Index
stringlengths 1
5
| Challenge
stringlengths 41
1.55k
| Answer in Latex
stringclasses 122
values | Answer in Sympy
stringlengths 1
774
| Variation
stringclasses 31
values | Source
stringclasses 61
values |
---|---|---|---|---|---|
601
|
Compute the first 6 nonzero terms of the Maclaurin series of $f(x) = F \left(\sin( x) \cdot \cos\left(\frac{ B \pi }{ 4 }\right) + \cos( x) \cdot \sin\left(\frac{ B \pi }{ 4 }\right)\right)$
|
F*(x**5*cos(pi*B/4) + 5*x**4*sin(pi*B/4) - 20*x**3*cos(pi*B/4) - 60*x**2*sin(pi*B/4) + 120*x*cos(pi*B/4) + 120*sin(pi*B/4))/120
|
Symbolic-2
|
U-Math
sequences_series
f89bd354-18c9-4f31-b91f-cf6421e24921
|
|
602
|
Compute the first 6 nonzero terms of the Maclaurin series of $f(x) = F \left(\sin(A x) \cdot \cos\left(\frac{ \pi }{ 4 }\right) + \cos(A x) \cdot \sin\left(\frac{ \pi }{ 4 }\right)\right)$
|
F*(sqrt(2)*A**5*x**5/2 + 5*sqrt(2)*A**4*x**4/2 - 10*sqrt(2)*A**3*x**3 - 30*sqrt(2)*A**2*x**2 + 60*sqrt(2)*A*x + 60*sqrt(2))/120
|
Symbolic-2
|
U-Math
sequences_series
f89bd354-18c9-4f31-b91f-cf6421e24921
|
|
603
|
Compute the first 6 nonzero terms of the Maclaurin series of $f(x) = \left(\sin(A x) \cdot \cos\left(\frac{ B \pi }{ 4 }\right) + \cos(A x) \cdot \sin\left(\frac{ B \pi }{ 4 }\right)\right)$
|
A**5*x**5*cos(pi*B/4)/120 + A**4*x**4*sin(pi*B/4)/24 - A**3*x**3*cos(pi*B/4)/6 - A**2*x**2*sin(pi*B/4)/2 + A*x*cos(pi*B/4) + sin(pi*B/4)
|
Symbolic-2
|
U-Math
sequences_series
f89bd354-18c9-4f31-b91f-cf6421e24921
|
|
604
|
Compute the first 6 nonzero terms of the Maclaurin series of $f(x) = F \left(\sin( x) \cdot \cos\left(\frac{ \pi }{ 4 }\right) + \cos( x) \cdot \sin\left(\frac{ \pi }{ 4 }\right)\right)$
|
F*(sqrt(2)*x**5/2 + 5*sqrt(2)*x**4/2 - 10*sqrt(2)*x**3 - 30*sqrt(2)*x**2 + 60*sqrt(2)*x + 60*sqrt(2))/120
|
Symbolic-1
|
U-Math
sequences_series
f89bd354-18c9-4f31-b91f-cf6421e24921
|
|
605
|
Compute the first 6 nonzero terms of the Maclaurin series of $f(x) = \left(\sin( x) \cdot \cos\left(\frac{ B \pi }{ 4 }\right) + \cos( x) \cdot \sin\left(\frac{ B \pi }{ 4 }\right)\right)$
|
x**5*cos(pi*B/4)/120 + x**4*sin(pi*B/4)/24 - x**3*cos(pi*B/4)/6 - x**2*sin(pi*B/4)/2 + x*cos(pi*B/4) + sin(pi*B/4)
|
Symbolic-1
|
U-Math
sequences_series
f89bd354-18c9-4f31-b91f-cf6421e24921
|
|
606
|
Compute the first 6 nonzero terms of the Maclaurin series of $f(x) = \left(\sin(A x) \cdot \cos\left(\frac{ \pi }{ 4 }\right) + \cos(A x) \cdot \sin\left(\frac{ \pi }{ 4 }\right)\right)$
|
sqrt(2)*A**5*x**5/240 + sqrt(2)*A**4*x**4/48 - sqrt(2)*A**3*x**3/12 - sqrt(2)*A**2*x**2/4 + sqrt(2)*A*x/2 + sqrt(2)/2
|
Symbolic-1
|
U-Math
sequences_series
f89bd354-18c9-4f31-b91f-cf6421e24921
|
|
607
|
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{\ln(x) \cdot \log_{x}(F)}{\ln(F)}\right) e^{ \left(\sin^{2}{\left(- A x \right)} + \cos^{2}{\left(A x \right)}\right) x} \cdot \cos( \left(- \sinh^{2}{\left(B x \right)} + \cosh^{2}{\left(B x \right)}\right) x)$
|
-x**4/6 - x**3/3 + x + 1
|
Equivalence-All-Easy
|
U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
|
|
608
|
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{\log_F\left(\frac{x}{e}\right) + \log_F(e)}{\log_F(x)}\right) e^{ \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(A - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(A - 1\right) \right)} + 1\right) \tan{\left(A x \right)}}\right) x} \cdot \cos( \left(\frac{\sinh{\left(\log{\left(B x + \sqrt{B^{2} x^{2} + 1} \right)} \right)}}{B x}\right) x)$
|
-x**4/6 - x**3/3 + x + 1
|
Equivalence-All-Hard
|
U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
|
|
609
|
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{F \sum_{N=1}^{\infty} \frac{2^{- N} x}{F}}{x}\right) e^{ \left(\sin^{2}{\left(- A x \right)} + \cos^{2}{\left(A x \right)}\right) x} \cdot \cos( \left(- \sinh^{2}{\left(B x \right)} + \cosh^{2}{\left(B x \right)}\right) x)$
|
-x**4/6 - x**3/3 + x + 1
|
Equivalence-All-Easy
|
U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
|
|
610
|
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{F \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} F}}{x}\right) e^{ \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(A - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(A - 1\right) \right)} + 1\right) \tan{\left(A x \right)}}\right) x} \cdot \cos( \left(\frac{\sinh{\left(\log{\left(B x + \sqrt{B^{2} x^{2} + 1} \right)} \right)}}{B x}\right) x)$
|
-x**4/6 - x**3/3 + x + 1
|
Equivalence-All-Hard
|
U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
|
|
611
|
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(- \frac{i \left(e^{i F x} - e^{- i F x}\right)}{2 \sin{\left(F x \right)}}\right) e^{ \left(\sin^{2}{\left(- A x \right)} + \cos^{2}{\left(A x \right)}\right) x} \cdot \cos( \left(- \sinh^{2}{\left(B x \right)} + \cosh^{2}{\left(B x \right)}\right) x)$
|
-x**4/6 - x**3/3 + x + 1
|
Equivalence-All-Easy
|
U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
|
|
612
|
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(- \frac{2 i \left(e^{4 i F x} + 1\right) \tan{\left(F x \right)}}{\left(1 - e^{4 i F x}\right) \left(1 - \tan^{2}{\left(F x \right)}\right)}\right) e^{ \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(A - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(A - 1\right) \right)} + 1\right) \tan{\left(A x \right)}}\right) x} \cdot \cos( \left(\frac{\sinh{\left(\log{\left(B x + \sqrt{B^{2} x^{2} + 1} \right)} \right)}}{B x}\right) x)$
|
-x**4/6 - x**3/3 + x + 1
|
Equivalence-All-Hard
|
U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
|
|
613
|
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(- \sinh^{2}{\left(F x \right)} + \cosh^{2}{\left(F x \right)}\right) e^{ \left(\sin^{2}{\left(- A x \right)} + \cos^{2}{\left(A x \right)}\right) x} \cdot \cos( \left(\frac{\ln(x) \cdot \log_{x}(B)}{\ln(B)}\right) x)$
|
-x**4/6 - x**3/3 + x + 1
|
Equivalence-All-Easy
|
U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
|
|
614
|
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{\sinh{\left(\log{\left(F x + \sqrt{F^{2} x^{2} + 1} \right)} \right)}}{F x}\right) e^{ \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(A - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(A - 1\right) \right)} + 1\right) \tan{\left(A x \right)}}\right) x} \cdot \cos( \left(\frac{\log_B\left(\frac{x}{e}\right) + \log_B(e)}{\log_B(x)}\right) x)$
|
-x**4/6 - x**3/3 + x + 1
|
Equivalence-All-Hard
|
U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
|
|
615
|
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{F \sum_{N=1}^{\infty} \frac{2^{- N} x}{F}}{x}\right) e^{ \left(\sin^{2}{\left(- A x \right)} + \cos^{2}{\left(A x \right)}\right) x} \cdot \cos( \left(\frac{\ln(x) \cdot \log_{x}(B)}{\ln(B)}\right) x)$
|
-x**4/6 - x**3/3 + x + 1
|
Equivalence-All-Easy
|
U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
|
|
616
|
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{F \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} F}}{x}\right) e^{ \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(A - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(A - 1\right) \right)} + 1\right) \tan{\left(A x \right)}}\right) x} \cdot \cos( \left(\frac{\log_B\left(\frac{x}{e}\right) + \log_B(e)}{\log_B(x)}\right) x)$
|
-x**4/6 - x**3/3 + x + 1
|
Equivalence-All-Hard
|
U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
|
|
617
|
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(- \frac{i \left(e^{i F x} - e^{- i F x}\right)}{2 \sin{\left(F x \right)}}\right) e^{ \left(\sin^{2}{\left(- A x \right)} + \cos^{2}{\left(A x \right)}\right) x} \cdot \cos( \left(\frac{\ln(x) \cdot \log_{x}(B)}{\ln(B)}\right) x)$
|
-x**4/6 - x**3/3 + x + 1
|
Equivalence-All-Easy
|
U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
|
|
618
|
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(- \frac{2 i \left(e^{4 i F x} + 1\right) \tan{\left(F x \right)}}{\left(1 - e^{4 i F x}\right) \left(1 - \tan^{2}{\left(F x \right)}\right)}\right) e^{ \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(A - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(A - 1\right) \right)} + 1\right) \tan{\left(A x \right)}}\right) x} \cdot \cos( \left(\frac{\log_B\left(\frac{x}{e}\right) + \log_B(e)}{\log_B(x)}\right) x)$
|
-x**4/6 - x**3/3 + x + 1
|
Equivalence-All-Hard
|
U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
|
|
619
|
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(- \sinh^{2}{\left(F x \right)} + \cosh^{2}{\left(F x \right)}\right) e^{ \left(\sin^{2}{\left(- A x \right)} + \cos^{2}{\left(A x \right)}\right) x} \cdot \cos( \left(\frac{B \sum_{N=1}^{\infty} \frac{2^{- N} x}{B}}{x}\right) x)$
|
-x**4/6 - x**3/3 + x + 1
|
Equivalence-All-Easy
|
U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
|
|
620
|
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{\sinh{\left(\log{\left(F x + \sqrt{F^{2} x^{2} + 1} \right)} \right)}}{F x}\right) e^{ \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(A - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(A - 1\right) \right)} + 1\right) \tan{\left(A x \right)}}\right) x} \cdot \cos( \left(\frac{B \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} B}}{x}\right) x)$
|
-x**4/6 - x**3/3 + x + 1
|
Equivalence-All-Hard
|
U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
|
|
621
|
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{\ln(x) \cdot \log_{x}(F)}{\ln(F)}\right) e^{ \left(\sin^{2}{\left(- A x \right)} + \cos^{2}{\left(A x \right)}\right) x} \cdot \cos( \left(\frac{B \sum_{N=1}^{\infty} \frac{2^{- N} x}{B}}{x}\right) x)$
|
-x**4/6 - x**3/3 + x + 1
|
Equivalence-All-Easy
|
U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
|
|
622
|
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{\log_F\left(\frac{x}{e}\right) + \log_F(e)}{\log_F(x)}\right) e^{ \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(A - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(A - 1\right) \right)} + 1\right) \tan{\left(A x \right)}}\right) x} \cdot \cos( \left(\frac{B \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} B}}{x}\right) x)$
|
-x**4/6 - x**3/3 + x + 1
|
Equivalence-All-Hard
|
U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
|
|
623
|
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(- \frac{i \left(e^{i F x} - e^{- i F x}\right)}{2 \sin{\left(F x \right)}}\right) e^{ \left(\sin^{2}{\left(- A x \right)} + \cos^{2}{\left(A x \right)}\right) x} \cdot \cos( \left(\frac{B \sum_{N=1}^{\infty} \frac{2^{- N} x}{B}}{x}\right) x)$
|
-x**4/6 - x**3/3 + x + 1
|
Equivalence-All-Easy
|
U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
|
|
624
|
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(- \frac{2 i \left(e^{4 i F x} + 1\right) \tan{\left(F x \right)}}{\left(1 - e^{4 i F x}\right) \left(1 - \tan^{2}{\left(F x \right)}\right)}\right) e^{ \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(A - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(A - 1\right) \right)} + 1\right) \tan{\left(A x \right)}}\right) x} \cdot \cos( \left(\frac{B \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} B}}{x}\right) x)$
|
-x**4/6 - x**3/3 + x + 1
|
Equivalence-All-Hard
|
U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
|
|
625
|
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(- \sinh^{2}{\left(F x \right)} + \cosh^{2}{\left(F x \right)}\right) e^{ \left(\sin^{2}{\left(- A x \right)} + \cos^{2}{\left(A x \right)}\right) x} \cdot \cos( \left(- \frac{i \left(e^{i B x} - e^{- i B x}\right)}{2 \sin{\left(B x \right)}}\right) x)$
|
-x**4/6 - x**3/3 + x + 1
|
Equivalence-All-Easy
|
U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
|
|
626
|
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{\sinh{\left(\log{\left(F x + \sqrt{F^{2} x^{2} + 1} \right)} \right)}}{F x}\right) e^{ \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(A - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(A - 1\right) \right)} + 1\right) \tan{\left(A x \right)}}\right) x} \cdot \cos( \left(- \frac{2 i \left(e^{4 i B x} + 1\right) \tan{\left(B x \right)}}{\left(1 - e^{4 i B x}\right) \left(1 - \tan^{2}{\left(B x \right)}\right)}\right) x)$
|
-x**4/6 - x**3/3 + x + 1
|
Equivalence-All-Hard
|
U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
|
|
627
|
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{\ln(x) \cdot \log_{x}(F)}{\ln(F)}\right) e^{ \left(\sin^{2}{\left(- A x \right)} + \cos^{2}{\left(A x \right)}\right) x} \cdot \cos( \left(- \frac{i \left(e^{i B x} - e^{- i B x}\right)}{2 \sin{\left(B x \right)}}\right) x)$
|
-x**4/6 - x**3/3 + x + 1
|
Equivalence-All-Easy
|
U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
|
|
628
|
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{\log_F\left(\frac{x}{e}\right) + \log_F(e)}{\log_F(x)}\right) e^{ \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(A - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(A - 1\right) \right)} + 1\right) \tan{\left(A x \right)}}\right) x} \cdot \cos( \left(- \frac{2 i \left(e^{4 i B x} + 1\right) \tan{\left(B x \right)}}{\left(1 - e^{4 i B x}\right) \left(1 - \tan^{2}{\left(B x \right)}\right)}\right) x)$
|
-x**4/6 - x**3/3 + x + 1
|
Equivalence-All-Hard
|
U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
|
|
629
|
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{F \sum_{N=1}^{\infty} \frac{2^{- N} x}{F}}{x}\right) e^{ \left(\sin^{2}{\left(- A x \right)} + \cos^{2}{\left(A x \right)}\right) x} \cdot \cos( \left(- \frac{i \left(e^{i B x} - e^{- i B x}\right)}{2 \sin{\left(B x \right)}}\right) x)$
|
-x**4/6 - x**3/3 + x + 1
|
Equivalence-All-Easy
|
U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
|
|
630
|
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{F \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} F}}{x}\right) e^{ \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(A - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(A - 1\right) \right)} + 1\right) \tan{\left(A x \right)}}\right) x} \cdot \cos( \left(- \frac{2 i \left(e^{4 i B x} + 1\right) \tan{\left(B x \right)}}{\left(1 - e^{4 i B x}\right) \left(1 - \tan^{2}{\left(B x \right)}\right)}\right) x)$
|
-x**4/6 - x**3/3 + x + 1
|
Equivalence-All-Hard
|
U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
|
|
631
|
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{\ln(x) \cdot \log_{x}(F)}{\ln(F)}\right) e^{ \left(- \sinh^{2}{\left(A x \right)} + \cosh^{2}{\left(A x \right)}\right) x} \cdot \cos( \left(\sin^{2}{\left(- B x \right)} + \cos^{2}{\left(B x \right)}\right) x)$
|
-x**4/6 - x**3/3 + x + 1
|
Equivalence-All-Easy
|
U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
|
|
632
|
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{\log_F\left(\frac{x}{e}\right) + \log_F(e)}{\log_F(x)}\right) e^{ \left(\frac{\sinh{\left(\log{\left(A x + \sqrt{A^{2} x^{2} + 1} \right)} \right)}}{A x}\right) x} \cdot \cos( \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(B - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(B - 1\right) \right)} + 1\right) \tan{\left(B x \right)}}\right) x)$
|
-x**4/6 - x**3/3 + x + 1
|
Equivalence-All-Hard
|
U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
|
|
633
|
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{F \sum_{N=1}^{\infty} \frac{2^{- N} x}{F}}{x}\right) e^{ \left(- \sinh^{2}{\left(A x \right)} + \cosh^{2}{\left(A x \right)}\right) x} \cdot \cos( \left(\sin^{2}{\left(- B x \right)} + \cos^{2}{\left(B x \right)}\right) x)$
|
-x**4/6 - x**3/3 + x + 1
|
Equivalence-All-Easy
|
U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
|
|
634
|
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{F \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} F}}{x}\right) e^{ \left(\frac{\sinh{\left(\log{\left(A x + \sqrt{A^{2} x^{2} + 1} \right)} \right)}}{A x}\right) x} \cdot \cos( \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(B - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(B - 1\right) \right)} + 1\right) \tan{\left(B x \right)}}\right) x)$
|
-x**4/6 - x**3/3 + x + 1
|
Equivalence-All-Hard
|
U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
|
|
635
|
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(- \frac{i \left(e^{i F x} - e^{- i F x}\right)}{2 \sin{\left(F x \right)}}\right) e^{ \left(- \sinh^{2}{\left(A x \right)} + \cosh^{2}{\left(A x \right)}\right) x} \cdot \cos( \left(\sin^{2}{\left(- B x \right)} + \cos^{2}{\left(B x \right)}\right) x)$
|
-x**4/6 - x**3/3 + x + 1
|
Equivalence-All-Easy
|
U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
|
|
636
|
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(- \frac{2 i \left(e^{4 i F x} + 1\right) \tan{\left(F x \right)}}{\left(1 - e^{4 i F x}\right) \left(1 - \tan^{2}{\left(F x \right)}\right)}\right) e^{ \left(\frac{\sinh{\left(\log{\left(A x + \sqrt{A^{2} x^{2} + 1} \right)} \right)}}{A x}\right) x} \cdot \cos( \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(B - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(B - 1\right) \right)} + 1\right) \tan{\left(B x \right)}}\right) x)$
|
-x**4/6 - x**3/3 + x + 1
|
Equivalence-All-Hard
|
U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
|
|
637
|
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\sin^{2}{\left(- F x \right)} + \cos^{2}{\left(F x \right)}\right) e^{ \left(- \sinh^{2}{\left(A x \right)} + \cosh^{2}{\left(A x \right)}\right) x} \cdot \cos( \left(\frac{\ln(x) \cdot \log_{x}(B)}{\ln(B)}\right) x)$
|
-x**4/6 - x**3/3 + x + 1
|
Equivalence-All-Easy
|
U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
|
|
638
|
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(F - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(F - 1\right) \right)} + 1\right) \tan{\left(F x \right)}}\right) e^{ \left(\frac{\sinh{\left(\log{\left(A x + \sqrt{A^{2} x^{2} + 1} \right)} \right)}}{A x}\right) x} \cdot \cos( \left(\frac{\log_B\left(\frac{x}{e}\right) + \log_B(e)}{\log_B(x)}\right) x)$
|
-x**4/6 - x**3/3 + x + 1
|
Equivalence-All-Hard
|
U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
|
|
639
|
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{F \sum_{N=1}^{\infty} \frac{2^{- N} x}{F}}{x}\right) e^{ \left(- \sinh^{2}{\left(A x \right)} + \cosh^{2}{\left(A x \right)}\right) x} \cdot \cos( \left(\frac{\ln(x) \cdot \log_{x}(B)}{\ln(B)}\right) x)$
|
-x**4/6 - x**3/3 + x + 1
|
Equivalence-All-Easy
|
U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
|
|
640
|
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{F \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} F}}{x}\right) e^{ \left(\frac{\sinh{\left(\log{\left(A x + \sqrt{A^{2} x^{2} + 1} \right)} \right)}}{A x}\right) x} \cdot \cos( \left(\frac{\log_B\left(\frac{x}{e}\right) + \log_B(e)}{\log_B(x)}\right) x)$
|
-x**4/6 - x**3/3 + x + 1
|
Equivalence-All-Hard
|
U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
|
|
641
|
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(- \frac{i \left(e^{i F x} - e^{- i F x}\right)}{2 \sin{\left(F x \right)}}\right) e^{ \left(- \sinh^{2}{\left(A x \right)} + \cosh^{2}{\left(A x \right)}\right) x} \cdot \cos( \left(\frac{\ln(x) \cdot \log_{x}(B)}{\ln(B)}\right) x)$
|
-x**4/6 - x**3/3 + x + 1
|
Equivalence-All-Easy
|
U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
|
|
642
|
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(- \frac{2 i \left(e^{4 i F x} + 1\right) \tan{\left(F x \right)}}{\left(1 - e^{4 i F x}\right) \left(1 - \tan^{2}{\left(F x \right)}\right)}\right) e^{ \left(\frac{\sinh{\left(\log{\left(A x + \sqrt{A^{2} x^{2} + 1} \right)} \right)}}{A x}\right) x} \cdot \cos( \left(\frac{\log_B\left(\frac{x}{e}\right) + \log_B(e)}{\log_B(x)}\right) x)$
|
-x**4/6 - x**3/3 + x + 1
|
Equivalence-All-Hard
|
U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
|
|
643
|
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\sin^{2}{\left(- F x \right)} + \cos^{2}{\left(F x \right)}\right) e^{ \left(- \sinh^{2}{\left(A x \right)} + \cosh^{2}{\left(A x \right)}\right) x} \cdot \cos( \left(\frac{B \sum_{N=1}^{\infty} \frac{2^{- N} x}{B}}{x}\right) x)$
|
-x**4/6 - x**3/3 + x + 1
|
Equivalence-All-Easy
|
U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
|
|
644
|
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(F - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(F - 1\right) \right)} + 1\right) \tan{\left(F x \right)}}\right) e^{ \left(\frac{\sinh{\left(\log{\left(A x + \sqrt{A^{2} x^{2} + 1} \right)} \right)}}{A x}\right) x} \cdot \cos( \left(\frac{B \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} B}}{x}\right) x)$
|
-x**4/6 - x**3/3 + x + 1
|
Equivalence-All-Hard
|
U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
|
|
645
|
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{\ln(x) \cdot \log_{x}(F)}{\ln(F)}\right) e^{ \left(- \sinh^{2}{\left(A x \right)} + \cosh^{2}{\left(A x \right)}\right) x} \cdot \cos( \left(\frac{B \sum_{N=1}^{\infty} \frac{2^{- N} x}{B}}{x}\right) x)$
|
-x**4/6 - x**3/3 + x + 1
|
Equivalence-All-Easy
|
U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
|
|
646
|
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{\log_F\left(\frac{x}{e}\right) + \log_F(e)}{\log_F(x)}\right) e^{ \left(\frac{\sinh{\left(\log{\left(A x + \sqrt{A^{2} x^{2} + 1} \right)} \right)}}{A x}\right) x} \cdot \cos( \left(\frac{B \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} B}}{x}\right) x)$
|
-x**4/6 - x**3/3 + x + 1
|
Equivalence-All-Hard
|
U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
|
|
647
|
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(- \frac{i \left(e^{i F x} - e^{- i F x}\right)}{2 \sin{\left(F x \right)}}\right) e^{ \left(- \sinh^{2}{\left(A x \right)} + \cosh^{2}{\left(A x \right)}\right) x} \cdot \cos( \left(\frac{B \sum_{N=1}^{\infty} \frac{2^{- N} x}{B}}{x}\right) x)$
|
-x**4/6 - x**3/3 + x + 1
|
Equivalence-All-Easy
|
U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
|
|
648
|
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(- \frac{2 i \left(e^{4 i F x} + 1\right) \tan{\left(F x \right)}}{\left(1 - e^{4 i F x}\right) \left(1 - \tan^{2}{\left(F x \right)}\right)}\right) e^{ \left(\frac{\sinh{\left(\log{\left(A x + \sqrt{A^{2} x^{2} + 1} \right)} \right)}}{A x}\right) x} \cdot \cos( \left(\frac{B \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} B}}{x}\right) x)$
|
-x**4/6 - x**3/3 + x + 1
|
Equivalence-All-Hard
|
U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
|
|
649
|
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\sin^{2}{\left(- F x \right)} + \cos^{2}{\left(F x \right)}\right) e^{ \left(- \sinh^{2}{\left(A x \right)} + \cosh^{2}{\left(A x \right)}\right) x} \cdot \cos( \left(- \frac{i \left(e^{i B x} - e^{- i B x}\right)}{2 \sin{\left(B x \right)}}\right) x)$
|
-x**4/6 - x**3/3 + x + 1
|
Equivalence-All-Easy
|
U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
|
|
650
|
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(F - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(F - 1\right) \right)} + 1\right) \tan{\left(F x \right)}}\right) e^{ \left(\frac{\sinh{\left(\log{\left(A x + \sqrt{A^{2} x^{2} + 1} \right)} \right)}}{A x}\right) x} \cdot \cos( \left(- \frac{2 i \left(e^{4 i B x} + 1\right) \tan{\left(B x \right)}}{\left(1 - e^{4 i B x}\right) \left(1 - \tan^{2}{\left(B x \right)}\right)}\right) x)$
|
-x**4/6 - x**3/3 + x + 1
|
Equivalence-All-Hard
|
U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
|
|
651
|
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{\ln(x) \cdot \log_{x}(F)}{\ln(F)}\right) e^{ \left(- \sinh^{2}{\left(A x \right)} + \cosh^{2}{\left(A x \right)}\right) x} \cdot \cos( \left(- \frac{i \left(e^{i B x} - e^{- i B x}\right)}{2 \sin{\left(B x \right)}}\right) x)$
|
-x**4/6 - x**3/3 + x + 1
|
Equivalence-All-Easy
|
U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
|
|
652
|
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{\log_F\left(\frac{x}{e}\right) + \log_F(e)}{\log_F(x)}\right) e^{ \left(\frac{\sinh{\left(\log{\left(A x + \sqrt{A^{2} x^{2} + 1} \right)} \right)}}{A x}\right) x} \cdot \cos( \left(- \frac{2 i \left(e^{4 i B x} + 1\right) \tan{\left(B x \right)}}{\left(1 - e^{4 i B x}\right) \left(1 - \tan^{2}{\left(B x \right)}\right)}\right) x)$
|
-x**4/6 - x**3/3 + x + 1
|
Equivalence-All-Hard
|
U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
|
|
653
|
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{F \sum_{N=1}^{\infty} \frac{2^{- N} x}{F}}{x}\right) e^{ \left(- \sinh^{2}{\left(A x \right)} + \cosh^{2}{\left(A x \right)}\right) x} \cdot \cos( \left(- \frac{i \left(e^{i B x} - e^{- i B x}\right)}{2 \sin{\left(B x \right)}}\right) x)$
|
-x**4/6 - x**3/3 + x + 1
|
Equivalence-All-Easy
|
U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
|
|
654
|
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{F \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} F}}{x}\right) e^{ \left(\frac{\sinh{\left(\log{\left(A x + \sqrt{A^{2} x^{2} + 1} \right)} \right)}}{A x}\right) x} \cdot \cos( \left(- \frac{2 i \left(e^{4 i B x} + 1\right) \tan{\left(B x \right)}}{\left(1 - e^{4 i B x}\right) \left(1 - \tan^{2}{\left(B x \right)}\right)}\right) x)$
|
-x**4/6 - x**3/3 + x + 1
|
Equivalence-All-Hard
|
U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
|
|
655
|
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(- \sinh^{2}{\left(F x \right)} + \cosh^{2}{\left(F x \right)}\right) e^{ \left(\frac{\ln(x) \cdot \log_{x}(A)}{\ln(A)}\right) x} \cdot \cos( \left(\sin^{2}{\left(- B x \right)} + \cos^{2}{\left(B x \right)}\right) x)$
|
-x**4/6 - x**3/3 + x + 1
|
Equivalence-All-Easy
|
U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
|
|
656
|
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{\sinh{\left(\log{\left(F x + \sqrt{F^{2} x^{2} + 1} \right)} \right)}}{F x}\right) e^{ \left(\frac{\log_A\left(\frac{x}{e}\right) + \log_A(e)}{\log_A(x)}\right) x} \cdot \cos( \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(B - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(B - 1\right) \right)} + 1\right) \tan{\left(B x \right)}}\right) x)$
|
-x**4/6 - x**3/3 + x + 1
|
Equivalence-All-Hard
|
U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
|
|
657
|
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{F \sum_{N=1}^{\infty} \frac{2^{- N} x}{F}}{x}\right) e^{ \left(\frac{\ln(x) \cdot \log_{x}(A)}{\ln(A)}\right) x} \cdot \cos( \left(\sin^{2}{\left(- B x \right)} + \cos^{2}{\left(B x \right)}\right) x)$
|
-x**4/6 - x**3/3 + x + 1
|
Equivalence-All-Easy
|
U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
|
|
658
|
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{F \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} F}}{x}\right) e^{ \left(\frac{\log_A\left(\frac{x}{e}\right) + \log_A(e)}{\log_A(x)}\right) x} \cdot \cos( \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(B - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(B - 1\right) \right)} + 1\right) \tan{\left(B x \right)}}\right) x)$
|
-x**4/6 - x**3/3 + x + 1
|
Equivalence-All-Hard
|
U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
|
|
659
|
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(- \frac{i \left(e^{i F x} - e^{- i F x}\right)}{2 \sin{\left(F x \right)}}\right) e^{ \left(\frac{\ln(x) \cdot \log_{x}(A)}{\ln(A)}\right) x} \cdot \cos( \left(\sin^{2}{\left(- B x \right)} + \cos^{2}{\left(B x \right)}\right) x)$
|
-x**4/6 - x**3/3 + x + 1
|
Equivalence-All-Easy
|
U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
|
|
660
|
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(- \frac{2 i \left(e^{4 i F x} + 1\right) \tan{\left(F x \right)}}{\left(1 - e^{4 i F x}\right) \left(1 - \tan^{2}{\left(F x \right)}\right)}\right) e^{ \left(\frac{\log_A\left(\frac{x}{e}\right) + \log_A(e)}{\log_A(x)}\right) x} \cdot \cos( \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(B - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(B - 1\right) \right)} + 1\right) \tan{\left(B x \right)}}\right) x)$
|
-x**4/6 - x**3/3 + x + 1
|
Equivalence-All-Hard
|
U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
|
|
661
|
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\sin^{2}{\left(- F x \right)} + \cos^{2}{\left(F x \right)}\right) e^{ \left(\frac{\ln(x) \cdot \log_{x}(A)}{\ln(A)}\right) x} \cdot \cos( \left(- \sinh^{2}{\left(B x \right)} + \cosh^{2}{\left(B x \right)}\right) x)$
|
-x**4/6 - x**3/3 + x + 1
|
Equivalence-All-Easy
|
U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
|
|
662
|
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(F - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(F - 1\right) \right)} + 1\right) \tan{\left(F x \right)}}\right) e^{ \left(\frac{\log_A\left(\frac{x}{e}\right) + \log_A(e)}{\log_A(x)}\right) x} \cdot \cos( \left(\frac{\sinh{\left(\log{\left(B x + \sqrt{B^{2} x^{2} + 1} \right)} \right)}}{B x}\right) x)$
|
-x**4/6 - x**3/3 + x + 1
|
Equivalence-All-Hard
|
U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
|
|
663
|
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{F \sum_{N=1}^{\infty} \frac{2^{- N} x}{F}}{x}\right) e^{ \left(\frac{\ln(x) \cdot \log_{x}(A)}{\ln(A)}\right) x} \cdot \cos( \left(- \sinh^{2}{\left(B x \right)} + \cosh^{2}{\left(B x \right)}\right) x)$
|
-x**4/6 - x**3/3 + x + 1
|
Equivalence-All-Easy
|
U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
|
|
664
|
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{F \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} F}}{x}\right) e^{ \left(\frac{\log_A\left(\frac{x}{e}\right) + \log_A(e)}{\log_A(x)}\right) x} \cdot \cos( \left(\frac{\sinh{\left(\log{\left(B x + \sqrt{B^{2} x^{2} + 1} \right)} \right)}}{B x}\right) x)$
|
-x**4/6 - x**3/3 + x + 1
|
Equivalence-All-Hard
|
U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
|
|
665
|
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(- \frac{i \left(e^{i F x} - e^{- i F x}\right)}{2 \sin{\left(F x \right)}}\right) e^{ \left(\frac{\ln(x) \cdot \log_{x}(A)}{\ln(A)}\right) x} \cdot \cos( \left(- \sinh^{2}{\left(B x \right)} + \cosh^{2}{\left(B x \right)}\right) x)$
|
-x**4/6 - x**3/3 + x + 1
|
Equivalence-All-Easy
|
U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
|
|
666
|
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(- \frac{2 i \left(e^{4 i F x} + 1\right) \tan{\left(F x \right)}}{\left(1 - e^{4 i F x}\right) \left(1 - \tan^{2}{\left(F x \right)}\right)}\right) e^{ \left(\frac{\log_A\left(\frac{x}{e}\right) + \log_A(e)}{\log_A(x)}\right) x} \cdot \cos( \left(\frac{\sinh{\left(\log{\left(B x + \sqrt{B^{2} x^{2} + 1} \right)} \right)}}{B x}\right) x)$
|
-x**4/6 - x**3/3 + x + 1
|
Equivalence-All-Hard
|
U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
|
|
667
|
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\sin^{2}{\left(- F x \right)} + \cos^{2}{\left(F x \right)}\right) e^{ \left(\frac{\ln(x) \cdot \log_{x}(A)}{\ln(A)}\right) x} \cdot \cos( \left(\frac{B \sum_{N=1}^{\infty} \frac{2^{- N} x}{B}}{x}\right) x)$
|
-x**4/6 - x**3/3 + x + 1
|
Equivalence-All-Easy
|
U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
|
|
668
|
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(F - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(F - 1\right) \right)} + 1\right) \tan{\left(F x \right)}}\right) e^{ \left(\frac{\log_A\left(\frac{x}{e}\right) + \log_A(e)}{\log_A(x)}\right) x} \cdot \cos( \left(\frac{B \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} B}}{x}\right) x)$
|
-x**4/6 - x**3/3 + x + 1
|
Equivalence-All-Hard
|
U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
|
|
669
|
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(- \sinh^{2}{\left(F x \right)} + \cosh^{2}{\left(F x \right)}\right) e^{ \left(\frac{\ln(x) \cdot \log_{x}(A)}{\ln(A)}\right) x} \cdot \cos( \left(\frac{B \sum_{N=1}^{\infty} \frac{2^{- N} x}{B}}{x}\right) x)$
|
-x**4/6 - x**3/3 + x + 1
|
Equivalence-All-Easy
|
U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
|
|
670
|
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{\sinh{\left(\log{\left(F x + \sqrt{F^{2} x^{2} + 1} \right)} \right)}}{F x}\right) e^{ \left(\frac{\log_A\left(\frac{x}{e}\right) + \log_A(e)}{\log_A(x)}\right) x} \cdot \cos( \left(\frac{B \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} B}}{x}\right) x)$
|
-x**4/6 - x**3/3 + x + 1
|
Equivalence-All-Hard
|
U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
|
|
671
|
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(- \frac{i \left(e^{i F x} - e^{- i F x}\right)}{2 \sin{\left(F x \right)}}\right) e^{ \left(\frac{\ln(x) \cdot \log_{x}(A)}{\ln(A)}\right) x} \cdot \cos( \left(\frac{B \sum_{N=1}^{\infty} \frac{2^{- N} x}{B}}{x}\right) x)$
|
-x**4/6 - x**3/3 + x + 1
|
Equivalence-All-Easy
|
U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
|
|
672
|
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(- \frac{2 i \left(e^{4 i F x} + 1\right) \tan{\left(F x \right)}}{\left(1 - e^{4 i F x}\right) \left(1 - \tan^{2}{\left(F x \right)}\right)}\right) e^{ \left(\frac{\log_A\left(\frac{x}{e}\right) + \log_A(e)}{\log_A(x)}\right) x} \cdot \cos( \left(\frac{B \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} B}}{x}\right) x)$
|
-x**4/6 - x**3/3 + x + 1
|
Equivalence-All-Hard
|
U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
|
|
673
|
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\sin^{2}{\left(- F x \right)} + \cos^{2}{\left(F x \right)}\right) e^{ \left(\frac{\ln(x) \cdot \log_{x}(A)}{\ln(A)}\right) x} \cdot \cos( \left(- \frac{i \left(e^{i B x} - e^{- i B x}\right)}{2 \sin{\left(B x \right)}}\right) x)$
|
-x**4/6 - x**3/3 + x + 1
|
Equivalence-All-Easy
|
U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
|
|
674
|
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(F - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(F - 1\right) \right)} + 1\right) \tan{\left(F x \right)}}\right) e^{ \left(\frac{\log_A\left(\frac{x}{e}\right) + \log_A(e)}{\log_A(x)}\right) x} \cdot \cos( \left(- \frac{2 i \left(e^{4 i B x} + 1\right) \tan{\left(B x \right)}}{\left(1 - e^{4 i B x}\right) \left(1 - \tan^{2}{\left(B x \right)}\right)}\right) x)$
|
-x**4/6 - x**3/3 + x + 1
|
Equivalence-All-Hard
|
U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
|
|
675
|
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(- \sinh^{2}{\left(F x \right)} + \cosh^{2}{\left(F x \right)}\right) e^{ \left(\frac{\ln(x) \cdot \log_{x}(A)}{\ln(A)}\right) x} \cdot \cos( \left(- \frac{i \left(e^{i B x} - e^{- i B x}\right)}{2 \sin{\left(B x \right)}}\right) x)$
|
-x**4/6 - x**3/3 + x + 1
|
Equivalence-All-Easy
|
U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
|
|
676
|
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{\sinh{\left(\log{\left(F x + \sqrt{F^{2} x^{2} + 1} \right)} \right)}}{F x}\right) e^{ \left(\frac{\log_A\left(\frac{x}{e}\right) + \log_A(e)}{\log_A(x)}\right) x} \cdot \cos( \left(- \frac{2 i \left(e^{4 i B x} + 1\right) \tan{\left(B x \right)}}{\left(1 - e^{4 i B x}\right) \left(1 - \tan^{2}{\left(B x \right)}\right)}\right) x)$
|
-x**4/6 - x**3/3 + x + 1
|
Equivalence-All-Hard
|
U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
|
|
677
|
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{F \sum_{N=1}^{\infty} \frac{2^{- N} x}{F}}{x}\right) e^{ \left(\frac{\ln(x) \cdot \log_{x}(A)}{\ln(A)}\right) x} \cdot \cos( \left(- \frac{i \left(e^{i B x} - e^{- i B x}\right)}{2 \sin{\left(B x \right)}}\right) x)$
|
-x**4/6 - x**3/3 + x + 1
|
Equivalence-All-Easy
|
U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
|
|
678
|
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{F \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} F}}{x}\right) e^{ \left(\frac{\log_A\left(\frac{x}{e}\right) + \log_A(e)}{\log_A(x)}\right) x} \cdot \cos( \left(- \frac{2 i \left(e^{4 i B x} + 1\right) \tan{\left(B x \right)}}{\left(1 - e^{4 i B x}\right) \left(1 - \tan^{2}{\left(B x \right)}\right)}\right) x)$
|
-x**4/6 - x**3/3 + x + 1
|
Equivalence-All-Hard
|
U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
|
|
679
|
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(- \sinh^{2}{\left(F x \right)} + \cosh^{2}{\left(F x \right)}\right) e^{ \left(\frac{A \sum_{N=1}^{\infty} \frac{2^{- N} x}{A}}{x}\right) x} \cdot \cos( \left(\sin^{2}{\left(- B x \right)} + \cos^{2}{\left(B x \right)}\right) x)$
|
-x**4/6 - x**3/3 + x + 1
|
Equivalence-All-Easy
|
U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
|
|
680
|
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{\sinh{\left(\log{\left(F x + \sqrt{F^{2} x^{2} + 1} \right)} \right)}}{F x}\right) e^{ \left(\frac{A \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} A}}{x}\right) x} \cdot \cos( \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(B - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(B - 1\right) \right)} + 1\right) \tan{\left(B x \right)}}\right) x)$
|
-x**4/6 - x**3/3 + x + 1
|
Equivalence-All-Hard
|
U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
|
|
681
|
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{\ln(x) \cdot \log_{x}(F)}{\ln(F)}\right) e^{ \left(\frac{A \sum_{N=1}^{\infty} \frac{2^{- N} x}{A}}{x}\right) x} \cdot \cos( \left(\sin^{2}{\left(- B x \right)} + \cos^{2}{\left(B x \right)}\right) x)$
|
-x**4/6 - x**3/3 + x + 1
|
Equivalence-All-Easy
|
U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
|
|
682
|
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{\log_F\left(\frac{x}{e}\right) + \log_F(e)}{\log_F(x)}\right) e^{ \left(\frac{A \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} A}}{x}\right) x} \cdot \cos( \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(B - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(B - 1\right) \right)} + 1\right) \tan{\left(B x \right)}}\right) x)$
|
-x**4/6 - x**3/3 + x + 1
|
Equivalence-All-Hard
|
U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
|
|
683
|
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(- \frac{i \left(e^{i F x} - e^{- i F x}\right)}{2 \sin{\left(F x \right)}}\right) e^{ \left(\frac{A \sum_{N=1}^{\infty} \frac{2^{- N} x}{A}}{x}\right) x} \cdot \cos( \left(\sin^{2}{\left(- B x \right)} + \cos^{2}{\left(B x \right)}\right) x)$
|
-x**4/6 - x**3/3 + x + 1
|
Equivalence-All-Easy
|
U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
|
|
684
|
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(- \frac{2 i \left(e^{4 i F x} + 1\right) \tan{\left(F x \right)}}{\left(1 - e^{4 i F x}\right) \left(1 - \tan^{2}{\left(F x \right)}\right)}\right) e^{ \left(\frac{A \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} A}}{x}\right) x} \cdot \cos( \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(B - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(B - 1\right) \right)} + 1\right) \tan{\left(B x \right)}}\right) x)$
|
-x**4/6 - x**3/3 + x + 1
|
Equivalence-All-Hard
|
U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
|
|
685
|
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\sin^{2}{\left(- F x \right)} + \cos^{2}{\left(F x \right)}\right) e^{ \left(\frac{A \sum_{N=1}^{\infty} \frac{2^{- N} x}{A}}{x}\right) x} \cdot \cos( \left(- \sinh^{2}{\left(B x \right)} + \cosh^{2}{\left(B x \right)}\right) x)$
|
-x**4/6 - x**3/3 + x + 1
|
Equivalence-All-Easy
|
U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
|
|
686
|
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(F - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(F - 1\right) \right)} + 1\right) \tan{\left(F x \right)}}\right) e^{ \left(\frac{A \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} A}}{x}\right) x} \cdot \cos( \left(\frac{\sinh{\left(\log{\left(B x + \sqrt{B^{2} x^{2} + 1} \right)} \right)}}{B x}\right) x)$
|
-x**4/6 - x**3/3 + x + 1
|
Equivalence-All-Hard
|
U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
|
|
687
|
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{\ln(x) \cdot \log_{x}(F)}{\ln(F)}\right) e^{ \left(\frac{A \sum_{N=1}^{\infty} \frac{2^{- N} x}{A}}{x}\right) x} \cdot \cos( \left(- \sinh^{2}{\left(B x \right)} + \cosh^{2}{\left(B x \right)}\right) x)$
|
-x**4/6 - x**3/3 + x + 1
|
Equivalence-All-Easy
|
U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
|
|
688
|
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{\log_F\left(\frac{x}{e}\right) + \log_F(e)}{\log_F(x)}\right) e^{ \left(\frac{A \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} A}}{x}\right) x} \cdot \cos( \left(\frac{\sinh{\left(\log{\left(B x + \sqrt{B^{2} x^{2} + 1} \right)} \right)}}{B x}\right) x)$
|
-x**4/6 - x**3/3 + x + 1
|
Equivalence-All-Hard
|
U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
|
|
689
|
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(- \frac{i \left(e^{i F x} - e^{- i F x}\right)}{2 \sin{\left(F x \right)}}\right) e^{ \left(\frac{A \sum_{N=1}^{\infty} \frac{2^{- N} x}{A}}{x}\right) x} \cdot \cos( \left(- \sinh^{2}{\left(B x \right)} + \cosh^{2}{\left(B x \right)}\right) x)$
|
-x**4/6 - x**3/3 + x + 1
|
Equivalence-All-Easy
|
U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
|
|
690
|
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(- \frac{2 i \left(e^{4 i F x} + 1\right) \tan{\left(F x \right)}}{\left(1 - e^{4 i F x}\right) \left(1 - \tan^{2}{\left(F x \right)}\right)}\right) e^{ \left(\frac{A \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} A}}{x}\right) x} \cdot \cos( \left(\frac{\sinh{\left(\log{\left(B x + \sqrt{B^{2} x^{2} + 1} \right)} \right)}}{B x}\right) x)$
|
-x**4/6 - x**3/3 + x + 1
|
Equivalence-All-Hard
|
U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
|
|
691
|
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\sin^{2}{\left(- F x \right)} + \cos^{2}{\left(F x \right)}\right) e^{ \left(\frac{A \sum_{N=1}^{\infty} \frac{2^{- N} x}{A}}{x}\right) x} \cdot \cos( \left(\frac{\ln(x) \cdot \log_{x}(B)}{\ln(B)}\right) x)$
|
-x**4/6 - x**3/3 + x + 1
|
Equivalence-All-Easy
|
U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
|
|
692
|
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(F - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(F - 1\right) \right)} + 1\right) \tan{\left(F x \right)}}\right) e^{ \left(\frac{A \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} A}}{x}\right) x} \cdot \cos( \left(\frac{\log_B\left(\frac{x}{e}\right) + \log_B(e)}{\log_B(x)}\right) x)$
|
-x**4/6 - x**3/3 + x + 1
|
Equivalence-All-Hard
|
U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
|
|
693
|
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(- \sinh^{2}{\left(F x \right)} + \cosh^{2}{\left(F x \right)}\right) e^{ \left(\frac{A \sum_{N=1}^{\infty} \frac{2^{- N} x}{A}}{x}\right) x} \cdot \cos( \left(\frac{\ln(x) \cdot \log_{x}(B)}{\ln(B)}\right) x)$
|
-x**4/6 - x**3/3 + x + 1
|
Equivalence-All-Easy
|
U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
|
|
694
|
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{\sinh{\left(\log{\left(F x + \sqrt{F^{2} x^{2} + 1} \right)} \right)}}{F x}\right) e^{ \left(\frac{A \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} A}}{x}\right) x} \cdot \cos( \left(\frac{\log_B\left(\frac{x}{e}\right) + \log_B(e)}{\log_B(x)}\right) x)$
|
-x**4/6 - x**3/3 + x + 1
|
Equivalence-All-Hard
|
U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
|
|
695
|
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(- \frac{i \left(e^{i F x} - e^{- i F x}\right)}{2 \sin{\left(F x \right)}}\right) e^{ \left(\frac{A \sum_{N=1}^{\infty} \frac{2^{- N} x}{A}}{x}\right) x} \cdot \cos( \left(\frac{\ln(x) \cdot \log_{x}(B)}{\ln(B)}\right) x)$
|
-x**4/6 - x**3/3 + x + 1
|
Equivalence-All-Easy
|
U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
|
|
696
|
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(- \frac{2 i \left(e^{4 i F x} + 1\right) \tan{\left(F x \right)}}{\left(1 - e^{4 i F x}\right) \left(1 - \tan^{2}{\left(F x \right)}\right)}\right) e^{ \left(\frac{A \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} A}}{x}\right) x} \cdot \cos( \left(\frac{\log_B\left(\frac{x}{e}\right) + \log_B(e)}{\log_B(x)}\right) x)$
|
-x**4/6 - x**3/3 + x + 1
|
Equivalence-All-Hard
|
U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
|
|
697
|
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\sin^{2}{\left(- F x \right)} + \cos^{2}{\left(F x \right)}\right) e^{ \left(\frac{A \sum_{N=1}^{\infty} \frac{2^{- N} x}{A}}{x}\right) x} \cdot \cos( \left(- \frac{i \left(e^{i B x} - e^{- i B x}\right)}{2 \sin{\left(B x \right)}}\right) x)$
|
-x**4/6 - x**3/3 + x + 1
|
Equivalence-All-Easy
|
U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
|
|
698
|
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(F - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(F - 1\right) \right)} + 1\right) \tan{\left(F x \right)}}\right) e^{ \left(\frac{A \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} A}}{x}\right) x} \cdot \cos( \left(- \frac{2 i \left(e^{4 i B x} + 1\right) \tan{\left(B x \right)}}{\left(1 - e^{4 i B x}\right) \left(1 - \tan^{2}{\left(B x \right)}\right)}\right) x)$
|
-x**4/6 - x**3/3 + x + 1
|
Equivalence-All-Hard
|
U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
|
|
699
|
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(- \sinh^{2}{\left(F x \right)} + \cosh^{2}{\left(F x \right)}\right) e^{ \left(\frac{A \sum_{N=1}^{\infty} \frac{2^{- N} x}{A}}{x}\right) x} \cdot \cos( \left(- \frac{i \left(e^{i B x} - e^{- i B x}\right)}{2 \sin{\left(B x \right)}}\right) x)$
|
-x**4/6 - x**3/3 + x + 1
|
Equivalence-All-Easy
|
U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
|
|
700
|
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = \left(\frac{\sinh{\left(\log{\left(F x + \sqrt{F^{2} x^{2} + 1} \right)} \right)}}{F x}\right) e^{ \left(\frac{A \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} A}}{x}\right) x} \cdot \cos( \left(- \frac{2 i \left(e^{4 i B x} + 1\right) \tan{\left(B x \right)}}{\left(1 - e^{4 i B x}\right) \left(1 - \tan^{2}{\left(B x \right)}\right)}\right) x)$
|
-x**4/6 - x**3/3 + x + 1
|
Equivalence-All-Hard
|
U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.