Upload README
Browse files- README.md +162 -0
- assets/collection.gif +3 -0
- assets/logo.png +3 -0
- assets/overview.png +3 -0
- assets/pose_tracking.gif +3 -0
- assets/registration.gif +3 -0
- assets/semantic_mapping.gif +3 -0
- assets/sensor_suite.png +3 -0
README.md
ADDED
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# <div align = "center"><img src="assets/logo.png" width="5%" height="5%" /> SLABIM: </div>
|
2 |
+
|
3 |
+
## <div align = "center">A SLAM-BIM Coupled Dataset in HKUST Main Building</div>
|
4 |
+
|
5 |
+
<div align="center">
|
6 |
+
<a href="https://arxiv.org/abs/2502.16856"><img src="https://img.shields.io/badge/Paper-IEEE ICRA-004088.svg"/></a>
|
7 |
+
<!-- <a href="https://ieeexplore.ieee.org/document/10518010"><img src="https://img.shields.io/badge/Paper-ICRA-blue"/></a>
|
8 |
+
<a href="https://arxiv.org/abs/2308.11573"><img src="https://img.shields.io/badge/ArXiv-2308.11573-004088.svg"/></a> -->
|
9 |
+
<a href="https://www.youtube.com/watch?v=7NckgY15ABQ">
|
10 |
+
<img alt="Youtube" src="https://img.shields.io/badge/Video-Youtube-red"/>
|
11 |
+
</a>
|
12 |
+
<a ><img alt="PRs-Welcome" src="https://img.shields.io/badge/PRs-Welcome-red" /></a>
|
13 |
+
<a href="https://github.com/HKUST-Aerial-Robotics/SLABIM/issues">
|
14 |
+
<img alt="Issues" src="https://img.shields.io/github/issues/HKUST-Aerial-Robotics/SLABIM?color=0088ff"/>
|
15 |
+
</a>
|
16 |
+
</div>
|
17 |
+
|
18 |
+
> Haoming Huang, [Zhijian Qiao](https://qiaozhijian.github.io/), Zehuan Yu, Chuhao Liu, [Shaojie Shen](https://uav.hkust.edu.hk/group/), Fumin Zhang and [Huan Yin](https://huanyin94.github.io/)
|
19 |
+
>
|
20 |
+
> Submitted to 2025 IEEE International Conference on Robotics & Automation
|
21 |
+
|
22 |
+
### News
|
23 |
+
* **`17 Feb 2025`:** Download Links Updated.
|
24 |
+
* **`28 Jan 2025`:** Accepted by ICRA 2025.
|
25 |
+
* **`15 Sep 2024`:** We submit our paper to [IEEE ICRA](https://2025.ieee-icra.org/).
|
26 |
+
|
27 |
+
## Download
|
28 |
+
**Please click these below links to download:**
|
29 |
+
|
30 |
+
+ [**Calibration Files**](https://hkustconnect-my.sharepoint.com/:f:/g/personal/hhuangce_connect_ust_hk/EsRF4KSE2QNJhNe5pkGnlhsBjF2A4Y0_t6DhoPypFN3TnA)
|
31 |
+
+ [**BIM**](https://hkustconnect-my.sharepoint.com/:f:/g/personal/hhuangce_connect_ust_hk/EsFggIKoN01Hk6ZIKSrCLa4BuvIo4ut4I_Da9WmEgvxMqQ)
|
32 |
+
+ [**Sensor Data**](https://hkustconnect-my.sharepoint.com/:f:/g/personal/hhuangce_connect_ust_hk/Eu9IRQfbPJpGnTtmjgkrrigBopCUTe2gBJDAp8m5vqZZRw)
|
33 |
+
## Abstract
|
34 |
+
<div align="center"><h4>SLABIM is an open-sourced SLAM dataset that couples with BIM (Building Information Modeling).</h4></div>
|
35 |
+
|
36 |
+
<div align = "center"><img src="assets/overview.png" width="95%" /> </div>
|
37 |
+
|
38 |
+
**Features**:
|
39 |
+
+ **Large-scale Building Information Modeling**: The BIM model of this dataset is a part of the digital twin project in HKUST,
|
40 |
+
featuring various types of offices, classrooms, lounges, and corridors.
|
41 |
+
+ **Multi-session & Multi-sensor Data**: We collect 12 sessions across different floors and regions. These sessions encompass various indoor scenarios.
|
42 |
+
+ **Dataset Validation**: To demonstrate the practicality of SLABIM, we test three different tasks: (1) LiDAR-to-BIM registration, and (2) Robot pose tracking on BIM and (3) Semantic mapping.
|
43 |
+
|
44 |
+
## Dataset Structure
|
45 |
+
1. ```BIM/``` contains CAD files (.dxf) and mesh files (.ply) exported from the original BIM models, organized by storey and semantic tags. Users can sample
|
46 |
+
the meshes at specific densities to obtain point clouds, offering flexibility for various robotic tasks.
|
47 |
+
|
48 |
+
2. ```calibration files``` provide intrinsic camera parameters and the extrinsic parameters to the LiDAR.
|
49 |
+
|
50 |
+
3. In ```sensor data/``` directory, each session is named
|
51 |
+
```<X>F Region<Y>```, with X=1,3,4,5 and Y=1,2,3
|
52 |
+
indicating the storey and region of collection, such
|
53 |
+
as ```3F Region1```. This directory contains the **images**
|
54 |
+
and **points** produced by **camera** and **LiDAR**.
|
55 |
+
|
56 |
+
4. ```data <x>.bag```, x=0,1,2... is the **rosbag** encoding the raw information, which can be parsed using ROS tools.
|
57 |
+
|
58 |
+
5. ```sensor data/``` also contains the maps generated by SLAM, including **submap** for the LiDAR-to-BIM registration and **optimized map** by the offline mapping system.
|
59 |
+
|
60 |
+
6. ```pose_frame_to_bim.txt```, ```pose_map_to_bim.txt``` and ```pose_submap_to_bim.txt``` contains the **ground truth poses** from LiDAR scans and maps to the BIM coordinate. These poses are finely tuned using a manually
|
61 |
+
provided initial guess and local point cloud alignment.
|
62 |
+
|
63 |
+
```
|
64 |
+
SLABIM
|
65 |
+
βββ BIM
|
66 |
+
βΒ Β βββ <X>F
|
67 |
+
βΒ Β βββ CAD
|
68 |
+
βΒ Β βΒ Β βββ <X>F.dxf
|
69 |
+
βΒ Β βββ mesh
|
70 |
+
βΒ Β βββ columns.ply
|
71 |
+
βΒ Β βββ doors.ply
|
72 |
+
βΒ Β βββ floors.ply
|
73 |
+
βΒ Β βββ walls.ply
|
74 |
+
βββ calibration_files
|
75 |
+
βΒ Β βββ cam_intrinsics.txt
|
76 |
+
βΒ Β βββ cam_to_lidar.txt
|
77 |
+
βββ sensor_data
|
78 |
+
βββ <X>F_Region<Y>
|
79 |
+
βββ images
|
80 |
+
βΒ Β βββ data
|
81 |
+
βΒ Β βΒ Β βββ <frame_id>.png
|
82 |
+
βΒ Β βββ timestamps.txt
|
83 |
+
βββ map
|
84 |
+
βΒ Β βββ data
|
85 |
+
βΒ Β βΒ Β βββ colorized.las
|
86 |
+
βΒ Β βΒ Β βββ uncolorized.ply
|
87 |
+
βΒ Β βββ pose_map_to_bim.txt
|
88 |
+
βββ points
|
89 |
+
βΒ Β βββ data
|
90 |
+
βΒ Β βΒ Β βββ <frame_id>.pcd
|
91 |
+
βΒ Β βββ pose_frame_to_bim.txt
|
92 |
+
βΒ Β βββ timestamps.txt
|
93 |
+
βββ rosbag
|
94 |
+
βΒ Β βββ data_<x>.bag
|
95 |
+
βββ submap
|
96 |
+
οΏ½οΏ½ββ data
|
97 |
+
βΒ Β βββ <submap_id>.pcd
|
98 |
+
βββ pose_submap_to_bim.txt
|
99 |
+
```
|
100 |
+
|
101 |
+
|
102 |
+
<!-- ## Multi-session SLAM Dataset
|
103 |
+
<div align="left">
|
104 |
+
<img src="assets/1F.png" width=28.6% />
|
105 |
+
<img src="assets/3Fto5F.png" width=30.6% />
|
106 |
+
<img src="assets/colormap.gif" width = 39.3% >
|
107 |
+
</div> -->
|
108 |
+
|
109 |
+
## Data Acquisition Platform
|
110 |
+
The handheld sensor suite is illustrated in the Figure 1. A more detailed summary of the characteristics can be found in the Table 1.
|
111 |
+
<div align="left">
|
112 |
+
<img src="assets/sensor_suite.png" width=38.3% />
|
113 |
+
<img src="assets/collection.gif" width = 60.6% >
|
114 |
+
</div>
|
115 |
+
|
116 |
+
## Qualitative Results on SLABIM
|
117 |
+
### Global LiDAR-to-BIM Registration
|
118 |
+
Global LiDAR-to-BIM registration aims to estimate a transformation from scratch between the LiDAR submap and the BIM coordinate system. A robot can localize itself globally by aligning the online built submap to the BIM.
|
119 |
+
|
120 |
+
<div align = "center"><img src="assets/registration.gif" width="35%" /> </div>
|
121 |
+
|
122 |
+
### Robot Pose Tracking on BIM
|
123 |
+
Different from LiDAR-to-BIM, Pose tracking requires estimating poses given the initial state and sequential measurements.
|
124 |
+
|
125 |
+
<div align = "center"><img src="assets/pose_tracking.gif" width="35%" /> </div>
|
126 |
+
|
127 |
+
### Semantic Mapping
|
128 |
+
We deploy [FM-Fusion](https://arxiv.org/abs/2402.04555)[1] on SLABIM. For the ground truth, we convert the HKUST BIM into semantic point cloud maps using the semantic tags in BIM. Both maps contain four semantic categories: floor, wall, door, and
|
129 |
+
column, the common elements in indoor environments
|
130 |
+
<div align = "center"><img src="assets/semantic_mapping.gif" width="35%" /> </div>
|
131 |
+
|
132 |
+
[1] C. Liu, K. Wang, J. Shi, Z. Qiao, and S. Shen, βFm-fusion: Instance-
|
133 |
+
aware semantic mapping boosted by vision-language foundation mod-
|
134 |
+
els,β IEEE Robotics and Automation Letters, 2024
|
135 |
+
## Acknowledgements
|
136 |
+
We sincerely thank Prof. Jack C. P. Cheng for generously
|
137 |
+
providing the original HKUST BIM files.
|
138 |
+
|
139 |
+
<!-- ## Citation
|
140 |
+
If you find SLABIM is useful in your research or applications, please consider giving us a star π and citing it by the following BibTeX entry. -->
|
141 |
+
<!-- ```bibtex
|
142 |
+
@ARTICLE{qiao2024g3reg,
|
143 |
+
author={Qiao, Zhijian and Yu, Zehuan and Jiang, Binqian and Yin, Huan and Shen, Shaojie},
|
144 |
+
journal={IEEE Transactions on Automation Science and Engineering},
|
145 |
+
title={G3Reg: Pyramid Graph-Based Global Registration Using Gaussian Ellipsoid Model},
|
146 |
+
year={2024},
|
147 |
+
volume={},
|
148 |
+
number={},
|
149 |
+
pages={1-17},
|
150 |
+
keywords={Point cloud compression;Three-dimensional displays;Laser radar;Ellipsoids;Robustness;Upper bound;Uncertainty;Global registration;point cloud;LiDAR;graph theory;robust estimation},
|
151 |
+
doi={10.1109/TASE.2024.3394519}}
|
152 |
+
```
|
153 |
+
```bibtex
|
154 |
+
@inproceedings{qiao2023pyramid,
|
155 |
+
title={Pyramid Semantic Graph-based Global Point Cloud Registration with Low Overlap},
|
156 |
+
author={Qiao, Zhijian and Yu, Zehuan and Yin, Huan and Shen, Shaojie},
|
157 |
+
booktitle={2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)},
|
158 |
+
pages={11202--11209},
|
159 |
+
year={2023},
|
160 |
+
organization={IEEE}
|
161 |
+
}
|
162 |
+
``` -->
|
assets/collection.gif
ADDED
![]() |
Git LFS Details
|
assets/logo.png
ADDED
![]() |
Git LFS Details
|
assets/overview.png
ADDED
![]() |
Git LFS Details
|
assets/pose_tracking.gif
ADDED
![]() |
Git LFS Details
|
assets/registration.gif
ADDED
![]() |
Git LFS Details
|
assets/semantic_mapping.gif
ADDED
![]() |
Git LFS Details
|
assets/sensor_suite.png
ADDED
![]() |
Git LFS Details
|