|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: answerdotai/ModernBERT-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: modernbert-disfluency |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# modernbert-disfluency |
|
|
|
This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1619 |
|
- Precision: 0.8263 |
|
- Recall: 0.7602 |
|
- F1: 0.7919 |
|
- Accuracy: 0.9556 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 4e-05 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 128 |
|
- seed: 42 |
|
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 8 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 1.0 | 49 | 0.3026 | 0.8905 | 0.5 | 0.6404 | 0.9178 | |
|
| No log | 2.0 | 98 | 0.2426 | 0.8512 | 0.5861 | 0.6942 | 0.9340 | |
|
| 0.4156 | 3.0 | 147 | 0.1860 | 0.8020 | 0.6721 | 0.7313 | 0.9464 | |
|
| 0.4156 | 4.0 | 196 | 0.1633 | 0.8263 | 0.7602 | 0.7919 | 0.9556 | |
|
| 0.1117 | 5.0 | 245 | 0.1810 | 0.8025 | 0.7992 | 0.8008 | 0.9554 | |
|
| 0.1117 | 6.0 | 294 | 0.1832 | 0.782 | 0.8012 | 0.7915 | 0.9561 | |
|
| 0.0401 | 7.0 | 343 | 0.1956 | 0.8043 | 0.7746 | 0.7891 | 0.9554 | |
|
| 0.0401 | 8.0 | 392 | 0.1973 | 0.7864 | 0.7848 | 0.7856 | 0.9563 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.48.1 |
|
- Pytorch 2.5.1+cu121 |
|
- Datasets 3.2.0 |
|
- Tokenizers 0.21.0 |
|
|