File size: 6,427 Bytes
b5b5b92 0a3d3d1 b5b5b92 0a3d3d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
---
library_name: peft
base_model: bigcode/starcoderbase-7b
license: bigcode-openrail-m
---
# Model Card for Model ID
First pass at finetuning `bigcode/starcoderbase-7b` on the Elixir language subset of `bigcode/the-stack-dedup`
## Model Details
### Model Description
- **Developed by:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [arpieb/peft-lora-starcoderbase-7b-personal-copilot-elixir](https://huggingface.co/arpieb/peft-lora-starcoderbase-7b-personal-copilot-elixir)
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
[bigcode/the-stack-dedup](https://huggingface.co/datasets/bigcode/the-stack-dedup)
### Training Procedure
Based on the finetuning workflow detailed in [Personal Copilot: Train Your Own Coding Assistant](https://huggingface.co/blog/personal-copilot), specifically the training code found under `personal_copilot/training` in the repo [pacman100/DHS-LLM-Workshop](https://github.com/pacman100/DHS-LLM-Workshop).
Script used to train the model:
```bash
python train.py \
--model_path "bigcode/starcoderbase-7b" \
--dataset_name "bigcode/the-stack-dedup" \
--subset "data/elixir" \
--data_column "content" \
--split "train" \
--seq_length 2048 \
--max_steps 2000 \
--batch_size 4 \
--gradient_accumulation_steps 4 \
--learning_rate 5e-4 \
--lr_scheduler_type "cosine" \
--weight_decay 0.01 \
--num_warmup_steps 30 \
--eval_freq 100 \
--save_freq 100 \
--log_freq 25 \
--num_workers 4 \
--bf16 \
--no_fp16 \
--output_dir "peft-lora-starcoderbase-7b-personal-copilot-rtx4090-elixir" \
--push_to_hub "false" \
--fim_rate 0.5 \
--fim_spm_rate 0.5 \
--use_flash_attn \
--use_peft_lora \
--lora_r 32 \
--lora_alpha 64 \
--lora_dropout 0.0 \
--lora_target_modules "c_proj,c_attn,q_attn,c_fc,c_proj" \
--use_4bit_qunatization \
--use_nested_quant \
--bnb_4bit_compute_dtype "bfloat16"
```
#### Preprocessing
N/A
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Data Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
NOTE the RTX-4090 is not available in the above estimator; will update once there is data available.
- **Hardware Type:** NVIDIA GeForce RTX 4090
- **Hours used:** ~9h (actual run timing lost :facepalm:)
- **Cloud Provider:** Local rig
- **Compute Region:** N/A
- **Carbon Emitted:** N/A
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
#### Hardware
Local DL rig with the following configuration:
- NVIDIA GeForce RTX 4090
- Intel(R) Core(TM) i7-7800X CPU @ 3.50GHz
- 128GB RAM
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Framework versions
- PEFT 0.6.2.dev0
|