arielcerdap's picture
Final model after training
77ced46 verified
metadata
library_name: transformers
license: apache-2.0
base_model: answerdotai/ModernBERT-base
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: modernbert-disfluency
    results: []

modernbert-disfluency

This model is a fine-tuned version of answerdotai/ModernBERT-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1619
  • Precision: 0.8263
  • Recall: 0.7602
  • F1: 0.7919
  • Accuracy: 0.9556

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4e-05
  • train_batch_size: 64
  • eval_batch_size: 128
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 8

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 49 0.3026 0.8905 0.5 0.6404 0.9178
No log 2.0 98 0.2426 0.8512 0.5861 0.6942 0.9340
0.4156 3.0 147 0.1860 0.8020 0.6721 0.7313 0.9464
0.4156 4.0 196 0.1633 0.8263 0.7602 0.7919 0.9556
0.1117 5.0 245 0.1810 0.8025 0.7992 0.8008 0.9554
0.1117 6.0 294 0.1832 0.782 0.8012 0.7915 0.9561
0.0401 7.0 343 0.1956 0.8043 0.7746 0.7891 0.9554
0.0401 8.0 392 0.1973 0.7864 0.7848 0.7856 0.9563

Framework versions

  • Transformers 4.48.1
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0