metadata
library_name: transformers
language:
- hu
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_13_0
metrics:
- wer
model-index:
- name: pici - Zakryah
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 13.0
type: mozilla-foundation/common_voice_13_0
config: hu
split: None
args: 'config: hu, split: test'
metrics:
- name: Wer
type: wer
value: 49.51769610493816
pici - Zakryah
This model is a fine-tuned version of openai/whisper-tiny on the Common Voice 13.0 dataset. It achieves the following results on the evaluation set:
- Loss: 0.5618
- Wer: 49.5177
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.7211 | 0.6895 | 1000 | 0.7369 | 59.2806 |
0.5253 | 1.3786 | 2000 | 0.6201 | 53.7320 |
0.4235 | 2.0676 | 3000 | 0.5741 | 50.7056 |
0.4075 | 2.7571 | 4000 | 0.5618 | 49.5177 |
Framework versions
- Transformers 4.48.1
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0