--- library_name: transformers language: - hu license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_13_0 metrics: - wer model-index: - name: pici - Zakryah results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 13.0 type: mozilla-foundation/common_voice_13_0 config: hu split: None args: 'config: hu, split: test' metrics: - name: Wer type: wer value: 49.51769610493816 --- # pici - Zakryah This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the Common Voice 13.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.5618 - Wer: 49.5177 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.7211 | 0.6895 | 1000 | 0.7369 | 59.2806 | | 0.5253 | 1.3786 | 2000 | 0.6201 | 53.7320 | | 0.4235 | 2.0676 | 3000 | 0.5741 | 50.7056 | | 0.4075 | 2.7571 | 4000 | 0.5618 | 49.5177 | ### Framework versions - Transformers 4.48.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0