|
--- |
|
license: mit |
|
task_categories: |
|
- robotics |
|
--- |
|
|
|
<div align="center"> |
|
<div style="margin-bottom: 30px"> |
|
<div style="display: flex; flex-direction: column; align-items: center; gap: 8px"> |
|
<h1 align="center" style="margin: 0; line-height: 1;"> |
|
<span style="font-size: 48px; font-weight: 600;">PSEC</span> |
|
</h1> |
|
</div> |
|
<h2 style="font-size: 32px; margin: 20px 0;">Skill Expansion and Composition in Parameter Space</h2> |
|
<h4 style="color: #666; margin-bottom: 25px;">International Conference on Learning Representation (ICLR), 2025</h4> |
|
<p align="center" style="margin: 20px 0;"> |
|
<a href="https://huggingface.co/papers/2502.05932"> |
|
<img src="https://img.shields.io/badge/arXiv-2502.05932-b31b1b.svg"> |
|
</a> |
|
<!-- --> |
|
<a href="https://ltlhuuu.github.io/PSEC/"> |
|
<img src="https://img.shields.io/badge/๐_Project_Page-PSEC-blue.svg"> |
|
</a> |
|
<!-- --> |
|
<a href="https://arxiv.org/pdf/2502.05932.pdf"> |
|
<img src="https://img.shields.io/badge/๐_Paper-PSEC-green.svg"> |
|
</a> |
|
</p> |
|
</div> |
|
</div> |
|
|
|
<div align="center"> |
|
<p style="font-size: 20px; font-weight: 600; margin-bottom: 20px;"> |
|
๐ฅ Official Implementation |
|
</p> |
|
<p style="font-size: 18px; max-width: 800px; margin: 0 auto;"> |
|
<b>PSEC</b> is a novel framework designed to: |
|
</p> |
|
</div> |
|
<div align="center"> |
|
<p style="font-size: 15px; font-weight: 600; margin-bottom: 20px;"> |
|
๐ <b>Facilitate</b> efficient and flexible skill expansion and composition <br> |
|
๐ <b>Iteratively evolve</b> the agents' capabilities<br> |
|
โก <b>Efficiently address</b> new challenges |
|
</p> |
|
</div> |
|
|
|
<p align="center"> |
|
<img src="assets/intro.png" width="800" style="margin: 40px 0;"> |
|
</p> |
|
<!-- <div align="center"> |
|
<a href="https://github.com/ltlhuuu/PSEC/stargazers"> |
|
<img src="https://img.shields.io/github/stars/ltlhuuu/PSEC?style=social" alt="GitHub stars"> |
|
</a> |
|
|
|
<a href="https://github.com/ltlhuuu/PSEC/network/members"> |
|
<img src="https://img.shields.io/github/forks/ltlhuuu/PSEC?style=social" alt="GitHub forks"> |
|
</a> |
|
|
|
<a href="https://github.com/ltlhuuu/PSEC/issues"> |
|
<img src="https://img.shields.io/github/issues/ltlhuuu/PSEC?style=social" alt="GitHub issues"> |
|
</a> |
|
</div> --> |
|
|
|
|
|
## Quick start |
|
Clone this repository and navigate to PSEC folder |
|
```python |
|
git clone https://github.com/ltlhuuu/PSEC.git |
|
cd PSEC |
|
``` |
|
## Environment Installation |
|
Environment configuration and dependencies are available in environment.yaml and requirements.txt. |
|
|
|
Create conda environment for this experiments |
|
```python |
|
conda create -n PSEC python=3.9 |
|
conda activate PSEC |
|
``` |
|
Then install the remaining requirements (with MuJoCo already downloaded, if not see [here](#MuJoCo-installation)): |
|
```bash |
|
pip install -r requirements.txt |
|
``` |
|
|
|
Install the `MetaDrive` environment via |
|
```python |
|
pip install git+https://github.com/HenryLHH/metadrive_clean.git@main |
|
``` |
|
### MuJoCo installation |
|
Download MuJoCo: |
|
```bash |
|
mkdir ~/.mujoco |
|
cd ~/.mujoco |
|
wget https://github.com/google-deepmind/mujoco/releases/download/2.1.0/mujoco210-linux-x86_64.tar.gz |
|
tar -zxvf mujoco210-linux-x86_64.tar.gz |
|
cd mujoco210 |
|
wget https://www.roboti.us/file/mjkey.txt |
|
``` |
|
Then add the following line to `.bashrc`: |
|
``` |
|
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:~/.mujoco/mujoco210/bin |
|
``` |
|
## Run experiments |
|
### Pretrain |
|
Pretrain the model with the following command. Meanwhile there are pre-trained models, you can download them from [here](https://drive.google.com/drive/folders/1lpcShmYoKVt4YMH66JBiA0MhYEV9aEYy?usp=sharing). |
|
```python |
|
export XLA_PYTHON_CLIENT_PREALLOCATE=False |
|
CUDA_VISIBLE_DEVICES=0 python launcher/examples/train_pretrain.py --variant 0 --seed 0 |
|
``` |
|
### LoRA finetune |
|
Train the skill policies with LoRA to achieve skill expansion. Meanwhile there are pre-trained models, you can download them from [here](https://drive.google.com/drive/folders/1lpcShmYoKVt4YMH66JBiA0MhYEV9aEYy?usp=sharing). |
|
```python |
|
CUDA_VISIBLE_DEVICES=0 python launcher/examples/train_lora_finetune.py --com_method 0 --model_cls 'LoRALearner' --variant 0 --seed 0 |
|
``` |
|
### Context-aware Composition |
|
Train the context-aware modular to adaptively leverage different skill knowledge to solve the tasks. You can download the pretrained model and datasets from [here](https://drive.google.com/drive/folders/1lpcShmYoKVt4YMH66JBiA0MhYEV9aEYy?usp=sharing). Then, run the following command, |
|
```python |
|
CUDA_VISIBLE_DEVICES=0 python launcher/examples/train_lora_finetune.py --com_method 0 --model_cls 'LoRASLearner' --variant 0 --seed 0 |
|
``` |
|
|
|
## Citations |
|
If you find our paper and code useful for your research, please cite: |
|
``` |
|
@inproceedings{ |
|
liu2025psec, |
|
title={Skill Expansion and Composition in Parameter Space}, |
|
author={Tenglong Liu, Jianxiong Li, Yinan Zheng, Haoyi Niu, Yixing Lan, Xin Xu, Xianyuan Zhan}, |
|
booktitle={The Thirteenth International Conference on Learning Representations}, |
|
year={2025}, |
|
url={https://openreview.net/forum?id=GLWf2fq0bX} |
|
} |
|
``` |
|
|
|
## Acknowledgements |
|
|
|
Parts of this code are adapted from [IDQL](https://github.com/philippe-eecs/IDQL). |