|
--- |
|
library_name: peft |
|
base_model: bigcode/starcoderbase-7b |
|
license: bigcode-openrail-m |
|
--- |
|
|
|
# Model Card for Model ID |
|
|
|
First pass at finetuning `bigcode/starcoderbase-7b` on the Elixir language subset of `bigcode/the-stack-dedup` |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
|
|
- **Developed by:** [More Information Needed] |
|
- **Shared by [optional]:** [More Information Needed] |
|
- **Model type:** [More Information Needed] |
|
- **Language(s) (NLP):** [More Information Needed] |
|
- **License:** [More Information Needed] |
|
- **Finetuned from model [optional]:** [More Information Needed] |
|
|
|
### Model Sources [optional] |
|
|
|
<!-- Provide the basic links for the model. --> |
|
|
|
- **Repository:** [arpieb/peft-lora-starcoderbase-7b-personal-copilot-elixir](https://huggingface.co/arpieb/peft-lora-starcoderbase-7b-personal-copilot-elixir) |
|
|
|
## Uses |
|
|
|
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> |
|
|
|
### Direct Use |
|
|
|
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> |
|
|
|
[More Information Needed] |
|
|
|
### Downstream Use [optional] |
|
|
|
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> |
|
|
|
[More Information Needed] |
|
|
|
### Out-of-Scope Use |
|
|
|
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> |
|
|
|
[More Information Needed] |
|
|
|
## Bias, Risks, and Limitations |
|
|
|
<!-- This section is meant to convey both technical and sociotechnical limitations. --> |
|
|
|
[More Information Needed] |
|
|
|
### Recommendations |
|
|
|
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> |
|
|
|
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. |
|
|
|
## How to Get Started with the Model |
|
|
|
Use the code below to get started with the model. |
|
|
|
[More Information Needed] |
|
|
|
## Training Details |
|
|
|
### Training Data |
|
|
|
[bigcode/the-stack-dedup](https://huggingface.co/datasets/bigcode/the-stack-dedup) |
|
|
|
### Training Procedure |
|
|
|
Based on the finetuning workflow detailed in [Personal Copilot: Train Your Own Coding Assistant](https://huggingface.co/blog/personal-copilot), specifically the training code found under `personal_copilot/training` in the repo [pacman100/DHS-LLM-Workshop](https://github.com/pacman100/DHS-LLM-Workshop). |
|
|
|
Script used to train the model: |
|
|
|
```bash |
|
python train.py \ |
|
--model_path "bigcode/starcoderbase-7b" \ |
|
--dataset_name "bigcode/the-stack-dedup" \ |
|
--subset "data/elixir" \ |
|
--data_column "content" \ |
|
--split "train" \ |
|
--seq_length 2048 \ |
|
--max_steps 2000 \ |
|
--batch_size 4 \ |
|
--gradient_accumulation_steps 4 \ |
|
--learning_rate 5e-4 \ |
|
--lr_scheduler_type "cosine" \ |
|
--weight_decay 0.01 \ |
|
--num_warmup_steps 30 \ |
|
--eval_freq 100 \ |
|
--save_freq 100 \ |
|
--log_freq 25 \ |
|
--num_workers 4 \ |
|
--bf16 \ |
|
--no_fp16 \ |
|
--output_dir "peft-lora-starcoderbase-7b-personal-copilot-rtx4090-elixir" \ |
|
--push_to_hub "false" \ |
|
--fim_rate 0.5 \ |
|
--fim_spm_rate 0.5 \ |
|
--use_flash_attn \ |
|
--use_peft_lora \ |
|
--lora_r 32 \ |
|
--lora_alpha 64 \ |
|
--lora_dropout 0.0 \ |
|
--lora_target_modules "c_proj,c_attn,q_attn,c_fc,c_proj" \ |
|
--use_4bit_qunatization \ |
|
--use_nested_quant \ |
|
--bnb_4bit_compute_dtype "bfloat16" |
|
``` |
|
|
|
#### Preprocessing |
|
|
|
N/A |
|
|
|
|
|
#### Training Hyperparameters |
|
|
|
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> |
|
|
|
#### Speeds, Sizes, Times [optional] |
|
|
|
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> |
|
|
|
[More Information Needed] |
|
|
|
## Evaluation |
|
|
|
<!-- This section describes the evaluation protocols and provides the results. --> |
|
|
|
### Testing Data, Factors & Metrics |
|
|
|
#### Testing Data |
|
|
|
<!-- This should link to a Data Card if possible. --> |
|
|
|
[More Information Needed] |
|
|
|
#### Factors |
|
|
|
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> |
|
|
|
[More Information Needed] |
|
|
|
#### Metrics |
|
|
|
<!-- These are the evaluation metrics being used, ideally with a description of why. --> |
|
|
|
[More Information Needed] |
|
|
|
### Results |
|
|
|
[More Information Needed] |
|
|
|
#### Summary |
|
|
|
|
|
|
|
## Model Examination [optional] |
|
|
|
<!-- Relevant interpretability work for the model goes here --> |
|
|
|
[More Information Needed] |
|
|
|
## Environmental Impact |
|
|
|
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). |
|
|
|
NOTE the RTX-4090 is not available in the above estimator; will update once there is data available. |
|
|
|
- **Hardware Type:** NVIDIA GeForce RTX 4090 |
|
- **Hours used:** ~9h (actual run timing lost :facepalm:) |
|
- **Cloud Provider:** Local rig |
|
- **Compute Region:** N/A |
|
- **Carbon Emitted:** N/A |
|
|
|
## Technical Specifications [optional] |
|
|
|
### Model Architecture and Objective |
|
|
|
[More Information Needed] |
|
|
|
### Compute Infrastructure |
|
|
|
#### Hardware |
|
|
|
Local DL rig with the following configuration: |
|
|
|
- NVIDIA GeForce RTX 4090 |
|
- Intel(R) Core(TM) i7-7800X CPU @ 3.50GHz |
|
- 128GB RAM |
|
|
|
|
|
#### Software |
|
|
|
[More Information Needed] |
|
|
|
## Citation [optional] |
|
|
|
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> |
|
|
|
**BibTeX:** |
|
|
|
[More Information Needed] |
|
|
|
**APA:** |
|
|
|
[More Information Needed] |
|
|
|
## Glossary [optional] |
|
|
|
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> |
|
|
|
[More Information Needed] |
|
|
|
## More Information [optional] |
|
|
|
[More Information Needed] |
|
|
|
## Model Card Authors [optional] |
|
|
|
[More Information Needed] |
|
|
|
## Model Card Contact |
|
|
|
[More Information Needed] |
|
|
|
|
|
## Training procedure |
|
|
|
|
|
The following `bitsandbytes` quantization config was used during training: |
|
- quant_method: bitsandbytes |
|
- load_in_8bit: False |
|
- load_in_4bit: True |
|
- llm_int8_threshold: 6.0 |
|
- llm_int8_skip_modules: None |
|
- llm_int8_enable_fp32_cpu_offload: False |
|
- llm_int8_has_fp16_weight: False |
|
- bnb_4bit_quant_type: nf4 |
|
- bnb_4bit_use_double_quant: True |
|
- bnb_4bit_compute_dtype: bfloat16 |
|
|
|
### Framework versions |
|
|
|
|
|
- PEFT 0.6.2.dev0 |
|
|