|
--- |
|
license: apache-2.0 |
|
library_name: peft |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
base_model: mistralai/Mistral-7B-v0.1 |
|
model-index: |
|
- name: billm-mistral-7b-conll03-ner |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# billm-mistral-7b-conll03-ner |
|
|
|
This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1725 |
|
- Precision: 0.9280 |
|
- Recall: 0.9400 |
|
- F1: 0.9340 |
|
- Accuracy: 0.9863 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 8e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.0463 | 1.0 | 1756 | 0.0851 | 0.9234 | 0.9328 | 0.9281 | 0.9856 | |
|
| 0.0213 | 2.0 | 3512 | 0.1022 | 0.9292 | 0.9282 | 0.9287 | 0.9849 | |
|
| 0.0108 | 3.0 | 5268 | 0.1213 | 0.9228 | 0.9363 | 0.9295 | 0.9857 | |
|
| 0.0056 | 4.0 | 7024 | 0.1457 | 0.9261 | 0.9408 | 0.9334 | 0.9864 | |
|
| 0.0022 | 5.0 | 8780 | 0.1604 | 0.9261 | 0.9388 | 0.9324 | 0.9862 | |
|
| 0.0011 | 6.0 | 10536 | 0.1701 | 0.9270 | 0.9402 | 0.9336 | 0.9863 | |
|
| 0.0008 | 7.0 | 12292 | 0.1718 | 0.9289 | 0.9411 | 0.9350 | 0.9864 | |
|
| 0.0005 | 8.0 | 14048 | 0.1719 | 0.9285 | 0.9402 | 0.9343 | 0.9864 | |
|
| 0.0003 | 9.0 | 15804 | 0.1727 | 0.9280 | 0.9400 | 0.9340 | 0.9864 | |
|
| 0.0003 | 10.0 | 17560 | 0.1725 | 0.9280 | 0.9400 | 0.9340 | 0.9863 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.9.0 |
|
- Transformers 4.38.2 |
|
- Pytorch 2.0.1 |
|
- Datasets 2.16.0 |
|
- Tokenizers 0.15.0 |