File size: 2,424 Bytes
73b086a bb9a073 73b086a bb9a073 73b086a bb9a073 73b086a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: t5-small-finetuned-acbsql
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-small-finetuned-acbsql
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1089
- Rouge2 Precision: 0.5759
- Rouge2 Recall: 0.2135
- Rouge2 Fmeasure: 0.306
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure |
|:-------------:|:-----:|:----:|:---------------:|:----------------:|:-------------:|:---------------:|
| No log | 1.0 | 79 | 0.3504 | 0.3762 | 0.1435 | 0.2038 |
| No log | 2.0 | 158 | 0.2444 | 0.4303 | 0.1587 | 0.2278 |
| No log | 3.0 | 237 | 0.1943 | 0.4982 | 0.1802 | 0.2612 |
| No log | 4.0 | 316 | 0.1622 | 0.5267 | 0.1882 | 0.2741 |
| No log | 5.0 | 395 | 0.1423 | 0.5596 | 0.2042 | 0.2946 |
| No log | 6.0 | 474 | 0.1284 | 0.5718 | 0.2118 | 0.3038 |
| 0.365 | 7.0 | 553 | 0.1199 | 0.574 | 0.2119 | 0.3042 |
| 0.365 | 8.0 | 632 | 0.1139 | 0.5761 | 0.2135 | 0.3059 |
| 0.365 | 9.0 | 711 | 0.1100 | 0.5757 | 0.2134 | 0.3057 |
| 0.365 | 10.0 | 790 | 0.1089 | 0.5759 | 0.2135 | 0.306 |
### Framework versions
- Transformers 4.28.0
- Pytorch 2.0.1+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3
|