File size: 2,434 Bytes
c844060
3d4a135
c8bd26f
3d4a135
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0fb8c4
 
 
 
 
3d4a135
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0fb8c4
3d4a135
 
 
 
 
 
 
 
 
 
 
c0fb8c4
 
 
 
 
 
 
 
 
 
3d4a135
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
base_model: mistralai/Mistral-7B-v0.1
model-index:
- name: billm-mistral-7b-conll03-ner
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# billm-mistral-7b-conll03-ner

This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1725
- Precision: 0.9280
- Recall: 0.9400
- F1: 0.9340
- Accuracy: 0.9863

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 8e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0463        | 1.0   | 1756  | 0.0851          | 0.9234    | 0.9328 | 0.9281 | 0.9856   |
| 0.0213        | 2.0   | 3512  | 0.1022          | 0.9292    | 0.9282 | 0.9287 | 0.9849   |
| 0.0108        | 3.0   | 5268  | 0.1213          | 0.9228    | 0.9363 | 0.9295 | 0.9857   |
| 0.0056        | 4.0   | 7024  | 0.1457          | 0.9261    | 0.9408 | 0.9334 | 0.9864   |
| 0.0022        | 5.0   | 8780  | 0.1604          | 0.9261    | 0.9388 | 0.9324 | 0.9862   |
| 0.0011        | 6.0   | 10536 | 0.1701          | 0.9270    | 0.9402 | 0.9336 | 0.9863   |
| 0.0008        | 7.0   | 12292 | 0.1718          | 0.9289    | 0.9411 | 0.9350 | 0.9864   |
| 0.0005        | 8.0   | 14048 | 0.1719          | 0.9285    | 0.9402 | 0.9343 | 0.9864   |
| 0.0003        | 9.0   | 15804 | 0.1727          | 0.9280    | 0.9400 | 0.9340 | 0.9864   |
| 0.0003        | 10.0  | 17560 | 0.1725          | 0.9280    | 0.9400 | 0.9340 | 0.9863   |


### Framework versions

- PEFT 0.9.0
- Transformers 4.38.2
- Pytorch 2.0.1
- Datasets 2.16.0
- Tokenizers 0.15.0