Datasets:

Modalities:
Image
Languages:
English
ArXiv:
BobH62 commited on
Commit
91317ff
Β·
verified Β·
1 Parent(s): 85dd451

Upload README

Browse files
README.md ADDED
@@ -0,0 +1,162 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # <div align = "center"><img src="assets/logo.png" width="5%" height="5%" /> SLABIM: </div>
2
+
3
+ ## <div align = "center">A SLAM-BIM Coupled Dataset in HKUST Main Building</div>
4
+
5
+ <div align="center">
6
+ <a href="https://arxiv.org/abs/2502.16856"><img src="https://img.shields.io/badge/Paper-IEEE ICRA-004088.svg"/></a>
7
+ <!-- <a href="https://ieeexplore.ieee.org/document/10518010"><img src="https://img.shields.io/badge/Paper-ICRA-blue"/></a>
8
+ <a href="https://arxiv.org/abs/2308.11573"><img src="https://img.shields.io/badge/ArXiv-2308.11573-004088.svg"/></a> -->
9
+ <a href="https://www.youtube.com/watch?v=7NckgY15ABQ">
10
+ <img alt="Youtube" src="https://img.shields.io/badge/Video-Youtube-red"/>
11
+ </a>
12
+ <a ><img alt="PRs-Welcome" src="https://img.shields.io/badge/PRs-Welcome-red" /></a>
13
+ <a href="https://github.com/HKUST-Aerial-Robotics/SLABIM/issues">
14
+ <img alt="Issues" src="https://img.shields.io/github/issues/HKUST-Aerial-Robotics/SLABIM?color=0088ff"/>
15
+ </a>
16
+ </div>
17
+
18
+ > Haoming Huang, [Zhijian Qiao](https://qiaozhijian.github.io/), Zehuan Yu, Chuhao Liu, [Shaojie Shen](https://uav.hkust.edu.hk/group/), Fumin Zhang and [Huan Yin](https://huanyin94.github.io/)
19
+ >
20
+ > Submitted to 2025 IEEE International Conference on Robotics & Automation
21
+
22
+ ### News
23
+ * **`17 Feb 2025`:** Download Links Updated.
24
+ * **`28 Jan 2025`:** Accepted by ICRA 2025.
25
+ * **`15 Sep 2024`:** We submit our paper to [IEEE ICRA](https://2025.ieee-icra.org/).
26
+
27
+ ## Download
28
+ **Please click these below links to download:**
29
+
30
+ + [**Calibration Files**](https://hkustconnect-my.sharepoint.com/:f:/g/personal/hhuangce_connect_ust_hk/EsRF4KSE2QNJhNe5pkGnlhsBjF2A4Y0_t6DhoPypFN3TnA)
31
+ + [**BIM**](https://hkustconnect-my.sharepoint.com/:f:/g/personal/hhuangce_connect_ust_hk/EsFggIKoN01Hk6ZIKSrCLa4BuvIo4ut4I_Da9WmEgvxMqQ)
32
+ + [**Sensor Data**](https://hkustconnect-my.sharepoint.com/:f:/g/personal/hhuangce_connect_ust_hk/Eu9IRQfbPJpGnTtmjgkrrigBopCUTe2gBJDAp8m5vqZZRw)
33
+ ## Abstract
34
+ <div align="center"><h4>SLABIM is an open-sourced SLAM dataset that couples with BIM (Building Information Modeling).</h4></div>
35
+
36
+ <div align = "center"><img src="assets/overview.png" width="95%" /> </div>
37
+
38
+ **Features**:
39
+ + **Large-scale Building Information Modeling**: The BIM model of this dataset is a part of the digital twin project in HKUST,
40
+ featuring various types of offices, classrooms, lounges, and corridors.
41
+ + **Multi-session & Multi-sensor Data**: We collect 12 sessions across different floors and regions. These sessions encompass various indoor scenarios.
42
+ + **Dataset Validation**: To demonstrate the practicality of SLABIM, we test three different tasks: (1) LiDAR-to-BIM registration, and (2) Robot pose tracking on BIM and (3) Semantic mapping.
43
+
44
+ ## Dataset Structure
45
+ 1. ```BIM/``` contains CAD files (.dxf) and mesh files (.ply) exported from the original BIM models, organized by storey and semantic tags. Users can sample
46
+ the meshes at specific densities to obtain point clouds, offering flexibility for various robotic tasks.
47
+
48
+ 2. ```calibration files``` provide intrinsic camera parameters and the extrinsic parameters to the LiDAR.
49
+
50
+ 3. In ```sensor data/``` directory, each session is named
51
+ ```<X>F Region<Y>```, with X=1,3,4,5 and Y=1,2,3
52
+ indicating the storey and region of collection, such
53
+ as ```3F Region1```. This directory contains the **images**
54
+ and **points** produced by **camera** and **LiDAR**.
55
+
56
+ 4. ```data <x>.bag```, x=0,1,2... is the **rosbag** encoding the raw information, which can be parsed using ROS tools.
57
+
58
+ 5. ```sensor data/``` also contains the maps generated by SLAM, including **submap** for the LiDAR-to-BIM registration and **optimized map** by the offline mapping system.
59
+
60
+ 6. ```pose_frame_to_bim.txt```, ```pose_map_to_bim.txt``` and ```pose_submap_to_bim.txt``` contains the **ground truth poses** from LiDAR scans and maps to the BIM coordinate. These poses are finely tuned using a manually
61
+ provided initial guess and local point cloud alignment.
62
+
63
+ ```
64
+ SLABIM
65
+ β”œβ”€β”€ BIM
66
+ β”‚Β Β  └── <X>F
67
+ β”‚Β Β  β”œβ”€β”€ CAD
68
+ β”‚Β Β  β”‚Β Β  └── <X>F.dxf
69
+ β”‚Β Β  └── mesh
70
+ β”‚Β Β  β”œβ”€β”€ columns.ply
71
+ β”‚Β Β  β”œβ”€β”€ doors.ply
72
+ β”‚Β Β  β”œβ”€β”€ floors.ply
73
+ β”‚Β Β  └── walls.ply
74
+ β”œβ”€β”€ calibration_files
75
+ β”‚Β Β  β”œβ”€β”€ cam_intrinsics.txt
76
+ β”‚Β Β  └── cam_to_lidar.txt
77
+ └── sensor_data
78
+ └── <X>F_Region<Y>
79
+ β”œβ”€β”€ images
80
+ β”‚Β Β  β”œβ”€β”€ data
81
+ β”‚Β Β  β”‚Β Β  └── <frame_id>.png
82
+ β”‚Β Β  └── timestamps.txt
83
+ β”œβ”€β”€ map
84
+ β”‚Β Β  β”œβ”€β”€ data
85
+ β”‚Β Β  β”‚Β Β  β”œβ”€β”€ colorized.las
86
+ β”‚Β Β  β”‚Β Β  └── uncolorized.ply
87
+ β”‚Β Β  └── pose_map_to_bim.txt
88
+ β”œβ”€β”€ points
89
+ β”‚Β Β  β”œβ”€β”€ data
90
+ β”‚Β Β  β”‚Β Β  └── <frame_id>.pcd
91
+ β”‚Β Β  β”œβ”€β”€ pose_frame_to_bim.txt
92
+ β”‚Β Β  └── timestamps.txt
93
+ β”œβ”€β”€ rosbag
94
+ β”‚Β Β  └── data_<x>.bag
95
+ └── submap
96
+ ��── data
97
+ β”‚Β Β  └── <submap_id>.pcd
98
+ └── pose_submap_to_bim.txt
99
+ ```
100
+
101
+
102
+ <!-- ## Multi-session SLAM Dataset
103
+ <div align="left">
104
+ <img src="assets/1F.png" width=28.6% />
105
+ <img src="assets/3Fto5F.png" width=30.6% />
106
+ <img src="assets/colormap.gif" width = 39.3% >
107
+ </div> -->
108
+
109
+ ## Data Acquisition Platform
110
+ The handheld sensor suite is illustrated in the Figure 1. A more detailed summary of the characteristics can be found in the Table 1.
111
+ <div align="left">
112
+ <img src="assets/sensor_suite.png" width=38.3% />
113
+ <img src="assets/collection.gif" width = 60.6% >
114
+ </div>
115
+
116
+ ## Qualitative Results on SLABIM
117
+ ### Global LiDAR-to-BIM Registration
118
+ Global LiDAR-to-BIM registration aims to estimate a transformation from scratch between the LiDAR submap and the BIM coordinate system. A robot can localize itself globally by aligning the online built submap to the BIM.
119
+
120
+ <div align = "center"><img src="assets/registration.gif" width="35%" /> </div>
121
+
122
+ ### Robot Pose Tracking on BIM
123
+ Different from LiDAR-to-BIM, Pose tracking requires estimating poses given the initial state and sequential measurements.
124
+
125
+ <div align = "center"><img src="assets/pose_tracking.gif" width="35%" /> </div>
126
+
127
+ ### Semantic Mapping
128
+ We deploy [FM-Fusion](https://arxiv.org/abs/2402.04555)[1] on SLABIM. For the ground truth, we convert the HKUST BIM into semantic point cloud maps using the semantic tags in BIM. Both maps contain four semantic categories: floor, wall, door, and
129
+ column, the common elements in indoor environments
130
+ <div align = "center"><img src="assets/semantic_mapping.gif" width="35%" /> </div>
131
+
132
+ [1] C. Liu, K. Wang, J. Shi, Z. Qiao, and S. Shen, β€œFm-fusion: Instance-
133
+ aware semantic mapping boosted by vision-language foundation mod-
134
+ els,” IEEE Robotics and Automation Letters, 2024
135
+ ## Acknowledgements
136
+ We sincerely thank Prof. Jack C. P. Cheng for generously
137
+ providing the original HKUST BIM files.
138
+
139
+ <!-- ## Citation
140
+ If you find SLABIM is useful in your research or applications, please consider giving us a star 🌟 and citing it by the following BibTeX entry. -->
141
+ <!-- ```bibtex
142
+ @ARTICLE{qiao2024g3reg,
143
+ author={Qiao, Zhijian and Yu, Zehuan and Jiang, Binqian and Yin, Huan and Shen, Shaojie},
144
+ journal={IEEE Transactions on Automation Science and Engineering},
145
+ title={G3Reg: Pyramid Graph-Based Global Registration Using Gaussian Ellipsoid Model},
146
+ year={2024},
147
+ volume={},
148
+ number={},
149
+ pages={1-17},
150
+ keywords={Point cloud compression;Three-dimensional displays;Laser radar;Ellipsoids;Robustness;Upper bound;Uncertainty;Global registration;point cloud;LiDAR;graph theory;robust estimation},
151
+ doi={10.1109/TASE.2024.3394519}}
152
+ ```
153
+ ```bibtex
154
+ @inproceedings{qiao2023pyramid,
155
+ title={Pyramid Semantic Graph-based Global Point Cloud Registration with Low Overlap},
156
+ author={Qiao, Zhijian and Yu, Zehuan and Yin, Huan and Shen, Shaojie},
157
+ booktitle={2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)},
158
+ pages={11202--11209},
159
+ year={2023},
160
+ organization={IEEE}
161
+ }
162
+ ``` -->
assets/collection.gif ADDED

Git LFS Details

  • SHA256: 364ead36619634d1d39338f4bd156c05adc8cad0d23d8ad6b85ccc3b106735ad
  • Pointer size: 133 Bytes
  • Size of remote file: 10.6 MB
assets/logo.png ADDED

Git LFS Details

  • SHA256: 26dceaa3a19aa30bd3133520e3a5ce6897126ddc04d1a17973ba47d4cb1b3dcd
  • Pointer size: 130 Bytes
  • Size of remote file: 45.7 kB
assets/overview.png ADDED

Git LFS Details

  • SHA256: 43566a21dcde1894204f35716762eba5781807b1e01812acced6dd85144901fc
  • Pointer size: 132 Bytes
  • Size of remote file: 1.07 MB
assets/pose_tracking.gif ADDED

Git LFS Details

  • SHA256: 07b821f09600f1555533d50721b7dbe5f8a919e93adfcf102ff82a1e663b2b72
  • Pointer size: 132 Bytes
  • Size of remote file: 7.87 MB
assets/registration.gif ADDED

Git LFS Details

  • SHA256: 5193bfe2c0467214c1311f5be5ddf725540ccdf45acd2259092c908064778a0f
  • Pointer size: 131 Bytes
  • Size of remote file: 514 kB
assets/semantic_mapping.gif ADDED

Git LFS Details

  • SHA256: 13afbea3940135745ca43d54692770cece7d74cd98a9a64fc43183aa3d17cfe8
  • Pointer size: 132 Bytes
  • Size of remote file: 5.09 MB
assets/sensor_suite.png ADDED

Git LFS Details

  • SHA256: 1cf9ab7d3ec6add86fcc8e5f481c0b42a7326c7c4b687e23015778c5dbb1c30e
  • Pointer size: 131 Bytes
  • Size of remote file: 442 kB