|
--- |
|
dataset_info: |
|
features: |
|
- name: file_name |
|
dtype: string |
|
- name: image |
|
dtype: image |
|
- name: refs |
|
sequence: string |
|
- name: mt |
|
dtype: string |
|
- name: human_score |
|
dtype: float64 |
|
splits: |
|
- name: train |
|
num_bytes: 4783117925.25 |
|
num_examples: 26382 |
|
- name: valid |
|
num_bytes: 593047697.75 |
|
num_examples: 3298 |
|
- name: test |
|
num_bytes: 595467629.75 |
|
num_examples: 3298 |
|
download_size: 5956104723 |
|
dataset_size: 5971633252.75 |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: train |
|
path: data/train-* |
|
- split: valid |
|
path: data/valid-* |
|
- split: test |
|
path: data/test-* |
|
--- |
|
# Nebula Dataset |
|
|
|
[ACCV 2024] DENEB: A Hallucination-Robust Automatic Evaluation Metric for Image Captioning |
|
[](https://arxiv.org/abs/2409.19255) |
|
[](https://github.com/Ka2ukiMatsuda/DENEB) |
|
|
|
|
|
## Usage |
|
|
|
```python |
|
>>> from datasets import load_dataset |
|
>>> nebula = load_dataset("Ka2ukiMatsuda/Nebula") |
|
>>> print(nebula) |
|
DatasetDict({ |
|
train: Dataset({ |
|
features: ['file_name', 'image', 'refs', 'mt', 'human_score'], |
|
num_rows: 26382 |
|
}) |
|
valid: Dataset({ |
|
features: ['file_name', 'image', 'refs', 'mt', 'human_score'], |
|
num_rows: 3298 |
|
}) |
|
test: Dataset({ |
|
features: ['file_name', 'image', 'refs', 'mt', 'human_score'], |
|
num_rows: 3298 |
|
}) |
|
}) |
|
``` |
|
|
|
## Citation |
|
|
|
```bash |
|
@inproceedings{matsuda2024deneb, |
|
title={DENEB: A Hallucination-Robust Automatic Evaluation Metric for Image Captioning}, |
|
author={Kazuki Matsuda and Yuiga Wada and Komei Sugiura}, |
|
booktitle={Proceedings of the Asian Conference on Computer Vision (ACCV)}, |
|
year={2024}, |
|
pages={3570--3586} |
|
} |
|
``` |
|
|