Add files using upload-large-folder tool
Browse files- README.md +171 -0
- TCI/T09CVQ_20240217T164359_TCI.jxl +0 -0
- TCI/T18CVU_20240222T123149_TCI.jxl +0 -0
- TCI/T18CWU_20240222T123149_TCI.jxl +0 -0
- TCI/T19CDQ_20240222T123149_TCI.jxl +0 -0
- TCI/T22WFE_20240826T152809_TCI.jxl +0 -0
- TCI/T40CDV_20230214T035649_TCI.jxl +0 -0
- TCI/T40DDJ_20240403T051719_TCI.jxl +0 -0
- TCI/T48CVS_20230208T001459_TCI.jxl +0 -0
- TCI/T49CEV_20240225T005519_TCI.jxl +0 -0
- TCI/T52DFK_20240314T001459_TCI.jxl +0 -0
README.md
ADDED
@@ -0,0 +1,171 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: []
|
3 |
+
pretty_name: "Global Cloudless Sentinel-2 Imagery"
|
4 |
+
tags:
|
5 |
+
- satellite-imagery
|
6 |
+
- remote-sensing
|
7 |
+
- earth-observation
|
8 |
+
- sentinel-2
|
9 |
+
- geospatial
|
10 |
+
license: "cc-by-sa-3.0"
|
11 |
+
task_categories:
|
12 |
+
- image-segmentation
|
13 |
+
- image-classification
|
14 |
+
- object-detection
|
15 |
+
- other
|
16 |
+
---
|
17 |
+
|
18 |
+
# Dataset Card for DASP
|
19 |
+
|
20 |
+
## Dataset Description
|
21 |
+
|
22 |
+
The DASP dataset consists of cloud-free satellite images captured by Sentinel-2 satellites. Each image represents the most recent, non-partial, and cloudless capture from over 30 million Sentinel-2 images in every band. The dataset provides a near-complete cloudless view of Earth's surface, ideal for various geospatial applications. Images were converted from JPEG2000 to **JPEG-XL** to improve storage efficiency while maintaining high quality.
|
23 |
+
|
24 |
+
**Huggingface page:** https://huggingface.co/datasets/RichardErkhov/DASP
|
25 |
+
|
26 |
+
**Github repository:** https://github.com/nicoboss/DASP
|
27 |
+
|
28 |
+
**Points of Contact:**
|
29 |
+
- [Richard's Discord](https://discord.gg/pvy7H8DZMG)
|
30 |
+
- [Richard's GitHub](https://erkhov.com/RichardErkhov]
|
31 |
+
- [Richard's website](https://erkhov.com/)
|
32 |
+
- [Nico Bosshard's website](https://www.nicobosshard.ch)
|
33 |
+
- [Nico Bosshard's github](https://github.com/nicoboss)
|
34 |
+
|
35 |
+
### Dataset Summary
|
36 |
+
- Full cloudless satellite coverage of Earth.
|
37 |
+
- Sourced from Sentinel-2 imagery, selecting the most recent cloud-free images.
|
38 |
+
- JPEG2000 images transcoded into JPEG-XL for efficient storage.
|
39 |
+
- Cloudless determination based on B1 band black pixel analysis.
|
40 |
+
- Supports AI-based image stitching, classification, and segmentation.
|
41 |
+
|
42 |
+
### Use cases
|
43 |
+
- **Image Stitching:** Combines individual images into a seamless global mosaic.
|
44 |
+
- Enables high-resolution satellite mosaics for academic and commercial applications.
|
45 |
+
- Supports AI-driven Earth observation projects.
|
46 |
+
- Facilitates urban planning, climate research, and environmental monitoring.
|
47 |
+
- Land Use Classification: Enables categorization of land cover types.
|
48 |
+
|
49 |
+
## Dataset Structure
|
50 |
+
|
51 |
+
### Data Instances
|
52 |
+
|
53 |
+
The resulting image are in separate folders named after their band. The image names can be collated to the provided metadata. The ZStatandard compression algorithm was used to compress the metadata.
|
54 |
+
|
55 |
+
File: Sentinel_B1_black_pixel_measurements.txt
|
56 |
+
Header: URL, total black pixels, black pixels top, black pixels right, black pixels bottom, black pixels left, average grayscale value of all non-black pixels
|
57 |
+
Sample data:
|
58 |
+
```
|
59 |
+
http://storage.googleapis.com/gcp-public-data-sentinel-2/tiles/43/N/CA/S2A_MSIL1C_20220401T051651_N0400_R062_T43NCA_20220401T075429.SAFE/GRANULE/L1C_T43NCA_A035380_20220401T053643/IMG_DATA/T43NCA_20220401T051651_B01.jp2: 62262 0,747,166,0 20
|
60 |
+
http://storage.googleapis.com/gcp-public-data-sentinel-2/tiles/36/M/XD/S2B_MSIL1C_20190716T074619_N0208_R135_T36MXD_20190716T104338.SAFE/GRANULE/L1C_T36MXD_A012316_20190716T080657/IMG_DATA/T36MXD_20190716T074619_B01.jp2: 0 0,0,0,0 20
|
61 |
+
http://storage.googleapis.com/gcp-public-data-sentinel-2/tiles/20/V/LJ/S2A_MSIL1C_20200629T154911_N0209_R054_T20VLJ_20200629T193223.SAFE/GRANULE/L1C_T20VLJ_A026220_20200629T155413/IMG_DATA/T20VLJ_20200629T154911_B01.jp2: 2293175 876,1830,1630,0 35
|
62 |
+
```
|
63 |
+
|
64 |
+
File: index_Sentinel.csv
|
65 |
+
Header: GRANULE_ID,PRODUCT_ID,DATATAKE_IDENTIFIER,MGRS_TILE,SENSING_TIME,TOTAL_SIZE,CLOUD_COVER,GEOMETRIC_QUALITY_FLAG,GENERATION_TIME,NORTH_LAT,SOUTH_LAT,WEST_LON,EAST_LON,BASE_URL
|
66 |
+
Sample data:
|
67 |
+
```
|
68 |
+
L1C_T42UWG_A041401_20230527T062703,S2A_MSIL1C_20230527T062631_N0509_R077_T42UWG_20230527T071710,GS2A_20230527T062631_041401_N05.09,42UWG,2023-05-27T06:33:56.700000Z,764715852,0.597667731340191,,2023-05-27T07:17:10.000000Z,55.94508401564941,54.947111902793566,68.99952976138768,70.75711635116411,gs://gcp-public-data-sentinel-2/tiles/42/U/WG/S2A_MSIL1C_20230527T062631_N0509_R077_T42UWG_20230527T071710.SAFE
|
69 |
+
L1C_T33XWB_A021112_20190708T105646,S2A_MSIL1C_20190708T105621_N0208_R094_T33XWB_20190708T113743,GS2A_20190708T105621_021112_N02.08,33XWB,2019-07-08T11:00:35.000000Z,197594271,0.0,,2019-07-08T11:37:43.000000Z,73.86991541093971,72.88068077877183,16.368773276100033,18.540242190343452,gs://gcp-public-data-sentinel-2/tiles/33/X/WB/S2A_MSIL1C_20190708T105621_N0208_R094_T33XWB_20190708T113743.SAFE
|
70 |
+
L1C_T23LLJ_A028635_20201215T132230,S2A_MSIL1C_20201215T132231_N0209_R038_T23LLJ_20201215T151022,GS2A_20201215T132231_028635_N02.09,23LLJ,2020-12-15T13:25:11.367000Z,721319047,62.8896,,2020-12-15T15:10:22.000000Z,-9.946873284601002,-10.942725175756962,-46.83018842375086,-45.82296488039833,gs://gcp-public-data-sentinel-2/tiles/23/L/LJ/S2A_MSIL1C_20201215T132231_N0209_R038_T23LLJ_20201215T151022.SAFE
|
71 |
+
```
|
72 |
+
|
73 |
+
## Dataset Creation
|
74 |
+
|
75 |
+
### Collection and Processing
|
76 |
+
The dataset was curated by selecting the latest cloud-free images from **Sentinel-2** data archives. The **B1 spectrum** black pixel count was analyzed to determine partial or full images. Images with black pixels exceeding a threshold were discarded. The selected images were then transcoded from **JPEG2000 to JPEG-XL** for optimized storage.
|
77 |
+
|
78 |
+
### Source Data
|
79 |
+
- **Satellite**: Sentinel-2 (ESA)
|
80 |
+
- **Selection Criteria**:
|
81 |
+
- Cloud coverage < 1% (from metadata)
|
82 |
+
- Most recent full image per tile (based on B1 black pixel analysis)
|
83 |
+
- Less than 10000 total black pixels and no more than 6 black pixels on each side of the image
|
84 |
+
- **Data Transformation**: JPEG2000 → JPEG-XL conversion
|
85 |
+
|
86 |
+
### Annotation Process
|
87 |
+
No additional annotations are provided beyond the provided metadata and B1 black pixel measurements
|
88 |
+
|
89 |
+
### Sensitive Information
|
90 |
+
The dataset contains only satellite images and does not include personal or sensitive data.
|
91 |
+
|
92 |
+
## Code used to filter images
|
93 |
+
|
94 |
+
### Filtering out partial images based ouer B1 black pixel measurments
|
95 |
+
|
96 |
+
```
|
97 |
+
# Function to parse the data and filter URLs
|
98 |
+
def parse_and_filter_data(file_path, output_path):
|
99 |
+
with open(file_path, 'r') as file:
|
100 |
+
with open(output_path, 'w') as output_file:
|
101 |
+
for line in file:
|
102 |
+
if "Error decoding JPEG2000 image" in line:
|
103 |
+
continue
|
104 |
+
if "manifest.safe does not contain B01.jp2" in line:
|
105 |
+
continue
|
106 |
+
url, data = line.split(': ')
|
107 |
+
first_number, comma_separated, _ = data.split(' ')
|
108 |
+
first_number = int(first_number)
|
109 |
+
comma_separated_numbers = list(map(int, comma_separated.split(',')))
|
110 |
+
|
111 |
+
if first_number < 10000 and all(num <= 6 for num in comma_separated_numbers):
|
112 |
+
output_file.write(url + '\n')
|
113 |
+
#print(line)
|
114 |
+
|
115 |
+
# Example usage
|
116 |
+
file_path = 'Sentinel_B1_black_pixel_measurements.txt'
|
117 |
+
output_path = 'filteredUrls.txt'
|
118 |
+
parse_and_filter_data(file_path, output_path)
|
119 |
+
```
|
120 |
+
|
121 |
+
### Extracting URLs of Cloudless Images
|
122 |
+
|
123 |
+
```python
|
124 |
+
import csv
|
125 |
+
from datetime import datetime
|
126 |
+
|
127 |
+
data = {}
|
128 |
+
print("Reading index_Sentinel.csv...")
|
129 |
+
with open('index_Sentinel.csv', 'r') as csvfile:
|
130 |
+
reader = csv.DictReader(csvfile)
|
131 |
+
for row in reader:
|
132 |
+
try:
|
133 |
+
cloud_cover = float(row['CLOUD_COVER'])
|
134 |
+
except ValueError:
|
135 |
+
continue
|
136 |
+
if cloud_cover < 1:
|
137 |
+
mgrs_tile = row['MGRS_TILE']
|
138 |
+
sensing_time = datetime.fromisoformat(row['SENSING_TIME'].replace('Z', '+00:00'))
|
139 |
+
if mgrs_tile not in data or sensing_time > data[mgrs_tile]['SENSING_TIME']:
|
140 |
+
data[mgrs_tile] = {
|
141 |
+
'SENSING_TIME': sensing_time,
|
142 |
+
'GRANULE_ID': row['GRANULE_ID']
|
143 |
+
}
|
144 |
+
print("Finished reading index_Sentinel.csv.")
|
145 |
+
|
146 |
+
filtered_urls = []
|
147 |
+
with open('filteredUrls.txt', 'r') as urlfile:
|
148 |
+
for line in urlfile:
|
149 |
+
granule_id = line.split('/')[10]
|
150 |
+
if granule_id in data:
|
151 |
+
filtered_urls.append(line.strip().replace('_B01.jp2', '_TCI.jp2'))
|
152 |
+
|
153 |
+
print(f"Number of filtered URLs: {len(filtered_urls)}")
|
154 |
+
with open('noCloudURLs.txt', 'w') as outfile:
|
155 |
+
outfile.write('\n'.join(filtered_urls))
|
156 |
+
print("Filtered URLs saved.")
|
157 |
+
```
|
158 |
+
|
159 |
+
|
160 |
+
|
161 |
+
## Citation
|
162 |
+
If you use this dataset, please cite:
|
163 |
+
|
164 |
+
```
|
165 |
+
@misc{DASP,
|
166 |
+
author = {Richard Erkhov and Nico Bosshard},
|
167 |
+
title = {DASP},
|
168 |
+
year = {2025},
|
169 |
+
url = {https://huggingface.co/datasets/RichardErkhov/DASP}
|
170 |
+
}
|
171 |
+
```
|
TCI/T09CVQ_20240217T164359_TCI.jxl
ADDED
Binary file (31.1 kB). View file
|
|
TCI/T18CVU_20240222T123149_TCI.jxl
ADDED
Binary file (31.1 kB). View file
|
|
TCI/T18CWU_20240222T123149_TCI.jxl
ADDED
Binary file (32.2 kB). View file
|
|
TCI/T19CDQ_20240222T123149_TCI.jxl
ADDED
Binary file (32.1 kB). View file
|
|
TCI/T22WFE_20240826T152809_TCI.jxl
ADDED
Binary file (31.3 kB). View file
|
|
TCI/T40CDV_20230214T035649_TCI.jxl
ADDED
Binary file (31.1 kB). View file
|
|
TCI/T40DDJ_20240403T051719_TCI.jxl
ADDED
Binary file (31.1 kB). View file
|
|
TCI/T48CVS_20230208T001459_TCI.jxl
ADDED
Binary file (31.1 kB). View file
|
|
TCI/T49CEV_20240225T005519_TCI.jxl
ADDED
Binary file (31.1 kB). View file
|
|
TCI/T52DFK_20240314T001459_TCI.jxl
ADDED
Binary file (31.1 kB). View file
|
|