|
--- |
|
license: mit |
|
base_model: pdelobelle/robbert-v2-dutch-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- recall |
|
- accuracy |
|
model-index: |
|
- name: robbert0410_lrate10b4 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# robbert0410_lrate10b4 |
|
|
|
This model is a fine-tuned version of [pdelobelle/robbert-v2-dutch-base](https://huggingface.co/pdelobelle/robbert-v2-dutch-base) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6818 |
|
- Precisions: 0.7943 |
|
- Recall: 0.7761 |
|
- F-measure: 0.7846 |
|
- Accuracy: 0.9080 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 8 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precisions | Recall | F-measure | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:----------:|:------:|:---------:|:--------:| |
|
| 0.6936 | 1.0 | 942 | 0.5273 | 0.8577 | 0.7062 | 0.7069 | 0.8731 | |
|
| 0.4407 | 2.0 | 1884 | 0.4780 | 0.7487 | 0.7080 | 0.7142 | 0.8898 | |
|
| 0.3023 | 3.0 | 2826 | 0.5526 | 0.7743 | 0.7209 | 0.7150 | 0.8904 | |
|
| 0.2057 | 4.0 | 3768 | 0.5627 | 0.7815 | 0.7405 | 0.7559 | 0.8998 | |
|
| 0.1333 | 5.0 | 4710 | 0.5509 | 0.7959 | 0.7521 | 0.7680 | 0.9010 | |
|
| 0.0896 | 6.0 | 5652 | 0.6215 | 0.7844 | 0.7583 | 0.7699 | 0.9053 | |
|
| 0.0538 | 7.0 | 6594 | 0.6694 | 0.7851 | 0.7723 | 0.7766 | 0.9025 | |
|
| 0.0316 | 8.0 | 7536 | 0.6818 | 0.7943 | 0.7761 | 0.7846 | 0.9080 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.34.0 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.14.0 |
|
|