SegFormer_b2 / README.md
Vrjb's picture
End of training
7fb92c1 verified
metadata
library_name: transformers
license: other
base_model: nvidia/segformer-b2-finetuned-cityscapes-1024-1024
tags:
  - vision
  - image-segmentation
  - generated_from_trainer
model-index:
  - name: SegFormer_b2
    results: []

SegFormer_b2

This model is a fine-tuned version of nvidia/segformer-b2-finetuned-cityscapes-1024-1024 on the Cityscapes dataset. It achieves the following results on the evaluation set:

  • eval_loss: 0.2516
  • eval_mean_iou: 0.3875
  • eval_mean_accuracy: 0.5066
  • eval_overall_accuracy: 0.9043
  • eval_accuracy_unlabeled: nan
  • eval_accuracy_ego vehicle: nan
  • eval_accuracy_rectification border: nan
  • eval_accuracy_out of roi: nan
  • eval_accuracy_static: nan
  • eval_accuracy_dynamic: nan
  • eval_accuracy_ground: nan
  • eval_accuracy_road: 0.9832
  • eval_accuracy_sidewalk: 0.8421
  • eval_accuracy_parking: nan
  • eval_accuracy_rail track: nan
  • eval_accuracy_building: 0.9158
  • eval_accuracy_wall: 0.0
  • eval_accuracy_fence: 0.0
  • eval_accuracy_guard rail: nan
  • eval_accuracy_bridge: nan
  • eval_accuracy_tunnel: nan
  • eval_accuracy_pole: 0.5362
  • eval_accuracy_polegroup: nan
  • eval_accuracy_traffic light: 0.5814
  • eval_accuracy_traffic sign: 0.7376
  • eval_accuracy_vegetation: 0.9188
  • eval_accuracy_terrain: 0.6737
  • eval_accuracy_sky: 0.9746
  • eval_accuracy_person: 0.7788
  • eval_accuracy_rider: 0.0
  • eval_accuracy_car: 0.9354
  • eval_accuracy_truck: 0.0
  • eval_accuracy_bus: 0.0
  • eval_accuracy_caravan: nan
  • eval_accuracy_trailer: nan
  • eval_accuracy_train: 0.0
  • eval_accuracy_motorcycle: 0.0
  • eval_accuracy_bicycle: 0.7472
  • eval_accuracy_license plate: nan
  • eval_iou_unlabeled: nan
  • eval_iou_ego vehicle: nan
  • eval_iou_rectification border: nan
  • eval_iou_out of roi: nan
  • eval_iou_static: 0.0
  • eval_iou_dynamic: nan
  • eval_iou_ground: nan
  • eval_iou_road: 0.9649
  • eval_iou_sidewalk: 0.7403
  • eval_iou_parking: nan
  • eval_iou_rail track: nan
  • eval_iou_building: 0.8430
  • eval_iou_wall: 0.0
  • eval_iou_fence: 0.0
  • eval_iou_guard rail: nan
  • eval_iou_bridge: nan
  • eval_iou_tunnel: nan
  • eval_iou_pole: 0.3619
  • eval_iou_polegroup: nan
  • eval_iou_traffic light: 0.4506
  • eval_iou_traffic sign: 0.5317
  • eval_iou_vegetation: 0.8647
  • eval_iou_terrain: 0.4610
  • eval_iou_sky: 0.8806
  • eval_iou_person: 0.5967
  • eval_iou_rider: 0.0
  • eval_iou_car: 0.8756
  • eval_iou_truck: 0.0
  • eval_iou_bus: 0.0
  • eval_iou_caravan: nan
  • eval_iou_trailer: nan
  • eval_iou_train: 0.0
  • eval_iou_motorcycle: 0.0
  • eval_iou_bicycle: 0.5665
  • eval_iou_license plate: 0.0
  • eval_runtime: 185.4692
  • eval_samples_per_second: 2.696
  • eval_steps_per_second: 0.674
  • epoch: 20.4301
  • step: 3800

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0006
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0