|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: t5-small-finetuned-acbsql |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# t5-small-finetuned-acbsql |
|
|
|
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1089 |
|
- Rouge2 Precision: 0.5759 |
|
- Rouge2 Recall: 0.2135 |
|
- Rouge2 Fmeasure: 0.306 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | |
|
|:-------------:|:-----:|:----:|:---------------:|:----------------:|:-------------:|:---------------:| |
|
| No log | 1.0 | 79 | 0.3504 | 0.3762 | 0.1435 | 0.2038 | |
|
| No log | 2.0 | 158 | 0.2444 | 0.4303 | 0.1587 | 0.2278 | |
|
| No log | 3.0 | 237 | 0.1943 | 0.4982 | 0.1802 | 0.2612 | |
|
| No log | 4.0 | 316 | 0.1622 | 0.5267 | 0.1882 | 0.2741 | |
|
| No log | 5.0 | 395 | 0.1423 | 0.5596 | 0.2042 | 0.2946 | |
|
| No log | 6.0 | 474 | 0.1284 | 0.5718 | 0.2118 | 0.3038 | |
|
| 0.365 | 7.0 | 553 | 0.1199 | 0.574 | 0.2119 | 0.3042 | |
|
| 0.365 | 8.0 | 632 | 0.1139 | 0.5761 | 0.2135 | 0.3059 | |
|
| 0.365 | 9.0 | 711 | 0.1100 | 0.5757 | 0.2134 | 0.3057 | |
|
| 0.365 | 10.0 | 790 | 0.1089 | 0.5759 | 0.2135 | 0.306 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.28.0 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.12.0 |
|
- Tokenizers 0.13.3 |
|
|