whisper-tiny-hu / README.md
Zakryah's picture
End of training
2306da0 verified
metadata
library_name: transformers
language:
  - hu
license: apache-2.0
base_model: openai/whisper-tiny
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_13_0
metrics:
  - wer
model-index:
  - name: pici - Zakryah
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 13.0
          type: mozilla-foundation/common_voice_13_0
          config: hu
          split: None
          args: 'config: hu, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 49.51769610493816

pici - Zakryah

This model is a fine-tuned version of openai/whisper-tiny on the Common Voice 13.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5618
  • Wer: 49.5177

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.7211 0.6895 1000 0.7369 59.2806
0.5253 1.3786 2000 0.6201 53.7320
0.4235 2.0676 3000 0.5741 50.7056
0.4075 2.7571 4000 0.5618 49.5177

Framework versions

  • Transformers 4.48.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0