RichardErkhov commited on
Commit
f2973fb
·
verified ·
1 Parent(s): 5bd9c0d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +170 -170
README.md CHANGED
@@ -1,171 +1,171 @@
1
- ---
2
- language: []
3
- pretty_name: "Global Cloudless Sentinel-2 Imagery"
4
- tags:
5
- - satellite-imagery
6
- - remote-sensing
7
- - earth-observation
8
- - sentinel-2
9
- - geospatial
10
- license: "cc-by-sa-3.0"
11
- task_categories:
12
- - image-segmentation
13
- - image-classification
14
- - object-detection
15
- - other
16
- ---
17
-
18
- # Dataset Card for DASP
19
-
20
- ## Dataset Description
21
-
22
- The DASP dataset consists of cloud-free satellite images captured by Sentinel-2 satellites. Each image represents the most recent, non-partial, and cloudless capture from over 30 million Sentinel-2 images in every band. The dataset provides a near-complete cloudless view of Earth's surface, ideal for various geospatial applications. Images were converted from JPEG2000 to **JPEG-XL** to improve storage efficiency while maintaining high quality.
23
-
24
- **Huggingface page:** https://huggingface.co/datasets/RichardErkhov/DASP
25
-
26
- **Github repository:** https://github.com/nicoboss/DASP
27
-
28
- **Points of Contact:**
29
- - [Richard's Discord](https://discord.gg/pvy7H8DZMG)
30
- - [Richard's GitHub](https://erkhov.com/RichardErkhov]
31
- - [Richard's website](https://erkhov.com/)
32
- - [Nico Bosshard's website](https://www.nicobosshard.ch)
33
- - [Nico Bosshard's github](https://github.com/nicoboss)
34
-
35
- ### Dataset Summary
36
- - Full cloudless satellite coverage of Earth.
37
- - Sourced from Sentinel-2 imagery, selecting the most recent cloud-free images.
38
- - JPEG2000 images transcoded into JPEG-XL for efficient storage.
39
- - Cloudless determination based on B1 band black pixel analysis.
40
- - Supports AI-based image stitching, classification, and segmentation.
41
-
42
- ### Use cases
43
- - **Image Stitching:** Combines individual images into a seamless global mosaic.
44
- - Enables high-resolution satellite mosaics for academic and commercial applications.
45
- - Supports AI-driven Earth observation projects.
46
- - Facilitates urban planning, climate research, and environmental monitoring.
47
- - Land Use Classification: Enables categorization of land cover types.
48
-
49
- ## Dataset Structure
50
-
51
- ### Data Instances
52
-
53
- The resulting image are in separate folders named after their band. The image names can be collated to the provided metadata. The ZStatandard compression algorithm was used to compress the metadata.
54
-
55
- File: Sentinel_B1_black_pixel_measurements.txt
56
- Header: URL, total black pixels, black pixels top, black pixels right, black pixels bottom, black pixels left, average grayscale value of all non-black pixels
57
- Sample data:
58
- ```
59
- http://storage.googleapis.com/gcp-public-data-sentinel-2/tiles/43/N/CA/S2A_MSIL1C_20220401T051651_N0400_R062_T43NCA_20220401T075429.SAFE/GRANULE/L1C_T43NCA_A035380_20220401T053643/IMG_DATA/T43NCA_20220401T051651_B01.jp2: 62262 0,747,166,0 20
60
- http://storage.googleapis.com/gcp-public-data-sentinel-2/tiles/36/M/XD/S2B_MSIL1C_20190716T074619_N0208_R135_T36MXD_20190716T104338.SAFE/GRANULE/L1C_T36MXD_A012316_20190716T080657/IMG_DATA/T36MXD_20190716T074619_B01.jp2: 0 0,0,0,0 20
61
- http://storage.googleapis.com/gcp-public-data-sentinel-2/tiles/20/V/LJ/S2A_MSIL1C_20200629T154911_N0209_R054_T20VLJ_20200629T193223.SAFE/GRANULE/L1C_T20VLJ_A026220_20200629T155413/IMG_DATA/T20VLJ_20200629T154911_B01.jp2: 2293175 876,1830,1630,0 35
62
- ```
63
-
64
- File: index_Sentinel.csv
65
- Header: GRANULE_ID,PRODUCT_ID,DATATAKE_IDENTIFIER,MGRS_TILE,SENSING_TIME,TOTAL_SIZE,CLOUD_COVER,GEOMETRIC_QUALITY_FLAG,GENERATION_TIME,NORTH_LAT,SOUTH_LAT,WEST_LON,EAST_LON,BASE_URL
66
- Sample data:
67
- ```
68
- L1C_T42UWG_A041401_20230527T062703,S2A_MSIL1C_20230527T062631_N0509_R077_T42UWG_20230527T071710,GS2A_20230527T062631_041401_N05.09,42UWG,2023-05-27T06:33:56.700000Z,764715852,0.597667731340191,,2023-05-27T07:17:10.000000Z,55.94508401564941,54.947111902793566,68.99952976138768,70.75711635116411,gs://gcp-public-data-sentinel-2/tiles/42/U/WG/S2A_MSIL1C_20230527T062631_N0509_R077_T42UWG_20230527T071710.SAFE
69
- L1C_T33XWB_A021112_20190708T105646,S2A_MSIL1C_20190708T105621_N0208_R094_T33XWB_20190708T113743,GS2A_20190708T105621_021112_N02.08,33XWB,2019-07-08T11:00:35.000000Z,197594271,0.0,,2019-07-08T11:37:43.000000Z,73.86991541093971,72.88068077877183,16.368773276100033,18.540242190343452,gs://gcp-public-data-sentinel-2/tiles/33/X/WB/S2A_MSIL1C_20190708T105621_N0208_R094_T33XWB_20190708T113743.SAFE
70
- L1C_T23LLJ_A028635_20201215T132230,S2A_MSIL1C_20201215T132231_N0209_R038_T23LLJ_20201215T151022,GS2A_20201215T132231_028635_N02.09,23LLJ,2020-12-15T13:25:11.367000Z,721319047,62.8896,,2020-12-15T15:10:22.000000Z,-9.946873284601002,-10.942725175756962,-46.83018842375086,-45.82296488039833,gs://gcp-public-data-sentinel-2/tiles/23/L/LJ/S2A_MSIL1C_20201215T132231_N0209_R038_T23LLJ_20201215T151022.SAFE
71
- ```
72
-
73
- ## Dataset Creation
74
-
75
- ### Collection and Processing
76
- The dataset was curated by selecting the latest cloud-free images from **Sentinel-2** data archives. The **B1 spectrum** black pixel count was analyzed to determine partial or full images. Images with black pixels exceeding a threshold were discarded. The selected images were then transcoded from **JPEG2000 to JPEG-XL** for optimized storage.
77
-
78
- ### Source Data
79
- - **Satellite**: Sentinel-2 (ESA)
80
- - **Selection Criteria**:
81
- - Cloud coverage < 1% (from metadata)
82
- - Most recent full image per tile (based on B1 black pixel analysis)
83
- - Less than 10000 total black pixels and no more than 6 black pixels on each side of the image
84
- - **Data Transformation**: JPEG2000 → JPEG-XL conversion
85
-
86
- ### Annotation Process
87
- No additional annotations are provided beyond the provided metadata and B1 black pixel measurements
88
-
89
- ### Sensitive Information
90
- The dataset contains only satellite images and does not include personal or sensitive data.
91
-
92
- ## Code used to filter images
93
-
94
- ### Filtering out partial images based ouer B1 black pixel measurments
95
-
96
- ```
97
- # Function to parse the data and filter URLs
98
- def parse_and_filter_data(file_path, output_path):
99
- with open(file_path, 'r') as file:
100
- with open(output_path, 'w') as output_file:
101
- for line in file:
102
- if "Error decoding JPEG2000 image" in line:
103
- continue
104
- if "manifest.safe does not contain B01.jp2" in line:
105
- continue
106
- url, data = line.split(': ')
107
- first_number, comma_separated, _ = data.split(' ')
108
- first_number = int(first_number)
109
- comma_separated_numbers = list(map(int, comma_separated.split(',')))
110
-
111
- if first_number < 10000 and all(num <= 6 for num in comma_separated_numbers):
112
- output_file.write(url + '\n')
113
- #print(line)
114
-
115
- # Example usage
116
- file_path = 'Sentinel_B1_black_pixel_measurements.txt'
117
- output_path = 'filteredUrls.txt'
118
- parse_and_filter_data(file_path, output_path)
119
- ```
120
-
121
- ### Extracting URLs of Cloudless Images
122
-
123
- ```python
124
- import csv
125
- from datetime import datetime
126
-
127
- data = {}
128
- print("Reading index_Sentinel.csv...")
129
- with open('index_Sentinel.csv', 'r') as csvfile:
130
- reader = csv.DictReader(csvfile)
131
- for row in reader:
132
- try:
133
- cloud_cover = float(row['CLOUD_COVER'])
134
- except ValueError:
135
- continue
136
- if cloud_cover < 1:
137
- mgrs_tile = row['MGRS_TILE']
138
- sensing_time = datetime.fromisoformat(row['SENSING_TIME'].replace('Z', '+00:00'))
139
- if mgrs_tile not in data or sensing_time > data[mgrs_tile]['SENSING_TIME']:
140
- data[mgrs_tile] = {
141
- 'SENSING_TIME': sensing_time,
142
- 'GRANULE_ID': row['GRANULE_ID']
143
- }
144
- print("Finished reading index_Sentinel.csv.")
145
-
146
- filtered_urls = []
147
- with open('filteredUrls.txt', 'r') as urlfile:
148
- for line in urlfile:
149
- granule_id = line.split('/')[10]
150
- if granule_id in data:
151
- filtered_urls.append(line.strip().replace('_B01.jp2', '_TCI.jp2'))
152
-
153
- print(f"Number of filtered URLs: {len(filtered_urls)}")
154
- with open('noCloudURLs.txt', 'w') as outfile:
155
- outfile.write('\n'.join(filtered_urls))
156
- print("Filtered URLs saved.")
157
- ```
158
-
159
-
160
-
161
- ## Citation
162
- If you use this dataset, please cite:
163
-
164
- ```
165
- @misc{DASP,
166
- author = {Richard Erkhov and Nico Bosshard},
167
- title = {DASP},
168
- year = {2025},
169
- url = {https://huggingface.co/datasets/RichardErkhov/DASP}
170
- }
171
  ```
 
1
+ ---
2
+ language: []
3
+ pretty_name: "Global Cloudless Sentinel-2 Imagery"
4
+ tags:
5
+ - satellite-imagery
6
+ - remote-sensing
7
+ - earth-observation
8
+ - sentinel-2
9
+ - geospatial
10
+ license: "cc-by-sa-3.0"
11
+ task_categories:
12
+ - image-segmentation
13
+ - image-classification
14
+ - object-detection
15
+ - other
16
+ ---
17
+
18
+ # Dataset Card for DASP
19
+
20
+ ## Dataset Description
21
+
22
+ The DASP dataset consists of cloud-free satellite images captured by Sentinel-2 satellites. Each image represents the most recent, non-partial, and cloudless capture from over 30 million Sentinel-2 images in every band. The dataset provides a near-complete cloudless view of Earth's surface, ideal for various geospatial applications. Images were converted from JPEG2000 to **JPEG-XL** to improve storage efficiency while maintaining high quality.
23
+
24
+ **Huggingface page:** https://huggingface.co/datasets/RichardErkhov/DASP
25
+
26
+ **Github repository:** https://github.com/nicoboss/DASP
27
+
28
+ **Points of Contact:**
29
+ - [Richard's Discord](https://discord.gg/pvy7H8DZMG)
30
+ - [Richard's GitHub](https://erkhov.com/RichardErkhov)
31
+ - [Richard's website](https://erkhov.com/)
32
+ - [Nico Bosshard's website](https://www.nicobosshard.ch)
33
+ - [Nico Bosshard's github](https://github.com/nicoboss)
34
+
35
+ ### Dataset Summary
36
+ - Full cloudless satellite coverage of Earth.
37
+ - Sourced from Sentinel-2 imagery, selecting the most recent cloud-free images.
38
+ - JPEG2000 images transcoded into JPEG-XL for efficient storage.
39
+ - Cloudless determination based on B1 band black pixel analysis.
40
+ - Supports AI-based image stitching, classification, and segmentation.
41
+
42
+ ### Use cases
43
+ - **Image Stitching:** Combines individual images into a seamless global mosaic.
44
+ - Enables high-resolution satellite mosaics for academic and commercial applications.
45
+ - Supports AI-driven Earth observation projects.
46
+ - Facilitates urban planning, climate research, and environmental monitoring.
47
+ - Land Use Classification: Enables categorization of land cover types.
48
+
49
+ ## Dataset Structure
50
+
51
+ ### Data Instances
52
+
53
+ The resulting image are in separate folders named after their band. The image names can be collated to the provided metadata. The ZStatandard compression algorithm was used to compress the metadata.
54
+
55
+ File: Sentinel_B1_black_pixel_measurements.txt
56
+ Header: URL, total black pixels, black pixels top, black pixels right, black pixels bottom, black pixels left, average grayscale value of all non-black pixels
57
+ Sample data:
58
+ ```
59
+ http://storage.googleapis.com/gcp-public-data-sentinel-2/tiles/43/N/CA/S2A_MSIL1C_20220401T051651_N0400_R062_T43NCA_20220401T075429.SAFE/GRANULE/L1C_T43NCA_A035380_20220401T053643/IMG_DATA/T43NCA_20220401T051651_B01.jp2: 62262 0,747,166,0 20
60
+ http://storage.googleapis.com/gcp-public-data-sentinel-2/tiles/36/M/XD/S2B_MSIL1C_20190716T074619_N0208_R135_T36MXD_20190716T104338.SAFE/GRANULE/L1C_T36MXD_A012316_20190716T080657/IMG_DATA/T36MXD_20190716T074619_B01.jp2: 0 0,0,0,0 20
61
+ http://storage.googleapis.com/gcp-public-data-sentinel-2/tiles/20/V/LJ/S2A_MSIL1C_20200629T154911_N0209_R054_T20VLJ_20200629T193223.SAFE/GRANULE/L1C_T20VLJ_A026220_20200629T155413/IMG_DATA/T20VLJ_20200629T154911_B01.jp2: 2293175 876,1830,1630,0 35
62
+ ```
63
+
64
+ File: index_Sentinel.csv
65
+ Header: GRANULE_ID,PRODUCT_ID,DATATAKE_IDENTIFIER,MGRS_TILE,SENSING_TIME,TOTAL_SIZE,CLOUD_COVER,GEOMETRIC_QUALITY_FLAG,GENERATION_TIME,NORTH_LAT,SOUTH_LAT,WEST_LON,EAST_LON,BASE_URL
66
+ Sample data:
67
+ ```
68
+ L1C_T42UWG_A041401_20230527T062703,S2A_MSIL1C_20230527T062631_N0509_R077_T42UWG_20230527T071710,GS2A_20230527T062631_041401_N05.09,42UWG,2023-05-27T06:33:56.700000Z,764715852,0.597667731340191,,2023-05-27T07:17:10.000000Z,55.94508401564941,54.947111902793566,68.99952976138768,70.75711635116411,gs://gcp-public-data-sentinel-2/tiles/42/U/WG/S2A_MSIL1C_20230527T062631_N0509_R077_T42UWG_20230527T071710.SAFE
69
+ L1C_T33XWB_A021112_20190708T105646,S2A_MSIL1C_20190708T105621_N0208_R094_T33XWB_20190708T113743,GS2A_20190708T105621_021112_N02.08,33XWB,2019-07-08T11:00:35.000000Z,197594271,0.0,,2019-07-08T11:37:43.000000Z,73.86991541093971,72.88068077877183,16.368773276100033,18.540242190343452,gs://gcp-public-data-sentinel-2/tiles/33/X/WB/S2A_MSIL1C_20190708T105621_N0208_R094_T33XWB_20190708T113743.SAFE
70
+ L1C_T23LLJ_A028635_20201215T132230,S2A_MSIL1C_20201215T132231_N0209_R038_T23LLJ_20201215T151022,GS2A_20201215T132231_028635_N02.09,23LLJ,2020-12-15T13:25:11.367000Z,721319047,62.8896,,2020-12-15T15:10:22.000000Z,-9.946873284601002,-10.942725175756962,-46.83018842375086,-45.82296488039833,gs://gcp-public-data-sentinel-2/tiles/23/L/LJ/S2A_MSIL1C_20201215T132231_N0209_R038_T23LLJ_20201215T151022.SAFE
71
+ ```
72
+
73
+ ## Dataset Creation
74
+
75
+ ### Collection and Processing
76
+ The dataset was curated by selecting the latest cloud-free images from **Sentinel-2** data archives. The **B1 spectrum** black pixel count was analyzed to determine partial or full images. Images with black pixels exceeding a threshold were discarded. The selected images were then transcoded from **JPEG2000 to JPEG-XL** for optimized storage.
77
+
78
+ ### Source Data
79
+ - **Satellite**: Sentinel-2 (ESA)
80
+ - **Selection Criteria**:
81
+ - Cloud coverage < 1% (from metadata)
82
+ - Most recent full image per tile (based on B1 black pixel analysis)
83
+ - Less than 10000 total black pixels and no more than 6 black pixels on each side of the image
84
+ - **Data Transformation**: JPEG2000 → JPEG-XL conversion
85
+
86
+ ### Annotation Process
87
+ No additional annotations are provided beyond the provided metadata and B1 black pixel measurements
88
+
89
+ ### Sensitive Information
90
+ The dataset contains only satellite images and does not include personal or sensitive data.
91
+
92
+ ## Code used to filter images
93
+
94
+ ### Filtering out partial images based ouer B1 black pixel measurments
95
+
96
+ ```python
97
+ # Function to parse the data and filter URLs
98
+ def parse_and_filter_data(file_path, output_path):
99
+ with open(file_path, 'r') as file:
100
+ with open(output_path, 'w') as output_file:
101
+ for line in file:
102
+ if "Error decoding JPEG2000 image" in line:
103
+ continue
104
+ if "manifest.safe does not contain B01.jp2" in line:
105
+ continue
106
+ url, data = line.split(': ')
107
+ first_number, comma_separated, _ = data.split(' ')
108
+ first_number = int(first_number)
109
+ comma_separated_numbers = list(map(int, comma_separated.split(',')))
110
+
111
+ if first_number < 10000 and all(num <= 6 for num in comma_separated_numbers):
112
+ output_file.write(url + '\n')
113
+ #print(line)
114
+
115
+ # Example usage
116
+ file_path = 'Sentinel_B1_black_pixel_measurements.txt'
117
+ output_path = 'filteredUrls.txt'
118
+ parse_and_filter_data(file_path, output_path)
119
+ ```
120
+
121
+ ### Extracting URLs of Cloudless Images
122
+
123
+ ```python
124
+ import csv
125
+ from datetime import datetime
126
+
127
+ data = {}
128
+ print("Reading index_Sentinel.csv...")
129
+ with open('index_Sentinel.csv', 'r') as csvfile:
130
+ reader = csv.DictReader(csvfile)
131
+ for row in reader:
132
+ try:
133
+ cloud_cover = float(row['CLOUD_COVER'])
134
+ except ValueError:
135
+ continue
136
+ if cloud_cover < 1:
137
+ mgrs_tile = row['MGRS_TILE']
138
+ sensing_time = datetime.fromisoformat(row['SENSING_TIME'].replace('Z', '+00:00'))
139
+ if mgrs_tile not in data or sensing_time > data[mgrs_tile]['SENSING_TIME']:
140
+ data[mgrs_tile] = {
141
+ 'SENSING_TIME': sensing_time,
142
+ 'GRANULE_ID': row['GRANULE_ID']
143
+ }
144
+ print("Finished reading index_Sentinel.csv.")
145
+
146
+ filtered_urls = []
147
+ with open('filteredUrls.txt', 'r') as urlfile:
148
+ for line in urlfile:
149
+ granule_id = line.split('/')[10]
150
+ if granule_id in data:
151
+ filtered_urls.append(line.strip().replace('_B01.jp2', '_TCI.jp2'))
152
+
153
+ print(f"Number of filtered URLs: {len(filtered_urls)}")
154
+ with open('noCloudURLs.txt', 'w') as outfile:
155
+ outfile.write('\n'.join(filtered_urls))
156
+ print("Filtered URLs saved.")
157
+ ```
158
+
159
+
160
+
161
+ ## Citation
162
+ If you use this dataset, please cite:
163
+
164
+ ```
165
+ @misc{DASP,
166
+ author = {Richard Erkhov and Nico Bosshard},
167
+ title = {DASP},
168
+ year = {2025},
169
+ url = {https://huggingface.co/datasets/RichardErkhov/DASP}
170
+ }
171
  ```