|
--- |
|
base_model: |
|
- meta-llama/Llama-3.2-90B-Vision-Instruct |
|
license: llama3.2 |
|
--- |
|
# Llama-3.2-90B-Vision-Instruct-FP8-KV |
|
- ## Introduction |
|
This model was created by applying [Quark](https://quark.docs.amd.com/latest/index.html) with calibration samples from Pile dataset. |
|
- ## Quantization Stragegy |
|
- ***Weight***: FP8 symmetric per-tensor |
|
- ***Activation***: FP8 symmetric per-tensor |
|
- ***KV Cache***: FP8 symmetric per-tensor |
|
- ***Note***: The Llama-3.2-90B-Vision-Instruct consists of two parts: the language model (MllamaForCausalLM) and the vision model (MllamaVisionModel). Here, we only quantize the MllamaForCausalLM. |
|
- ## Quick Start |
|
1. [Download and install Quark](https://quark.docs.amd.com/latest/install.html) |
|
2. Run the quantization script in the example folder using the following command line: |
|
```sh |
|
export MODEL_DIR = [local model checkpoint folder] or meta-llama/Llama-3.2-90B-Vision-Instruct |
|
# single GPU |
|
python3 quantize_quark.py \ |
|
--model_dir $MODEL_DIR \ |
|
--output_dir Llama-3.2-90B-Vision-Instruct-FP8-KV \ |
|
--quant_scheme w_fp8_a_fp8 \ |
|
--kv_cache_dtype fp8 \ |
|
--num_calib_data 128 \ |
|
# If model size is too large for single GPU, please use multi GPU instead. |
|
python3 quantize_quark.py \ |
|
--model_dir $MODEL_DIR \ |
|
--output_dir Llama-3.2-90B-Vision-Instruct-FP8-KV \ |
|
--quant_scheme w_fp8_a_fp8 \ |
|
--kv_cache_dtype fp8 \ |
|
--num_calib_data 128 \ |
|
<tr> |
|
<td><strong>Benchmark</strong> |
|
</td> |
|
<td><strong>Llama-3.2-90B-Vision-Instruct </strong> |
|
</td> |
|
<td><strong>Llama-3.2-90B-Vision-Instruct-FP8-KV(this model)</strong> |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>Perplexity-wikitext2 |
|
</td> |
|
<td>3.7805 |
|
</td> |
|
<td>3.8570 |
|
</td> |
|
</tr> |
|
|