|
--- |
|
task_categories: |
|
- image-segmentation |
|
--- |
|
# SegMunich |
|
**SegMunich** is a segmentation task dataset that is Sentinel-2 satellite based. It contains spectral imagery of Munich's urban landscape over a span of three years. |
|
|
|
Please refer to the original paper for more detailed information about the original SegMunich dataset: |
|
- Paper: https://arxiv.org/abs/2311.07113 |
|
|
|
## How to Use This Dataset |
|
```python |
|
from datasets import load_dataset |
|
|
|
dataset = load_dataset("GFM-Bench/SegMunich") |
|
``` |
|
|
|
Also, please see our [GFM-Bench](https://github.com/uiuctml/GFM-Bench) repository for more information about how to use the dataset! 🤗 |
|
|
|
## Dataset Metadata |
|
|
|
The following metadata provides details about the Sentinel-2 imagery used in the dataset: |
|
<!--- **Number of Sentinel-1 Bands**: 2--> |
|
<!--- **Sentinel-1 Bands**: VV, VH--> |
|
- **Number of Sentinel-2 Bands**: 10 |
|
- **Sentinel-2 Bands**: B01 (**Coastal aerosol**), B02 (**Blue**), B03 (**Green**), B04 (**Red**), B05 (**Vegetation red edge**), B06 (**Vegetation red edge**), B07 (**Vegetation red edge**), B8A (**Narrow NIR**), B11 (**SWIR**), B12 (**SWIR**) |
|
- **Image Resolution**: 128 x 128 pixels |
|
- **Spatial Resolution**: 10 meters |
|
- **Number of Classes**: 13 |
|
|
|
## Dataset Splits |
|
The **SegMunich** dataset consists following splits: |
|
- **train**: 3,000 samples |
|
- **val**: 403 samples |
|
- **test**: 403 samples |
|
|
|
## Dataset Features: |
|
The **SegMunich** dataset consists of following features: |
|
<!--- **radar**: the Sentinel-1 image.--> |
|
- **optical**: the Sentinel-2 image. |
|
- **label**: the segmentation labels. |
|
<!--- **radar_channel_wv**: the central wavelength of each Sentinel-1 bands.--> |
|
- **optical_channel_wv**: the central wavelength of each Sentinel-2 bands. |
|
- **spatial_resolution**: the spatial resolution of images. |
|
## Citation |
|
If you use the SegMunich dataset in your work, please cite the original paper: |
|
``` |
|
@article{hong2024spectralgpt, |
|
title={SpectralGPT: Spectral remote sensing foundation model}, |
|
author={Hong, Danfeng and Zhang, Bing and Li, Xuyang and Li, Yuxuan and Li, Chenyu and Yao, Jing and Yokoya, Naoto and Li, Hao and Ghamisi, Pedram and Jia, Xiuping and others}, |
|
journal={IEEE Transactions on Pattern Analysis and Machine Intelligence}, |
|
year={2024}, |
|
publisher={IEEE} |
|
} |
|
``` |