File size: 8,323 Bytes
f2973fb e7b469c f2973fb 2c4a5fe f2973fb 4beb26f f2973fb 471dee3 f2973fb fb273f3 f2973fb fb273f3 f2973fb 5bd9c0d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
---
language: []
pretty_name: "DASP"
tags:
- satellite-imagery
- remote-sensing
- earth-observation
- sentinel-2
- geospatial
license: "cc-by-sa-3.0"
task_categories:
- image-segmentation
- image-classification
- object-detection
- other
---
# Dataset Card for DASP
## Dataset Description
The DASP **(Distributed Analysis of Sentinel-2 Pixels)** dataset consists of cloud-free satellite images captured by Sentinel-2 satellites. Each image represents the most recent, non-partial, and cloudless capture from over 30 million Sentinel-2 images in every band. The dataset provides a near-complete cloudless view of Earth's surface, ideal for various geospatial applications. Images were converted from JPEG2000 to **JPEG-XL** to improve storage efficiency while maintaining high quality.
**Huggingface page:** https://huggingface.co/datasets/RichardErkhov/DASP
**Github repository:** https://github.com/nicoboss/DASP
**Points of Contact:**
- [Richard's Discord](https://discord.gg/pvy7H8DZMG)
- [Richard's GitHub](https://github.com/RichardErkhov)
- [Richard's website](https://erkhov.com/)
- [Nico Bosshard's website](https://www.nicobosshard.ch)
- [Nico Bosshard's github](https://github.com/nicoboss)
### Dataset Summary
- Full cloudless satellite coverage of Earth.
- Sourced from Sentinel-2 imagery, selecting the most recent cloud-free images.
- JPEG2000 images transcoded into JPEG-XL for efficient storage.
- Cloudless determination based on B1 band black pixel analysis.
- Supports AI-based image stitching, classification, and segmentation.
### Use cases
- **Image Stitching:** Combines individual images into a seamless global mosaic.
- Enables high-resolution satellite mosaics for academic and commercial applications.
- Supports AI-driven Earth observation projects.
- Facilitates urban planning, climate research, and environmental monitoring.
- Land Use Classification: Enables categorization of land cover types.
## Download a band (folder)
```sh
huggingface-cli download RichardErkhov/DASP --include TCI/* --local-dir DASP --repo-type dataset
```
## Dataset Structure
### Data Instances
The resulting image are in separate folders named after their band. The image names can be collated to the provided metadata. The ZStatandard compression algorithm was used to compress the metadata.
### File: Sentinel_B1_black_pixel_measurements.txt
Header:
```
URL, total black pixels, black pixels top, black pixels right, black pixels bottom, black pixels left, average grayscale value of all non-black pixels
```
Sample data:
```
http://storage.googleapis.com/gcp-public-data-sentinel-2/tiles/43/N/CA/S2A_MSIL1C_20220401T051651_N0400_R062_T43NCA_20220401T075429.SAFE/GRANULE/L1C_T43NCA_A035380_20220401T053643/IMG_DATA/T43NCA_20220401T051651_B01.jp2: 62262 0,747,166,0 20
http://storage.googleapis.com/gcp-public-data-sentinel-2/tiles/36/M/XD/S2B_MSIL1C_20190716T074619_N0208_R135_T36MXD_20190716T104338.SAFE/GRANULE/L1C_T36MXD_A012316_20190716T080657/IMG_DATA/T36MXD_20190716T074619_B01.jp2: 0 0,0,0,0 20
http://storage.googleapis.com/gcp-public-data-sentinel-2/tiles/20/V/LJ/S2A_MSIL1C_20200629T154911_N0209_R054_T20VLJ_20200629T193223.SAFE/GRANULE/L1C_T20VLJ_A026220_20200629T155413/IMG_DATA/T20VLJ_20200629T154911_B01.jp2: 2293175 876,1830,1630,0 35
```
### File: index_Sentinel.csv
Header:
```
GRANULE_ID,PRODUCT_ID,DATATAKE_IDENTIFIER,MGRS_TILE,SENSING_TIME,TOTAL_SIZE,CLOUD_COVER,GEOMETRIC_QUALITY_FLAG,GENERATION_TIME,NORTH_LAT,SOUTH_LAT,WEST_LON,EAST_LON,BASE_URL
```
Sample data:
```
L1C_T42UWG_A041401_20230527T062703,S2A_MSIL1C_20230527T062631_N0509_R077_T42UWG_20230527T071710,GS2A_20230527T062631_041401_N05.09,42UWG,2023-05-27T06:33:56.700000Z,764715852,0.597667731340191,,2023-05-27T07:17:10.000000Z,55.94508401564941,54.947111902793566,68.99952976138768,70.75711635116411,gs://gcp-public-data-sentinel-2/tiles/42/U/WG/S2A_MSIL1C_20230527T062631_N0509_R077_T42UWG_20230527T071710.SAFE
L1C_T33XWB_A021112_20190708T105646,S2A_MSIL1C_20190708T105621_N0208_R094_T33XWB_20190708T113743,GS2A_20190708T105621_021112_N02.08,33XWB,2019-07-08T11:00:35.000000Z,197594271,0.0,,2019-07-08T11:37:43.000000Z,73.86991541093971,72.88068077877183,16.368773276100033,18.540242190343452,gs://gcp-public-data-sentinel-2/tiles/33/X/WB/S2A_MSIL1C_20190708T105621_N0208_R094_T33XWB_20190708T113743.SAFE
L1C_T23LLJ_A028635_20201215T132230,S2A_MSIL1C_20201215T132231_N0209_R038_T23LLJ_20201215T151022,GS2A_20201215T132231_028635_N02.09,23LLJ,2020-12-15T13:25:11.367000Z,721319047,62.8896,,2020-12-15T15:10:22.000000Z,-9.946873284601002,-10.942725175756962,-46.83018842375086,-45.82296488039833,gs://gcp-public-data-sentinel-2/tiles/23/L/LJ/S2A_MSIL1C_20201215T132231_N0209_R038_T23LLJ_20201215T151022.SAFE
```
## Dataset Creation
### Collection and Processing
The dataset was curated by selecting the latest cloud-free images from **Sentinel-2** data archives. The **B1 spectrum** black pixel count was analyzed to determine partial or full images. Images with black pixels exceeding a threshold were discarded. The selected images were then transcoded from **JPEG2000 to JPEG-XL** for optimized storage.
### Source Data
- **Satellite**: Sentinel-2 (ESA)
- **Selection Criteria**:
- Cloud coverage < 1% (from metadata)
- Most recent full image per tile (based on B1 black pixel analysis)
- Less than 10000 total black pixels and no more than 6 black pixels on each side of the image
- **Data Transformation**: JPEG2000 → JPEG-XL conversion
### Annotation Process
No additional annotations are provided beyond the provided metadata and B1 black pixel measurements
### Sensitive Information
The dataset contains only satellite images and does not include personal or sensitive data.
## Code used to filter images
### Filtering out partial images based ouer B1 black pixel measurments
```python
# Function to parse the data and filter URLs
def parse_and_filter_data(file_path, output_path):
with open(file_path, 'r') as file:
with open(output_path, 'w') as output_file:
for line in file:
if "Error decoding JPEG2000 image" in line:
continue
if "manifest.safe does not contain B01.jp2" in line:
continue
url, data = line.split(': ')
first_number, comma_separated, _ = data.split(' ')
first_number = int(first_number)
comma_separated_numbers = list(map(int, comma_separated.split(',')))
if first_number < 10000 and all(num <= 6 for num in comma_separated_numbers):
output_file.write(url + '\n')
#print(line)
# Example usage
file_path = 'Sentinel_B1_black_pixel_measurements.txt'
output_path = 'filteredUrls.txt'
parse_and_filter_data(file_path, output_path)
```
### Extracting URLs of Cloudless Images
```python
import csv
from datetime import datetime
data = {}
print("Reading index_Sentinel.csv...")
with open('index_Sentinel.csv', 'r') as csvfile:
reader = csv.DictReader(csvfile)
for row in reader:
try:
cloud_cover = float(row['CLOUD_COVER'])
except ValueError:
continue
if cloud_cover < 1:
mgrs_tile = row['MGRS_TILE']
sensing_time = datetime.fromisoformat(row['SENSING_TIME'].replace('Z', '+00:00'))
if mgrs_tile not in data or sensing_time > data[mgrs_tile]['SENSING_TIME']:
data[mgrs_tile] = {
'SENSING_TIME': sensing_time,
'GRANULE_ID': row['GRANULE_ID']
}
print("Finished reading index_Sentinel.csv.")
filtered_urls = []
with open('filteredUrls.txt', 'r') as urlfile:
for line in urlfile:
granule_id = line.split('/')[10]
if granule_id in data:
filtered_urls.append(line.strip().replace('_B01.jp2', '_TCI.jp2'))
print(f"Number of filtered URLs: {len(filtered_urls)}")
with open('noCloudURLs.txt', 'w') as outfile:
outfile.write('\n'.join(filtered_urls))
print("Filtered URLs saved.")
```
## Citation
If you use this dataset, please cite:
```
@misc{DASP,
author = {Richard Erkhov and Nico Bosshard},
title = {DASP},
year = {2025},
url = {https://huggingface.co/datasets/RichardErkhov/DASP}
}
``` |