aiface's picture
Model save
f78aa93 verified
metadata
library_name: transformers
license: apache-2.0
base_model: uitnlp/CafeBERT
tags:
  - generated_from_trainer
model-index:
  - name: CafeBERT_massive_crf_v2
    results: []

CafeBERT_massive_crf_v2

This model is a fine-tuned version of uitnlp/CafeBERT on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 5.5963
  • Slot P: 0.0077
  • Slot R: 0.0082
  • Slot F1: 0.0079
  • Slot Exact Match: 0.3246
  • Intent Acc: 0.8751

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 256
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.06
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Slot P Slot R Slot F1 Slot Exact Match Intent Acc
No log 1.0 45 15.8863 0.0 0.0 0.0 0.4088 0.0733
69.6998 2.0 90 7.8039 0.0080 0.0076 0.0078 0.3438 0.5032
22.3589 3.0 135 4.5345 0.0091 0.0100 0.0095 0.3227 0.7846
10.4218 4.0 180 4.0667 0.0110 0.0111 0.0111 0.3384 0.8406
6.8199 5.0 225 3.8871 0.0092 0.0100 0.0096 0.3261 0.8623
5.4068 6.0 270 3.9234 0.0106 0.0117 0.0111 0.3212 0.8633
4.2552 7.0 315 4.0332 0.0115 0.0129 0.0122 0.3168 0.8657
3.5197 8.0 360 4.2753 0.0080 0.0088 0.0084 0.3222 0.8647
2.8374 9.0 405 4.6031 0.0099 0.0106 0.0102 0.3256 0.8701
2.2784 10.0 450 4.7992 0.0118 0.0129 0.0123 0.3237 0.8652
2.2784 11.0 495 5.0575 0.0118 0.0129 0.0123 0.3222 0.8652
1.8204 12.0 540 5.1371 0.0088 0.0094 0.0091 0.3266 0.8731
1.5073 13.0 585 5.4768 0.0109 0.0123 0.0116 0.3133 0.8677
1.275 14.0 630 5.5963 0.0077 0.0082 0.0079 0.3246 0.8751

Framework versions

  • Transformers 4.55.0
  • Pytorch 2.7.0+cu126
  • Datasets 3.6.0
  • Tokenizers 0.21.4