Model save
Browse files- README.md +80 -0
- intent_report_test.txt +75 -0
- model.safetensors +1 -1
- model_predict_test.csv +0 -0
- slot_report_test.txt +60 -0
README.md
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: apache-2.0
|
4 |
+
base_model: uitnlp/CafeBERT
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
model-index:
|
8 |
+
- name: CafeBERT_massive_crf_v2
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# CafeBERT_massive_crf_v2
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [uitnlp/CafeBERT](https://huggingface.co/uitnlp/CafeBERT) on an unknown dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 5.5963
|
20 |
+
- Slot P: 0.0077
|
21 |
+
- Slot R: 0.0082
|
22 |
+
- Slot F1: 0.0079
|
23 |
+
- Slot Exact Match: 0.3246
|
24 |
+
- Intent Acc: 0.8751
|
25 |
+
|
26 |
+
## Model description
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Intended uses & limitations
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training and evaluation data
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training procedure
|
39 |
+
|
40 |
+
### Training hyperparameters
|
41 |
+
|
42 |
+
The following hyperparameters were used during training:
|
43 |
+
- learning_rate: 5e-05
|
44 |
+
- train_batch_size: 128
|
45 |
+
- eval_batch_size: 128
|
46 |
+
- seed: 42
|
47 |
+
- gradient_accumulation_steps: 2
|
48 |
+
- total_train_batch_size: 256
|
49 |
+
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
50 |
+
- lr_scheduler_type: cosine
|
51 |
+
- lr_scheduler_warmup_ratio: 0.06
|
52 |
+
- num_epochs: 30
|
53 |
+
- mixed_precision_training: Native AMP
|
54 |
+
|
55 |
+
### Training results
|
56 |
+
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | Slot P | Slot R | Slot F1 | Slot Exact Match | Intent Acc |
|
58 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:-------:|:----------------:|:----------:|
|
59 |
+
| No log | 1.0 | 45 | 15.8863 | 0.0 | 0.0 | 0.0 | 0.4088 | 0.0733 |
|
60 |
+
| 69.6998 | 2.0 | 90 | 7.8039 | 0.0080 | 0.0076 | 0.0078 | 0.3438 | 0.5032 |
|
61 |
+
| 22.3589 | 3.0 | 135 | 4.5345 | 0.0091 | 0.0100 | 0.0095 | 0.3227 | 0.7846 |
|
62 |
+
| 10.4218 | 4.0 | 180 | 4.0667 | 0.0110 | 0.0111 | 0.0111 | 0.3384 | 0.8406 |
|
63 |
+
| 6.8199 | 5.0 | 225 | 3.8871 | 0.0092 | 0.0100 | 0.0096 | 0.3261 | 0.8623 |
|
64 |
+
| 5.4068 | 6.0 | 270 | 3.9234 | 0.0106 | 0.0117 | 0.0111 | 0.3212 | 0.8633 |
|
65 |
+
| 4.2552 | 7.0 | 315 | 4.0332 | 0.0115 | 0.0129 | 0.0122 | 0.3168 | 0.8657 |
|
66 |
+
| 3.5197 | 8.0 | 360 | 4.2753 | 0.0080 | 0.0088 | 0.0084 | 0.3222 | 0.8647 |
|
67 |
+
| 2.8374 | 9.0 | 405 | 4.6031 | 0.0099 | 0.0106 | 0.0102 | 0.3256 | 0.8701 |
|
68 |
+
| 2.2784 | 10.0 | 450 | 4.7992 | 0.0118 | 0.0129 | 0.0123 | 0.3237 | 0.8652 |
|
69 |
+
| 2.2784 | 11.0 | 495 | 5.0575 | 0.0118 | 0.0129 | 0.0123 | 0.3222 | 0.8652 |
|
70 |
+
| 1.8204 | 12.0 | 540 | 5.1371 | 0.0088 | 0.0094 | 0.0091 | 0.3266 | 0.8731 |
|
71 |
+
| 1.5073 | 13.0 | 585 | 5.4768 | 0.0109 | 0.0123 | 0.0116 | 0.3133 | 0.8677 |
|
72 |
+
| 1.275 | 14.0 | 630 | 5.5963 | 0.0077 | 0.0082 | 0.0079 | 0.3246 | 0.8751 |
|
73 |
+
|
74 |
+
|
75 |
+
### Framework versions
|
76 |
+
|
77 |
+
- Transformers 4.55.0
|
78 |
+
- Pytorch 2.7.0+cu126
|
79 |
+
- Datasets 3.6.0
|
80 |
+
- Tokenizers 0.21.4
|
intent_report_test.txt
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
precision recall f1-score support
|
2 |
+
|
3 |
+
0 0.90 0.97 0.93 88
|
4 |
+
1 0.85 0.94 0.89 36
|
5 |
+
2 1.00 0.94 0.97 35
|
6 |
+
3 0.91 0.86 0.88 35
|
7 |
+
4 0.77 0.92 0.84 26
|
8 |
+
5 0.00 0.00 0.00 1
|
9 |
+
6 0.77 0.79 0.78 43
|
10 |
+
7 1.00 0.50 0.67 4
|
11 |
+
8 1.00 0.83 0.91 18
|
12 |
+
9 0.96 0.92 0.94 72
|
13 |
+
10 0.97 0.97 0.97 39
|
14 |
+
11 0.83 1.00 0.91 15
|
15 |
+
12 0.71 0.55 0.62 169
|
16 |
+
13 0.95 0.96 0.95 156
|
17 |
+
14 0.79 0.85 0.81 13
|
18 |
+
15 0.71 0.83 0.77 12
|
19 |
+
16 0.83 0.86 0.84 22
|
20 |
+
17 0.65 0.85 0.73 26
|
21 |
+
18 0.89 0.89 0.89 27
|
22 |
+
19 0.78 1.00 0.87 31
|
23 |
+
20 0.88 0.88 0.88 41
|
24 |
+
21 0.86 0.92 0.89 39
|
25 |
+
22 0.80 0.86 0.83 124
|
26 |
+
23 1.00 0.88 0.94 34
|
27 |
+
24 1.00 0.90 0.95 10
|
28 |
+
25 0.95 1.00 0.97 19
|
29 |
+
26 0.94 0.86 0.90 57
|
30 |
+
27 0.87 0.80 0.83 25
|
31 |
+
28 0.33 0.33 0.33 6
|
32 |
+
29 1.00 0.50 0.67 6
|
33 |
+
30 0.91 0.94 0.93 67
|
34 |
+
31 0.89 0.76 0.82 21
|
35 |
+
32 0.73 0.82 0.77 126
|
36 |
+
33 0.95 0.93 0.94 114
|
37 |
+
34 0.96 0.88 0.92 26
|
38 |
+
35 0.91 0.91 0.91 11
|
39 |
+
36 0.78 0.96 0.86 72
|
40 |
+
37 0.00 0.00 0.00 0
|
41 |
+
38 0.79 0.73 0.76 15
|
42 |
+
39 0.88 0.92 0.90 25
|
43 |
+
40 0.95 0.98 0.97 43
|
44 |
+
41 0.67 0.67 0.67 3
|
45 |
+
42 0.84 0.90 0.87 51
|
46 |
+
43 0.84 0.89 0.86 36
|
47 |
+
44 0.96 0.93 0.94 119
|
48 |
+
45 0.91 0.90 0.91 176
|
49 |
+
46 0.88 0.94 0.91 32
|
50 |
+
47 0.99 0.91 0.95 81
|
51 |
+
48 0.95 0.98 0.96 41
|
52 |
+
49 0.77 0.81 0.79 141
|
53 |
+
50 0.95 0.91 0.93 209
|
54 |
+
51 0.94 0.94 0.94 35
|
55 |
+
52 0.95 1.00 0.98 21
|
56 |
+
53 0.92 0.92 0.92 52
|
57 |
+
54 0.92 1.00 0.96 23
|
58 |
+
55 0.80 0.80 0.80 20
|
59 |
+
56 1.00 0.97 0.99 36
|
60 |
+
57 0.89 0.89 0.89 35
|
61 |
+
58 0.92 0.73 0.81 63
|
62 |
+
59 0.91 0.78 0.84 51
|
63 |
+
|
64 |
+
accuracy 0.88 2974
|
65 |
+
macro avg 0.84 0.83 0.83 2974
|
66 |
+
weighted avg 0.88 0.88 0.87 2974
|
67 |
+
|
68 |
+
Confusion matrix:
|
69 |
+
[[85 0 0 ... 0 0 0]
|
70 |
+
[ 0 34 0 ... 0 0 0]
|
71 |
+
[ 0 0 33 ... 0 0 0]
|
72 |
+
...
|
73 |
+
[ 0 0 0 ... 31 0 0]
|
74 |
+
[ 0 0 0 ... 0 46 0]
|
75 |
+
[ 0 0 0 ... 0 1 40]]
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2240362200
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d0a4df39d307944d6a8f628272d6dc58413c6723db25dac6df6aac1f686020d0
|
3 |
size 2240362200
|
model_predict_test.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
slot_report_test.txt
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
precision recall f1-score support
|
2 |
+
|
3 |
+
alarm_type 0.00 0.00 0.00 2
|
4 |
+
app_name 0.00 0.00 0.00 5
|
5 |
+
artist_name 0.02 0.02 0.02 52
|
6 |
+
audiobook_author 0.00 0.00 0.00 5
|
7 |
+
audiobook_name 0.00 0.00 0.00 22
|
8 |
+
business_name 0.00 0.00 0.00 89
|
9 |
+
business_type 0.00 0.00 0.00 27
|
10 |
+
change_amount 0.00 0.00 0.00 7
|
11 |
+
coffee_type 0.00 0.00 0.00 3
|
12 |
+
color_type 0.00 0.00 0.00 9
|
13 |
+
cooking_type 0.00 0.00 0.00 8
|
14 |
+
currency_name 0.00 0.00 0.00 50
|
15 |
+
date 0.01 0.01 0.01 365
|
16 |
+
definition_word 0.00 0.00 0.00 51
|
17 |
+
device_type 0.00 0.00 0.00 28
|
18 |
+
drink_type 0.00 0.00 0.00 1
|
19 |
+
email_address 0.00 0.00 0.00 9
|
20 |
+
email_folder 0.00 0.00 0.00 5
|
21 |
+
event_name 0.00 0.00 0.00 237
|
22 |
+
food_type 0.03 0.03 0.03 63
|
23 |
+
game_name 0.00 0.00 0.00 23
|
24 |
+
general_frequency 0.05 0.06 0.05 17
|
25 |
+
house_place 0.00 0.00 0.00 14
|
26 |
+
ingredient 0.00 0.00 0.00 5
|
27 |
+
joke_type 0.00 0.00 0.00 11
|
28 |
+
list_name 0.00 0.00 0.00 61
|
29 |
+
meal_type 0.00 0.00 0.00 13
|
30 |
+
media_type 0.00 0.00 0.00 119
|
31 |
+
movie_name 0.00 0.00 0.00 2
|
32 |
+
movie_type 0.00 0.00 0.00 3
|
33 |
+
music_album 0.00 0.00 0.00 1
|
34 |
+
music_descriptor 0.00 0.00 0.00 4
|
35 |
+
music_genre 0.03 0.02 0.02 44
|
36 |
+
news_topic 0.00 0.00 0.00 43
|
37 |
+
order_type 0.00 0.00 0.00 9
|
38 |
+
person 0.01 0.01 0.01 212
|
39 |
+
personal_info 0.00 0.00 0.00 13
|
40 |
+
place_name 0.00 0.00 0.00 257
|
41 |
+
player_setting 0.00 0.00 0.00 35
|
42 |
+
playlist_name 0.00 0.00 0.00 12
|
43 |
+
podcast_descriptor 0.00 0.00 0.00 21
|
44 |
+
podcast_name 0.00 0.00 0.00 16
|
45 |
+
radio_name 0.05 0.07 0.06 29
|
46 |
+
relation 0.00 0.00 0.00 53
|
47 |
+
song_name 0.00 0.00 0.00 34
|
48 |
+
sport_type 0.00 0.00 0.00 0
|
49 |
+
time 0.02 0.02 0.02 161
|
50 |
+
time_zone 0.00 0.00 0.00 13
|
51 |
+
timeofday 0.00 0.00 0.00 48
|
52 |
+
transport_agency 0.00 0.00 0.00 9
|
53 |
+
transport_descriptor 0.00 0.00 0.00 2
|
54 |
+
transport_name 0.00 0.00 0.00 4
|
55 |
+
transport_type 0.00 0.00 0.00 63
|
56 |
+
weather_descriptor 0.02 0.02 0.02 48
|
57 |
+
|
58 |
+
micro avg 0.01 0.01 0.01 2437
|
59 |
+
macro avg 0.00 0.00 0.00 2437
|
60 |
+
weighted avg 0.01 0.01 0.01 2437
|