--- task_categories: - image-segmentation --- # SegMunich **SegMunich** is a segmentation task dataset that is Sentinel-2 satellite based. It contains spectral imagery of Munich's urban landscape over a span of three years. Please refer to the original paper for more detailed information about the original SegMunich dataset: - Paper: https://arxiv.org/abs/2311.07113 ## How to Use This Dataset ```python from datasets import load_dataset dataset = load_dataset("GFM-Bench/SegMunich") ``` Also, please see our [GFM-Bench](https://github.com/uiuctml/GFM-Bench) repository for more information about how to use the dataset! 🤗 ## Dataset Metadata The following metadata provides details about the Sentinel-2 imagery used in the dataset: - **Number of Sentinel-2 Bands**: 10 - **Sentinel-2 Bands**: B01 (**Coastal aerosol**), B02 (**Blue**), B03 (**Green**), B04 (**Red**), B05 (**Vegetation red edge**), B06 (**Vegetation red edge**), B07 (**Vegetation red edge**), B8A (**Narrow NIR**), B11 (**SWIR**), B12 (**SWIR**) - **Image Resolution**: 128 x 128 pixels - **Spatial Resolution**: 10 meters - **Number of Classes**: 13 ## Dataset Splits The **SegMunich** dataset consists following splits: - **train**: 3,000 samples - **val**: 403 samples - **test**: 403 samples ## Dataset Features: The **SegMunich** dataset consists of following features: - **optical**: the Sentinel-2 image. - **label**: the segmentation labels. - **optical_channel_wv**: the central wavelength of each Sentinel-2 bands. - **spatial_resolution**: the spatial resolution of images. ## Citation If you use the SegMunich dataset in your work, please cite the original paper: ``` @article{hong2024spectralgpt, title={SpectralGPT: Spectral remote sensing foundation model}, author={Hong, Danfeng and Zhang, Bing and Li, Xuyang and Li, Yuxuan and Li, Chenyu and Yao, Jing and Yokoya, Naoto and Li, Hao and Ghamisi, Pedram and Jia, Xiuping and others}, journal={IEEE Transactions on Pattern Analysis and Machine Intelligence}, year={2024}, publisher={IEEE} } ```