--- dataset_info: features: - name: file_name dtype: string - name: image dtype: image - name: refs sequence: string - name: mt dtype: string - name: human_score dtype: float64 splits: - name: train num_bytes: 4783117925.25 num_examples: 26382 - name: valid num_bytes: 593047697.75 num_examples: 3298 - name: test num_bytes: 595467629.75 num_examples: 3298 download_size: 5956104723 dataset_size: 5971633252.75 configs: - config_name: default data_files: - split: train path: data/train-* - split: valid path: data/valid-* - split: test path: data/test-* --- # Nebula Dataset [ACCV 2024] DENEB: A Hallucination-Robust Automatic Evaluation Metric for Image Captioning [![arXiv](https://img.shields.io/badge/arXiv-2409.19255-B31B1B)](https://arxiv.org/abs/2409.19255) [![GitHub](https://img.shields.io/badge/GitHub-DENEB-181717?logo=github)](https://github.com/Ka2ukiMatsuda/DENEB) ## Usage ```python >>> from datasets import load_dataset >>> nebula = load_dataset("Ka2ukiMatsuda/Nebula") >>> print(nebula) DatasetDict({ train: Dataset({ features: ['file_name', 'image', 'refs', 'mt', 'human_score'], num_rows: 26382 }) valid: Dataset({ features: ['file_name', 'image', 'refs', 'mt', 'human_score'], num_rows: 3298 }) test: Dataset({ features: ['file_name', 'image', 'refs', 'mt', 'human_score'], num_rows: 3298 }) }) ``` ## Citation ```bash @inproceedings{matsuda2024deneb, title={DENEB: A Hallucination-Robust Automatic Evaluation Metric for Image Captioning}, author={Kazuki Matsuda and Yuiga Wada and Komei Sugiura}, booktitle={Proceedings of the Asian Conference on Computer Vision (ACCV)}, year={2024}, pages={3570--3586} } ```