File size: 2,244 Bytes
c1963d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
license: mit
base_model: pdelobelle/robbert-v2-dutch-base
tags:
- generated_from_trainer
metrics:
- recall
- accuracy
model-index:
- name: robbert0410_lrate10b4
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# robbert0410_lrate10b4
This model is a fine-tuned version of [pdelobelle/robbert-v2-dutch-base](https://huggingface.co/pdelobelle/robbert-v2-dutch-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6818
- Precisions: 0.7943
- Recall: 0.7761
- F-measure: 0.7846
- Accuracy: 0.9080
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precisions | Recall | F-measure | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:----------:|:------:|:---------:|:--------:|
| 0.6936 | 1.0 | 942 | 0.5273 | 0.8577 | 0.7062 | 0.7069 | 0.8731 |
| 0.4407 | 2.0 | 1884 | 0.4780 | 0.7487 | 0.7080 | 0.7142 | 0.8898 |
| 0.3023 | 3.0 | 2826 | 0.5526 | 0.7743 | 0.7209 | 0.7150 | 0.8904 |
| 0.2057 | 4.0 | 3768 | 0.5627 | 0.7815 | 0.7405 | 0.7559 | 0.8998 |
| 0.1333 | 5.0 | 4710 | 0.5509 | 0.7959 | 0.7521 | 0.7680 | 0.9010 |
| 0.0896 | 6.0 | 5652 | 0.6215 | 0.7844 | 0.7583 | 0.7699 | 0.9053 |
| 0.0538 | 7.0 | 6594 | 0.6694 | 0.7851 | 0.7723 | 0.7766 | 0.9025 |
| 0.0316 | 8.0 | 7536 | 0.6818 | 0.7943 | 0.7761 | 0.7846 | 0.9080 |
### Framework versions
- Transformers 4.34.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.14.0
|