File size: 3,630 Bytes
2c16c9e
 
7fb92c1
 
 
 
 
 
 
 
 
2c16c9e
 
7fb92c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
---
library_name: transformers
license: other
base_model: nvidia/segformer-b2-finetuned-cityscapes-1024-1024
tags:
- vision
- image-segmentation
- generated_from_trainer
model-index:
- name: SegFormer_b2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# SegFormer_b2

This model is a fine-tuned version of [nvidia/segformer-b2-finetuned-cityscapes-1024-1024](https://huggingface.co/nvidia/segformer-b2-finetuned-cityscapes-1024-1024) on the Cityscapes dataset.
It achieves the following results on the evaluation set:
- eval_loss: 0.2516
- eval_mean_iou: 0.3875
- eval_mean_accuracy: 0.5066
- eval_overall_accuracy: 0.9043
- eval_accuracy_unlabeled: nan
- eval_accuracy_ego vehicle: nan
- eval_accuracy_rectification border: nan
- eval_accuracy_out of roi: nan
- eval_accuracy_static: nan
- eval_accuracy_dynamic: nan
- eval_accuracy_ground: nan
- eval_accuracy_road: 0.9832
- eval_accuracy_sidewalk: 0.8421
- eval_accuracy_parking: nan
- eval_accuracy_rail track: nan
- eval_accuracy_building: 0.9158
- eval_accuracy_wall: 0.0
- eval_accuracy_fence: 0.0
- eval_accuracy_guard rail: nan
- eval_accuracy_bridge: nan
- eval_accuracy_tunnel: nan
- eval_accuracy_pole: 0.5362
- eval_accuracy_polegroup: nan
- eval_accuracy_traffic light: 0.5814
- eval_accuracy_traffic sign: 0.7376
- eval_accuracy_vegetation: 0.9188
- eval_accuracy_terrain: 0.6737
- eval_accuracy_sky: 0.9746
- eval_accuracy_person: 0.7788
- eval_accuracy_rider: 0.0
- eval_accuracy_car: 0.9354
- eval_accuracy_truck: 0.0
- eval_accuracy_bus: 0.0
- eval_accuracy_caravan: nan
- eval_accuracy_trailer: nan
- eval_accuracy_train: 0.0
- eval_accuracy_motorcycle: 0.0
- eval_accuracy_bicycle: 0.7472
- eval_accuracy_license plate: nan
- eval_iou_unlabeled: nan
- eval_iou_ego vehicle: nan
- eval_iou_rectification border: nan
- eval_iou_out of roi: nan
- eval_iou_static: 0.0
- eval_iou_dynamic: nan
- eval_iou_ground: nan
- eval_iou_road: 0.9649
- eval_iou_sidewalk: 0.7403
- eval_iou_parking: nan
- eval_iou_rail track: nan
- eval_iou_building: 0.8430
- eval_iou_wall: 0.0
- eval_iou_fence: 0.0
- eval_iou_guard rail: nan
- eval_iou_bridge: nan
- eval_iou_tunnel: nan
- eval_iou_pole: 0.3619
- eval_iou_polegroup: nan
- eval_iou_traffic light: 0.4506
- eval_iou_traffic sign: 0.5317
- eval_iou_vegetation: 0.8647
- eval_iou_terrain: 0.4610
- eval_iou_sky: 0.8806
- eval_iou_person: 0.5967
- eval_iou_rider: 0.0
- eval_iou_car: 0.8756
- eval_iou_truck: 0.0
- eval_iou_bus: 0.0
- eval_iou_caravan: nan
- eval_iou_trailer: nan
- eval_iou_train: 0.0
- eval_iou_motorcycle: 0.0
- eval_iou_bicycle: 0.5665
- eval_iou_license plate: 0.0
- eval_runtime: 185.4692
- eval_samples_per_second: 2.696
- eval_steps_per_second: 0.674
- epoch: 20.4301
- step: 3800

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0006
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 100
- mixed_precision_training: Native AMP

### Framework versions

- Transformers 4.47.1
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0