metadata
base_model:
- meta-llama/Llama-3.2-90B-Vision-Instruct
license: llama3.2
Llama-3.2-90B-Vision-Instruct-FP8-KV
Introduction
This model was created by applying Quark with calibration samples from Pile dataset.Quantization Stragegy
- Weight: FP8 symmetric per-tensor
- Activation: FP8 symmetric per-tensor
- KV Cache: FP8 symmetric per-tensor
- Note: The Llama-3.2-90B-Vision-Instruct consists of two parts: the language model (MllamaForCausalLM) and the vision model (MllamaVisionModel). Here, we only quantize the MllamaForCausalLM.
Quick Start
- Download and install Quark
- Run the quantization script in the example folder using the following command line:
export MODEL_DIR = [local model checkpoint folder] or meta-llama/Llama-3.2-90B-Vision-Instruct
# single GPU
python3 quantize_quark.py \
--model_dir $MODEL_DIR \
--output_dir Llama-3.2-90B-Vision-Instruct-FP8-KV \
--quant_scheme w_fp8_a_fp8 \
--kv_cache_dtype fp8 \
--num_calib_data 128 \
# If model size is too large for single GPU, please use multi GPU instead.
python3 quantize_quark.py \
--model_dir $MODEL_DIR \
--output_dir Llama-3.2-90B-Vision-Instruct-FP8-KV \
--quant_scheme w_fp8_a_fp8 \
--kv_cache_dtype fp8 \
--num_calib_data 128 \
<tr>
<td><strong>Benchmark</strong>
</td>
<td><strong>Llama-3.2-90B-Vision-Instruct </strong>
</td>
<td><strong>Llama-3.2-90B-Vision-Instruct-FP8-KV(this model)</strong>
</td>
</tr>
<tr>
<td>Perplexity-wikitext2
</td>
<td>3.7805
</td>
<td>3.8570
</td>
</tr>