + 1
Equivalence-All-Hard
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
611
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(- \frac{i \left(e^{i F x} - e^{- i F x}\right)}{2 \sin{\left(F x \right)}}\right) e^{ \left(\sin^{2}{\left(- A x \right)} + \cos^{2}{\left(A x \right)}\right) x} \cdot \cos( \left(- \sinh^{2}{\left(B x \right)} + \cosh^{2}{\left(B x \right)}\right) x)$
-x**4/6 - x**3/3 + x + 1
Equivalence-All-Easy
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
612
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(- \frac{2 i \left(e^{4 i F x} + 1\right) \tan{\left(F x \right)}}{\left(1 - e^{4 i F x}\right) \left(1 - \tan^{2}{\left(F x \right)}\right)}\right) e^{ \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(A - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(A - 1\right) \right)} + 1\right) \tan{\left(A x \right)}}\right) x} \cdot \cos( \left(\frac{\sinh{\left(\log{\left(B x + \sqrt{B^{2} x^{2} + 1} \right)} \right)}}{B x}\right) x)$
-x**4/6 - x**3/3 + x + 1
Equivalence-All-Hard
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
613
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(- \sinh^{2}{\left(F x \right)} + \cosh^{2}{\left(F x \right)}\right) e^{ \left(\sin^{2}{\left(- A x \right)} + \cos^{2}{\left(A x \right)}\right) x} \cdot \cos( \left(\frac{\ln(x) \cdot \log_{x}(B)}{\ln(B)}\right) x)$
-x**4/6 - x**3/3 + x + 1
Equivalence-All-Easy
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
614
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{\sinh{\left(\log{\left(F x + \sqrt{F^{2} x^{2} + 1} \right)} \right)}}{F x}\right) e^{ \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(A - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(A - 1\right) \right)} + 1\right) \tan{\left(A x \right)}}\right) x} \cdot \cos( \left(\frac{\log_B\left(\frac{x}{e}\right) + \log_B(e)}{\log_B(x)}\right) x)$
-x**4/6 - x**3/3 + x + 1
Equivalence-All-Hard
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
615
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{F \sum_{N=1}^{\infty} \frac{2^{- N} x}{F}}{x}\right) e^{ \left(\sin^{2}{\left(- A x \right)} + \cos^{2}{\left(A x \right)}\right) x} \cdot \cos( \left(\frac{\ln(x) \cdot \log_{x}(B)}{\ln(B)}\right) x)$
-x**4/6 - x**3/3 + x + 1
Equivalence-All-Easy
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
616
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{F \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} F}}{x}\right) e^{ \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(A - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(A - 1\right) \right)} + 1\right) \tan{\left(A x \right)}}\right) x} \cdot \cos( \left(\frac{\log_B\left(\frac{x}{e}\right) + \log_B(e)}{\log_B(x)}\right) x)$
-x**4/6 - x**3/3 + x + 1
Equivalence-All-Hard
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
617
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(- \frac{i \left(e^{i F x} - e^{- i F x}\right)}{2 \sin{\left(F x \right)}}\right) e^{ \left(\sin^{2}{\left(- A x \right)} + \cos^{2}{\left(A x \right)}\right) x} \cdot \cos( \left(\frac{\ln(x) \cdot \log_{x}(B)}{\ln(B)}\right) x)$
-x**4/6 - x**3/3 + x + 1
Equivalence-All-Easy
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
618
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(- \frac{2 i \left(e^{4 i F x} + 1\right) \tan{\left(F x \right)}}{\left(1 - e^{4 i F x}\right) \left(1 - \tan^{2}{\left(F x \right)}\right)}\right) e^{ \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(A - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(A - 1\right) \right)} + 1\right) \tan{\left(A x \right)}}\right) x} \cdot \cos( \left(\frac{\log_B\left(\frac{x}{e}\right) + \log_B(e)}{\log_B(x)}\right) x)$
-x**4/6 - x**3/3 + x + 1
Equivalence-All-Hard
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
619
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(- \sinh^{2}{\left(F x \right)} + \cosh^{2}{\left(F x \right)}\right) e^{ \left(\sin^{2}{\left(- A x \right)} + \cos^{2}{\left(A x \right)}\right) x} \cdot \cos( \left(\frac{B \sum_{N=1}^{\infty} \frac{2^{- N} x}{B}}{x}\right) x)$
-x**4/6 - x**3/3 + x + 1
Equivalence-All-Easy
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
620
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{\sinh{\left(\log{\left(F x + \sqrt{F^{2} x^{2} + 1} \right)} \right)}}{F x}\right) e^{ \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(A - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(A - 1\right) \right)} + 1\right) \tan{\left(A x \right)}}\right) x} \cdot \cos( \left(\frac{B \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} B}}{x}\right) x)$
-x**4/6 - x**3/3 + x + 1
Equivalence-All-Hard
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
621
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{\ln(x) \cdot \log_{x}(F)}{\ln(F)}\right) e^{ \left(\sin^{2}{\left(- A x \right)} + \cos^{2}{\left(A x \right)}\right) x} \cdot \cos( \left(\frac{B \sum_{N=1}^{\infty} \frac{2^{- N} x}{B}}{x}\right) x)$
-x**4/6 - x**3/3 + x + 1
Equivalence-All-Easy
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
622
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{\log_F\left(\frac{x}{e}\right) + \log_F(e)}{\log_F(x)}\right) e^{ \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(A - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(A - 1\right) \right)} + 1\right) \tan{\left(A x \right)}}\right) x} \cdot \cos( \left(\frac{B \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} B}}{x}\right) x)$
-x**4/6 - x**3/3 + x + 1
Equivalence-All-Hard
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
623
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(- \frac{i \left(e^{i F x} - e^{- i F x}\right)}{2 \sin{\left(F x \right)}}\right) e^{ \left(\sin^{2}{\left(- A x \right)} + \cos^{2}{\left(A x \right)}\right) x} \cdot \cos( \left(\frac{B \sum_{N=1}^{\infty} \frac{2^{- N} x}{B}}{x}\right) x)$
-x**4/6 - x**3/3 + x + 1
Equivalence-All-Easy
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
624
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(- \frac{2 i \left(e^{4 i F x} + 1\right) \tan{\left(F x \right)}}{\left(1 - e^{4 i F x}\right) \left(1 - \tan^{2}{\left(F x \right)}\right)}\right) e^{ \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(A - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(A - 1\right) \right)} + 1\right) \tan{\left(A x \right)}}\right) x} \cdot \cos( \left(\frac{B \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} B}}{x}\right) x)$
-x**4/6 - x**3/3 + x + 1
Equivalence-All-Hard
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
625
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(- \sinh^{2}{\left(F x \right)} + \cosh^{2}{\left(F x \right)}\right) e^{ \left(\sin^{2}{\left(- A x \right)} + \cos^{2}{\left(A x \right)}\right) x} \cdot \cos( \left(- \frac{i \left(e^{i B x} - e^{- i B x}\right)}{2 \sin{\left(B x \right)}}\right) x)$
-x**4/6 - x**3/3 + x + 1
Equivalence-All-Easy
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
626
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{\sinh{\left(\log{\left(F x + \sqrt{F^{2} x^{2} + 1} \right)} \right)}}{F x}\right) e^{ \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(A - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(A - 1\right) \right)} + 1\right) \tan{\left(A x \right)}}\right) x} \cdot \cos( \left(- \frac{2 i \left(e^{4 i B x} + 1\right) \tan{\left(B x \right)}}{\left(1 - e^{4 i B x}\right) \left(1 - \tan^{2}{\left(B x \right)}\right)}\right) x)$
-x**4/6 - x**3/3 + x + 1
Equivalence-All-Hard
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
627
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{\ln(x) \cdot \log_{x}(F)}{\ln(F)}\right) e^{ \left(\sin^{2}{\left(- A x \right)} + \cos^{2}{\left(A x \right)}\right) x} \cdot \cos( \left(- \frac{i \left(e^{i B x} - e^{- i B x}\right)}{2 \sin{\left(B x \right)}}\right) x)$
-x**4/6 - x**3/3 + x + 1
Equivalence-All-Easy
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
628
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{\log_F\left(\frac{x}{e}\right) + \log_F(e)}{\log_F(x)}\right) e^{ \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(A - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(A - 1\right) \right)} + 1\right) \tan{\left(A x \right)}}\right) x} \cdot \cos( \left(- \frac{2 i \left(e^{4 i B x} + 1\right) \tan{\left(B x \right)}}{\left(1 - e^{4 i B x}\right) \left(1 - \tan^{2}{\left(B x \right)}\right)}\right) x)$
-x**4/6 - x**3/3 + x + 1
Equivalence-All-Hard
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
629
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{F \sum_{N=1}^{\infty} \frac{2^{- N} x}{F}}{x}\right) e^{ \left(\sin^{2}{\left(- A x \right)} + \cos^{2}{\left(A x \right)}\right) x} \cdot \cos( \left(- \frac{i \left(e^{i B x} - e^{- i B x}\right)}{2 \sin{\left(B x \right)}}\right) x)$
-x**4/6 - x**3/3 + x + 1
Equivalence-All-Easy
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
630
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{F \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} F}}{x}\right) e^{ \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(A - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(A - 1\right) \right)} + 1\right) \tan{\left(A x \right)}}\right) x} \cdot \cos( \left(- \frac{2 i \left(e^{4 i B x} + 1\right) \tan{\left(B x \right)}}{\left(1 - e^{4 i B x}\right) \left(1 - \tan^{2}{\left(B x \right)}\right)}\right) x)$
-x**4/6 - x**3/3 + x + 1
Equivalence-All-Hard
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
631
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{\ln(x) \cdot \log_{x}(F)}{\ln(F)}\right) e^{ \left(- \sinh^{2}{\left(A x \right)} + \cosh^{2}{\left(A x \right)}\right) x} \cdot \cos( \left(\sin^{2}{\left(- B x \right)} + \cos^{2}{\left(B x \right)}\right) x)$
-x**4/6 - x**3/3 + x + 1
Equivalence-All-Easy
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
632
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{\log_F\left(\frac{x}{e}\right) + \log_F(e)}{\log_F(x)}\right) e^{ \left(\frac{\sinh{\left(\log{\left(A x + \sqrt{A^{2} x^{2} + 1} \right)} \right)}}{A x}\right) x} \cdot \cos( \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(B - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(B - 1\right) \right)} + 1\right) \tan{\left(B x \right)}}\right) x)$
-x**4/6 - x**3/3 + x + 1
Equivalence-All-Hard
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
633
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{F \sum_{N=1}^{\infty} \frac{2^{- N} x}{F}}{x}\right) e^{ \left(- \sinh^{2}{\left(A x \right)} + \cosh^{2}{\left(A x \right)}\right) x} \cdot \cos( \left(\sin^{2}{\left(- B x \right)} + \cos^{2}{\left(B x \right)}\right) x)$
-x**4/6 - x**3/3 + x + 1
Equivalence-All-Easy
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
634
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{F \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} F}}{x}\right) e^{ \left(\frac{\sinh{\left(\log{\left(A x + \sqrt{A^{2} x^{2} + 1} \right)} \right)}}{A x}\right) x} \cdot \cos( \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(B - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(B - 1\right) \right)} + 1\right) \tan{\left(B x \right)}}\right) x)$
-x**4/6 - x**3/3 + x + 1
Equivalence-All-Hard
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
635
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(- \frac{i \left(e^{i F x} - e^{- i F x}\right)}{2 \sin{\left(F x \right)}}\right) e^{ \left(- \sinh^{2}{\left(A x \right)} + \cosh^{2}{\left(A x \right)}\right) x} \cdot \cos( \left(\sin^{2}{\left(- B x \right)} + \cos^{2}{\left(B x \right)}\right) x)$
-x**4/6 - x**3/3 + x + 1
Equivalence-All-Easy
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
636
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(- \frac{2 i \left(e^{4 i F x} + 1\right) \tan{\left(F x \right)}}{\left(1 - e^{4 i F x}\right) \left(1 - \tan^{2}{\left(F x \right)}\right)}\right) e^{ \left(\frac{\sinh{\left(\log{\left(A x + \sqrt{A^{2} x^{2} + 1} \right)} \right)}}{A x}\right) x} \cdot \cos( \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(B - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(B - 1\right) \right)} + 1\right) \tan{\left(B x \right)}}\right) x)$
-x**4/6 - x**3/3 + x + 1
Equivalence-All-Hard
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
637
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\sin^{2}{\left(- F x \right)} + \cos^{2}{\left(F x \right)}\right) e^{ \left(- \sinh^{2}{\left(A x \right)} + \cosh^{2}{\left(A x \right)}\right) x} \cdot \cos( \left(\frac{\ln(x) \cdot \log_{x}(B)}{\ln(B)}\right) x)$
-x**4/6 - x**3/3 + x + 1
Equivalence-All-Easy
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
638
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(F - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(F - 1\right) \right)} + 1\right) \tan{\left(F x \right)}}\right) e^{ \left(\frac{\sinh{\left(\log{\left(A x + \sqrt{A^{2} x^{2} + 1} \right)} \right)}}{A x}\right) x} \cdot \cos( \left(\frac{\log_B\left(\frac{x}{e}\right) + \log_B(e)}{\log_B(x)}\right) x)$
-x**4/6 - x**3/3 + x + 1
Equivalence-All-Hard
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
639
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{F \sum_{N=1}^{\infty} \frac{2^{- N} x}{F}}{x}\right) e^{ \left(- \sinh^{2}{\left(A x \right)} + \cosh^{2}{\left(A x \right)}\right) x} \cdot \cos( \left(\frac{\ln(x) \cdot \log_{x}(B)}{\ln(B)}\right) x)$
-x**4/6 - x**3/3 + x + 1
Equivalence-All-Easy
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
640
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{F \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} F}}{x}\right) e^{ \left(\frac{\sinh{\left(\log{\left(A x + \sqrt{A^{2} x^{2} + 1} \right)} \right)}}{A x}\right) x} \cdot \cos( \left(\frac{\log_B\left(\frac{x}{e}\right) + \log_B(e)}{\log_B(x)}\right) x)$
-x**4/6 - x**3/3 + x + 1
Equivalence-All-Hard
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
641
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(- \frac{i \left(e^{i F x} - e^{- i F x}\right)}{2 \sin{\left(F x \right)}}\right) e^{ \left(- \sinh^{2}{\left(A x \right)} + \cosh^{2}{\left(A x \right)}\right) x} \cdot \cos( \left(\frac{\ln(x) \cdot \log_{x}(B)}{\ln(B)}\right) x)$
-x**4/6 - x**3/3 + x + 1
Equivalence-All-Easy
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
642
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(- \frac{2 i \left(e^{4 i F x} + 1\right) \tan{\left(F x \right)}}{\left(1 - e^{4 i F x}\right) \left(1 - \tan^{2}{\left(F x \right)}\right)}\right) e^{ \left(\frac{\sinh{\left(\log{\left(A x + \sqrt{A^{2} x^{2} + 1} \right)} \right)}}{A x}\right) x} \cdot \cos( \left(\frac{\log_B\left(\frac{x}{e}\right) + \log_B(e)}{\log_B(x)}\right) x)$
-x**4/6 - x**3/3 + x + 1
Equivalence-All-Hard
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
643
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\sin^{2}{\left(- F x \right)} + \cos^{2}{\left(F x \right)}\right) e^{ \left(- \sinh^{2}{\left(A x \right)} + \cosh^{2}{\left(A x \right)}\right) x} \cdot \cos( \left(\frac{B \sum_{N=1}^{\infty} \frac{2^{- N} x}{B}}{x}\right) x)$
-x**4/6 - x**3/3 + x + 1
Equivalence-All-Easy
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
644
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(F - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(F - 1\right) \right)} + 1\right) \tan{\left(F x \right)}}\right) e^{ \left(\frac{\sinh{\left(\log{\left(A x + \sqrt{A^{2} x^{2} + 1} \right)} \right)}}{A x}\right) x} \cdot \cos( \left(\frac{B \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} B}}{x}\right) x)$
-x**4/6 - x**3/3 + x + 1
Equivalence-All-Hard
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
645
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{\ln(x) \cdot \log_{x}(F)}{\ln(F)}\right) e^{ \left(- \sinh^{2}{\left(A x \right)} + \cosh^{2}{\left(A x \right)}\right) x} \cdot \cos( \left(\frac{B \sum_{N=1}^{\infty} \frac{2^{- N} x}{B}}{x}\right) x)$
-x**4/6 - x**3/3 + x + 1
Equivalence-All-Easy
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
646
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{\log_F\left(\frac{x}{e}\right) + \log_F(e)}{\log_F(x)}\right) e^{ \left(\frac{\sinh{\left(\log{\left(A x + \sqrt{A^{2} x^{2} + 1} \right)} \right)}}{A x}\right) x} \cdot \cos( \left(\frac{B \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} B}}{x}\right) x)$
-x**4/6 - x**3/3 + x + 1
Equivalence-All-Hard
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
647
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(- \frac{i \left(e^{i F x} - e^{- i F x}\right)}{2 \sin{\left(F x \right)}}\right) e^{ \left(- \sinh^{2}{\left(A x \right)} + \cosh^{2}{\left(A x \right)}\right) x} \cdot \cos( \left(\frac{B \sum_{N=1}^{\infty} \frac{2^{- N} x}{B}}{x}\right) x)$
-x**4/6 - x**3/3 + x + 1
Equivalence-All-Easy
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
648
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(- \frac{2 i \left(e^{4 i F x} + 1\right) \tan{\left(F x \right)}}{\left(1 - e^{4 i F x}\right) \left(1 - \tan^{2}{\left(F x \right)}\right)}\right) e^{ \left(\frac{\sinh{\left(\log{\left(A x + \sqrt{A^{2} x^{2} + 1} \right)} \right)}}{A x}\right) x} \cdot \cos( \left(\frac{B \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} B}}{x}\right) x)$
-x**4/6 - x**3/3 + x + 1
Equivalence-All-Hard
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
649
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\sin^{2}{\left(- F x \right)} + \cos^{2}{\left(F x \right)}\right) e^{ \left(- \sinh^{2}{\left(A x \right)} + \cosh^{2}{\left(A x \right)}\right) x} \cdot \cos( \left(- \frac{i \left(e^{i B x} - e^{- i B x}\right)}{2 \sin{\left(B x \right)}}\right) x)$
-x**4/6 - x**3/3 + x + 1
Equivalence-All-Easy
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
650
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(F - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(F - 1\right) \right)} + 1\right) \tan{\left(F x \right)}}\right) e^{ \left(\frac{\sinh{\left(\log{\left(A x + \sqrt{A^{2} x^{2} + 1} \right)} \right)}}{A x}\right) x} \cdot \cos( \left(- \frac{2 i \left(e^{4 i B x} + 1\right) \tan{\left(B x \right)}}{\left(1 - e^{4 i B x}\right) \left(1 - \tan^{2}{\left(B x \right)}\right)}\right) x)$
-x**4/6 - x**3/3 + x + 1
Equivalence-All-Hard
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
651
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{\ln(x) \cdot \log_{x}(F)}{\ln(F)}\right) e^{ \left(- \sinh^{2}{\left(A x \right)} + \cosh^{2}{\left(A x \right)}\right) x} \cdot \cos( \left(- \frac{i \left(e^{i B x} - e^{- i B x}\right)}{2 \sin{\left(B x \right)}}\right) x)$
-x**4/6 - x**3/3 + x + 1
Equivalence-All-Easy
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
652
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{\log_F\left(\frac{x}{e}\right) + \log_F(e)}{\log_F(x)}\right) e^{ \left(\frac{\sinh{\left(\log{\left(A x + \sqrt{A^{2} x^{2} + 1} \right)} \right)}}{A x}\right) x} \cdot \cos( \left(- \frac{2 i \left(e^{4 i B x} + 1\right) \tan{\left(B x \right)}}{\left(1 - e^{4 i B x}\right) \left(1 - \tan^{2}{\left(B x \right)}\right)}\right) x)$
-x**4/6 - x**3/3 + x + 1
Equivalence-All-Hard
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
653
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{F \sum_{N=1}^{\infty} \frac{2^{- N} x}{F}}{x}\right) e^{ \left(- \sinh^{2}{\left(A x \right)} + \cosh^{2}{\left(A x \right)}\right) x} \cdot \cos( \left(- \frac{i \left(e^{i B x} - e^{- i B x}\right)}{2 \sin{\left(B x \right)}}\right) x)$
-x**4/6 - x**3/3 + x + 1
Equivalence-All-Easy
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
654
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{F \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} F}}{x}\right) e^{ \left(\frac{\sinh{\left(\log{\left(A x + \sqrt{A^{2} x^{2} + 1} \right)} \right)}}{A x}\right) x} \cdot \cos( \left(- \frac{2 i \left(e^{4 i B x} + 1\right) \tan{\left(B x \right)}}{\left(1 - e^{4 i B x}\right) \left(1 - \tan^{2}{\left(B x \right)}\right)}\right) x)$
-x**4/6 - x**3/3 + x + 1
Equivalence-All-Hard
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
655
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(- \sinh^{2}{\left(F x \right)} + \cosh^{2}{\left(F x \right)}\right) e^{ \left(\frac{\ln(x) \cdot \log_{x}(A)}{\ln(A)}\right) x} \cdot \cos( \left(\sin^{2}{\left(- B x \right)} + \cos^{2}{\left(B x \right)}\right) x)$
-x**4/6 - x**3/3 + x + 1
Equivalence-All-Easy
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
656
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{\sinh{\left(\log{\left(F x + \sqrt{F^{2} x^{2} + 1} \right)} \right)}}{F x}\right) e^{ \left(\frac{\log_A\left(\frac{x}{e}\right) + \log_A(e)}{\log_A(x)}\right) x} \cdot \cos( \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(B - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(B - 1\right) \right)} + 1\right) \tan{\left(B x \right)}}\right) x)$
-x**4/6 - x**3/3 + x + 1
Equivalence-All-Hard
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
657
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{F \sum_{N=1}^{\infty} \frac{2^{- N} x}{F}}{x}\right) e^{ \left(\frac{\ln(x) \cdot \log_{x}(A)}{\ln(A)}\right) x} \cdot \cos( \left(\sin^{2}{\left(- B x \right)} + \cos^{2}{\left(B x \right)}\right) x)$
-x**4/6 - x**3/3 + x + 1
Equivalence-All-Easy
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
658
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{F \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} F}}{x}\right) e^{ \left(\frac{\log_A\left(\frac{x}{e}\right) + \log_A(e)}{\log_A(x)}\right) x} \cdot \cos( \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(B - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(B - 1\right) \right)} + 1\right) \tan{\left(B x \right)}}\right) x)$
-x**4/6 - x**3/3 + x + 1
Equivalence-All-Hard
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
659
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(- \frac{i \left(e^{i F x} - e^{- i F x}\right)}{2 \sin{\left(F x \right)}}\right) e^{ \left(\frac{\ln(x) \cdot \log_{x}(A)}{\ln(A)}\right) x} \cdot \cos( \left(\sin^{2}{\left(- B x \right)} + \cos^{2}{\left(B x \right)}\right) x)$
-x**4/6 - x**3/3 + x + 1
Equivalence-All-Easy
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
660
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(- \frac{2 i \left(e^{4 i F x} + 1\right) \tan{\left(F x \right)}}{\left(1 - e^{4 i F x}\right) \left(1 - \tan^{2}{\left(F x \right)}\right)}\right) e^{ \left(\frac{\log_A\left(\frac{x}{e}\right) + \log_A(e)}{\log_A(x)}\right) x} \cdot \cos( \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(B - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(B - 1\right) \right)} + 1\right) \tan{\left(B x \right)}}\right) x)$
-x**4/6 - x**3/3 + x + 1
Equivalence-All-Hard
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
661
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\sin^{2}{\left(- F x \right)} + \cos^{2}{\left(F x \right)}\right) e^{ \left(\frac{\ln(x) \cdot \log_{x}(A)}{\ln(A)}\right) x} \cdot \cos( \left(- \sinh^{2}{\left(B x \right)} + \cosh^{2}{\left(B x \right)}\right) x)$
-x**4/6 - x**3/3 + x + 1
Equivalence-All-Easy
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
662
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(F - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(F - 1\right) \right)} + 1\right) \tan{\left(F x \right)}}\right) e^{ \left(\frac{\log_A\left(\frac{x}{e}\right) + \log_A(e)}{\log_A(x)}\right) x} \cdot \cos( \left(\frac{\sinh{\left(\log{\left(B x + \sqrt{B^{2} x^{2} + 1} \right)} \right)}}{B x}\right) x)$
-x**4/6 - x**3/3 + x + 1
Equivalence-All-Hard
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
663
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{F \sum_{N=1}^{\infty} \frac{2^{- N} x}{F}}{x}\right) e^{ \left(\frac{\ln(x) \cdot \log_{x}(A)}{\ln(A)}\right) x} \cdot \cos( \left(- \sinh^{2}{\left(B x \right)} + \cosh^{2}{\left(B x \right)}\right) x)$
-x**4/6 - x**3/3 + x + 1
Equivalence-All-Easy
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
664
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{F \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} F}}{x}\right) e^{ \left(\frac{\log_A\left(\frac{x}{e}\right) + \log_A(e)}{\log_A(x)}\right) x} \cdot \cos( \left(\frac{\sinh{\left(\log{\left(B x + \sqrt{B^{2} x^{2} + 1} \right)} \right)}}{B x}\right) x)$
-x**4/6 - x**3/3 + x + 1
Equivalence-All-Hard
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
665
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(- \frac{i \left(e^{i F x} - e^{- i F x}\right)}{2 \sin{\left(F x \right)}}\right) e^{ \left(\frac{\ln(x) \cdot \log_{x}(A)}{\ln(A)}\right) x} \cdot \cos( \left(- \sinh^{2}{\left(B x \right)} + \cosh^{2}{\left(B x \right)}\right) x)$
-x**4/6 - x**3/3 + x + 1
Equivalence-All-Easy
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
666
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(- \frac{2 i \left(e^{4 i F x} + 1\right) \tan{\left(F x \right)}}{\left(1 - e^{4 i F x}\right) \left(1 - \tan^{2}{\left(F x \right)}\right)}\right) e^{ \left(\frac{\log_A\left(\frac{x}{e}\right) + \log_A(e)}{\log_A(x)}\right) x} \cdot \cos( \left(\frac{\sinh{\left(\log{\left(B x + \sqrt{B^{2} x^{2} + 1} \right)} \right)}}{B x}\right) x)$
-x**4/6 - x**3/3 + x + 1
Equivalence-All-Hard
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
667
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\sin^{2}{\left(- F x \right)} + \cos^{2}{\left(F x \right)}\right) e^{ \left(\frac{\ln(x) \cdot \log_{x}(A)}{\ln(A)}\right) x} \cdot \cos( \left(\frac{B \sum_{N=1}^{\infty} \frac{2^{- N} x}{B}}{x}\right) x)$
-x**4/6 - x**3/3 + x + 1
Equivalence-All-Easy
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
668
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(F - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(F - 1\right) \right)} + 1\right) \tan{\left(F x \right)}}\right) e^{ \left(\frac{\log_A\left(\frac{x}{e}\right) + \log_A(e)}{\log_A(x)}\right) x} \cdot \cos( \left(\frac{B \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} B}}{x}\right) x)$
-x**4/6 - x**3/3 + x + 1
Equivalence-All-Hard
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
669
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(- \sinh^{2}{\left(F x \right)} + \cosh^{2}{\left(F x \right)}\right) e^{ \left(\frac{\ln(x) \cdot \log_{x}(A)}{\ln(A)}\right) x} \cdot \cos( \left(\frac{B \sum_{N=1}^{\infty} \frac{2^{- N} x}{B}}{x}\right) x)$
-x**4/6 - x**3/3 + x + 1
Equivalence-All-Easy
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
670
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{\sinh{\left(\log{\left(F x + \sqrt{F^{2} x^{2} + 1} \right)} \right)}}{F x}\right) e^{ \left(\frac{\log_A\left(\frac{x}{e}\right) + \log_A(e)}{\log_A(x)}\right) x} \cdot \cos( \left(\frac{B \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} B}}{x}\right) x)$
-x**4/6 - x**3/3 + x + 1
Equivalence-All-Hard
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
671
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(- \frac{i \left(e^{i F x} - e^{- i F x}\right)}{2 \sin{\left(F x \right)}}\right) e^{ \left(\frac{\ln(x) \cdot \log_{x}(A)}{\ln(A)}\right) x} \cdot \cos( \left(\frac{B \sum_{N=1}^{\infty} \frac{2^{- N} x}{B}}{x}\right) x)$
-x**4/6 - x**3/3 + x + 1
Equivalence-All-Easy
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
672
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(- \frac{2 i \left(e^{4 i F x} + 1\right) \tan{\left(F x \right)}}{\left(1 - e^{4 i F x}\right) \left(1 - \tan^{2}{\left(F x \right)}\right)}\right) e^{ \left(\frac{\log_A\left(\frac{x}{e}\right) + \log_A(e)}{\log_A(x)}\right) x} \cdot \cos( \left(\frac{B \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} B}}{x}\right) x)$
-x**4/6 - x**3/3 + x + 1
Equivalence-All-Hard
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
673
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\sin^{2}{\left(- F x \right)} + \cos^{2}{\left(F x \right)}\right) e^{ \left(\frac{\ln(x) \cdot \log_{x}(A)}{\ln(A)}\right) x} \cdot \cos( \left(- \frac{i \left(e^{i B x} - e^{- i B x}\right)}{2 \sin{\left(B x \right)}}\right) x)$
-x**4/6 - x**3/3 + x + 1
Equivalence-All-Easy
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
674
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(F - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(F - 1\right) \right)} + 1\right) \tan{\left(F x \right)}}\right) e^{ \left(\frac{\log_A\left(\frac{x}{e}\right) + \log_A(e)}{\log_A(x)}\right) x} \cdot \cos( \left(- \frac{2 i \left(e^{4 i B x} + 1\right) \tan{\left(B x \right)}}{\left(1 - e^{4 i B x}\right) \left(1 - \tan^{2}{\left(B x \right)}\right)}\right) x)$
-x**4/6 - x**3/3 + x + 1
Equivalence-All-Hard
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
675
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(- \sinh^{2}{\left(F x \right)} + \cosh^{2}{\left(F x \right)}\right) e^{ \left(\frac{\ln(x) \cdot \log_{x}(A)}{\ln(A)}\right) x} \cdot \cos( \left(- \frac{i \left(e^{i B x} - e^{- i B x}\right)}{2 \sin{\left(B x \right)}}\right) x)$
-x**4/6 - x**3/3 + x + 1
Equivalence-All-Easy
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
676
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{\sinh{\left(\log{\left(F x + \sqrt{F^{2} x^{2} + 1} \right)} \right)}}{F x}\right) e^{ \left(\frac{\log_A\left(\frac{x}{e}\right) + \log_A(e)}{\log_A(x)}\right) x} \cdot \cos( \left(- \frac{2 i \left(e^{4 i B x} + 1\right) \tan{\left(B x \right)}}{\left(1 - e^{4 i B x}\right) \left(1 - \tan^{2}{\left(B x \right)}\right)}\right) x)$
-x**4/6 - x**3/3 + x + 1
Equivalence-All-Hard
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
677
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{F \sum_{N=1}^{\infty} \frac{2^{- N} x}{F}}{x}\right) e^{ \left(\frac{\ln(x) \cdot \log_{x}(A)}{\ln(A)}\right) x} \cdot \cos( \left(- \frac{i \left(e^{i B x} - e^{- i B x}\right)}{2 \sin{\left(B x \right)}}\right) x)$
-x**4/6 - x**3/3 + x + 1
Equivalence-All-Easy
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
678
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{F \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} F}}{x}\right) e^{ \left(\frac{\log_A\left(\frac{x}{e}\right) + \log_A(e)}{\log_A(x)}\right) x} \cdot \cos( \left(- \frac{2 i \left(e^{4 i B x} + 1\right) \tan{\left(B x \right)}}{\left(1 - e^{4 i B x}\right) \left(1 - \tan^{2}{\left(B x \right)}\right)}\right) x)$
-x**4/6 - x**3/3 + x + 1
Equivalence-All-Hard
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
679
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(- \sinh^{2}{\left(F x \right)} + \cosh^{2}{\left(F x \right)}\right) e^{ \left(\frac{A \sum_{N=1}^{\infty} \frac{2^{- N} x}{A}}{x}\right) x} \cdot \cos( \left(\sin^{2}{\left(- B x \right)} + \cos^{2}{\left(B x \right)}\right) x)$
-x**4/6 - x**3/3 + x + 1
Equivalence-All-Easy
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
680
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{\sinh{\left(\log{\left(F x + \sqrt{F^{2} x^{2} + 1} \right)} \right)}}{F x}\right) e^{ \left(\frac{A \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} A}}{x}\right) x} \cdot \cos( \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(B - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(B - 1\right) \right)} + 1\right) \tan{\left(B x \right)}}\right) x)$
-x**4/6 - x**3/3 + x + 1
Equivalence-All-Hard
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
681
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{\ln(x) \cdot \log_{x}(F)}{\ln(F)}\right) e^{ \left(\frac{A \sum_{N=1}^{\infty} \frac{2^{- N} x}{A}}{x}\right) x} \cdot \cos( \left(\sin^{2}{\left(- B x \right)} + \cos^{2}{\left(B x \right)}\right) x)$
-x**4/6 - x**3/3 + x + 1
Equivalence-All-Easy
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
682
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{\log_F\left(\frac{x}{e}\right) + \log_F(e)}{\log_F(x)}\right) e^{ \left(\frac{A \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} A}}{x}\right) x} \cdot \cos( \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(B - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(B - 1\right) \right)} + 1\right) \tan{\left(B x \right)}}\right) x)$
-x**4/6 - x**3/3 + x + 1
Equivalence-All-Hard
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
683
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(- \frac{i \left(e^{i F x} - e^{- i F x}\right)}{2 \sin{\left(F x \right)}}\right) e^{ \left(\frac{A \sum_{N=1}^{\infty} \frac{2^{- N} x}{A}}{x}\right) x} \cdot \cos( \left(\sin^{2}{\left(- B x \right)} + \cos^{2}{\left(B x \right)}\right) x)$
-x**4/6 - x**3/3 + x + 1
Equivalence-All-Easy
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
684
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(- \frac{2 i \left(e^{4 i F x} + 1\right) \tan{\left(F x \right)}}{\left(1 - e^{4 i F x}\right) \left(1 - \tan^{2}{\left(F x \right)}\right)}\right) e^{ \left(\frac{A \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} A}}{x}\right) x} \cdot \cos( \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(B - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(B - 1\right) \right)} + 1\right) \tan{\left(B x \right)}}\right) x)$
-x**4/6 - x**3/3 + x + 1
Equivalence-All-Hard
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
685
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\sin^{2}{\left(- F x \right)} + \cos^{2}{\left(F x \right)}\right) e^{ \left(\frac{A \sum_{N=1}^{\infty} \frac{2^{- N} x}{A}}{x}\right) x} \cdot \cos( \left(- \sinh^{2}{\left(B x \right)} + \cosh^{2}{\left(B x \right)}\right) x)$
-x**4/6 - x**3/3 + x + 1
Equivalence-All-Easy
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
686
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(F - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(F - 1\right) \right)} + 1\right) \tan{\left(F x \right)}}\right) e^{ \left(\frac{A \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} A}}{x}\right) x} \cdot \cos( \left(\frac{\sinh{\left(\log{\left(B x + \sqrt{B^{2} x^{2} + 1} \right)} \right)}}{B x}\right) x)$
-x**4/6 - x**3/3 + x + 1
Equivalence-All-Hard
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
687
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{\ln(x) \cdot \log_{x}(F)}{\ln(F)}\right) e^{ \left(\frac{A \sum_{N=1}^{\infty} \frac{2^{- N} x}{A}}{x}\right) x} \cdot \cos( \left(- \sinh^{2}{\left(B x \right)} + \cosh^{2}{\left(B x \right)}\right) x)$
-x**4/6 - x**3/3 + x + 1
Equivalence-All-Easy
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
688
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{\log_F\left(\frac{x}{e}\right) + \log_F(e)}{\log_F(x)}\right) e^{ \left(\frac{A \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} A}}{x}\right) x} \cdot \cos( \left(\frac{\sinh{\left(\log{\left(B x + \sqrt{B^{2} x^{2} + 1} \right)} \right)}}{B x}\right) x)$
-x**4/6 - x**3/3 + x + 1
Equivalence-All-Hard
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
689
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(- \frac{i \left(e^{i F x} - e^{- i F x}\right)}{2 \sin{\left(F x \right)}}\right) e^{ \left(\frac{A \sum_{N=1}^{\infty} \frac{2^{- N} x}{A}}{x}\right) x} \cdot \cos( \left(- \sinh^{2}{\left(B x \right)} + \cosh^{2}{\left(B x \right)}\right) x)$
-x**4/6 - x**3/3 + x + 1
Equivalence-All-Easy
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
690
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(- \frac{2 i \left(e^{4 i F x} + 1\right) \tan{\left(F x \right)}}{\left(1 - e^{4 i F x}\right) \left(1 - \tan^{2}{\left(F x \right)}\right)}\right) e^{ \left(\frac{A \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} A}}{x}\right) x} \cdot \cos( \left(\frac{\sinh{\left(\log{\left(B x + \sqrt{B^{2} x^{2} + 1} \right)} \right)}}{B x}\right) x)$
-x**4/6 - x**3/3 + x + 1
Equivalence-All-Hard
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
691
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\sin^{2}{\left(- F x \right)} + \cos^{2}{\left(F x \right)}\right) e^{ \left(\frac{A \sum_{N=1}^{\infty} \frac{2^{- N} x}{A}}{x}\right) x} \cdot \cos( \left(\frac{\ln(x) \cdot \log_{x}(B)}{\ln(B)}\right) x)$
-x**4/6 - x**3/3 + x + 1
Equivalence-All-Easy
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
692
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(F - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(F - 1\right) \right)} + 1\right) \tan{\left(F x \right)}}\right) e^{ \left(\frac{A \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} A}}{x}\right) x} \cdot \cos( \left(\frac{\log_B\left(\frac{x}{e}\right) + \log_B(e)}{\log_B(x)}\right) x)$
-x**4/6 - x**3/3 + x + 1
Equivalence-All-Hard
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
693
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(- \sinh^{2}{\left(F x \right)} + \cosh^{2}{\left(F x \right)}\right) e^{ \left(\frac{A \sum_{N=1}^{\infty} \frac{2^{- N} x}{A}}{x}\right) x} \cdot \cos( \left(\frac{\ln(x) \cdot \log_{x}(B)}{\ln(B)}\right) x)$
-x**4/6 - x**3/3 + x + 1
Equivalence-All-Easy
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
694
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{\sinh{\left(\log{\left(F x + \sqrt{F^{2} x^{2} + 1} \right)} \right)}}{F x}\right) e^{ \left(\frac{A \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} A}}{x}\right) x} \cdot \cos( \left(\frac{\log_B\left(\frac{x}{e}\right) + \log_B(e)}{\log_B(x)}\right) x)$
-x**4/6 - x**3/3 + x + 1
Equivalence-All-Hard
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
695
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(- \frac{i \left(e^{i F x} - e^{- i F x}\right)}{2 \sin{\left(F x \right)}}\right) e^{ \left(\frac{A \sum_{N=1}^{\infty} \frac{2^{- N} x}{A}}{x}\right) x} \cdot \cos( \left(\frac{\ln(x) \cdot \log_{x}(B)}{\ln(B)}\right) x)$
-x**4/6 - x**3/3 + x + 1
Equivalence-All-Easy
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
696
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(- \frac{2 i \left(e^{4 i F x} + 1\right) \tan{\left(F x \right)}}{\left(1 - e^{4 i F x}\right) \left(1 - \tan^{2}{\left(F x \right)}\right)}\right) e^{ \left(\frac{A \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} A}}{x}\right) x} \cdot \cos( \left(\frac{\log_B\left(\frac{x}{e}\right) + \log_B(e)}{\log_B(x)}\right) x)$
-x**4/6 - x**3/3 + x + 1
Equivalence-All-Hard
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
697
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\sin^{2}{\left(- F x \right)} + \cos^{2}{\left(F x \right)}\right) e^{ \left(\frac{A \sum_{N=1}^{\infty} \frac{2^{- N} x}{A}}{x}\right) x} \cdot \cos( \left(- \frac{i \left(e^{i B x} - e^{- i B x}\right)}{2 \sin{\left(B x \right)}}\right) x)$
-x**4/6 - x**3/3 + x + 1
Equivalence-All-Easy
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
698
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(F - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(F - 1\right) \right)} + 1\right) \tan{\left(F x \right)}}\right) e^{ \left(\frac{A \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} A}}{x}\right) x} \cdot \cos( \left(- \frac{2 i \left(e^{4 i B x} + 1\right) \tan{\left(B x \right)}}{\left(1 - e^{4 i B x}\right) \left(1 - \tan^{2}{\left(B x \right)}\right)}\right) x)$
-x**4/6 - x**3/3 + x + 1
Equivalence-All-Hard
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
699
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(- \sinh^{2}{\left(F x \right)} + \cosh^{2}{\left(F x \right)}\right) e^{ \left(\frac{A \sum_{N=1}^{\infty} \frac{2^{- N} x}{A}}{x}\right) x} \cdot \cos( \left(- \frac{i \left(e^{i B x} - e^{- i B x}\right)}{2 \sin{\left(B x \right)}}\right) x)$
-x**4/6 - x**3/3 + x + 1
Equivalence-All-Easy
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
700
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{\sinh{\left(\log{\left(F x + \sqrt{F^{2} x^{2} + 1} \right)} \right)}}{F x}\right) e^{ \left(\frac{A \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} A}}{x}\right) x} \cdot \cos( \left(- \frac{2 i \left(e^{4 i B x} + 1\right) \tan{\left(B x \right)}}{\left(1 - e^{4 i B x}\right) \left(1 - \tan^{2}{\left(B x \right)}\right)}\right) x)$
-x**4/6 - x**3/3 + x + 1
Equivalence-All-Hard
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1