metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:19697
- loss:CosineSimilarityLoss
base_model: neuralmind/bert-large-portuguese-cased
widget:
- source_sentence: procurar sapato social masculino
sentences:
- beleza autocuidado
- moda acessorio
- doce chocolate
- source_sentence: livro ultimo adeus cynthia hand
sentences:
- livro material literario
- item colecao
- joia bijuterio
- source_sentence: relogio pulso
sentences:
- servico reparo eletronico
- hortifruti
- hortifruti
- source_sentence: medicamento antipulga gato
sentences:
- produto pet animal domestico
- hortifruti
- padaria confeitaria
- source_sentence: guitarra gibson Les Paul
sentences:
- moda acessorio
- tinta
- peixaria pescado
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
model-index:
- name: SentenceTransformer based on neuralmind/bert-large-portuguese-cased
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: eval similarity
type: eval-similarity
metrics:
- type: pearson_cosine
value: 0.932130151806209
name: Pearson Cosine
- type: spearman_cosine
value: 0.8467496824207882
name: Spearman Cosine
SentenceTransformer based on neuralmind/bert-large-portuguese-cased
This is a sentence-transformers model finetuned from neuralmind/bert-large-portuguese-cased. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: neuralmind/bert-large-portuguese-cased
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("SenhorDasMoscas/acho-ptbr-e3-lr0.0001-08-01-2025")
# Run inference
sentences = [
'guitarra gibson Les Paul',
'tinta',
'peixaria pescado',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
eval-similarity
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.9321 |
spearman_cosine | 0.8467 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 19,697 training samples
- Columns:
text1
,text2
, andlabel
- Approximate statistics based on the first 1000 samples:
text1 text2 label type string string float details - min: 3 tokens
- mean: 7.78 tokens
- max: 17 tokens
- min: 3 tokens
- mean: 6.17 tokens
- max: 11 tokens
- min: 0.1
- mean: 0.55
- max: 1.0
- Samples:
text1 text2 label fritadeira eletrico em esse loja festa
decoracao festa
0.1
vinho
papelaria escritorio
0.1
forno eletrico Fischer
eletrodomestico
1.0
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Evaluation Dataset
Unnamed Dataset
- Size: 2,189 evaluation samples
- Columns:
text1
,text2
, andlabel
- Approximate statistics based on the first 1000 samples:
text1 text2 label type string string float details - min: 3 tokens
- mean: 7.7 tokens
- max: 18 tokens
- min: 3 tokens
- mean: 6.16 tokens
- max: 11 tokens
- min: 0.1
- mean: 0.52
- max: 1.0
- Samples:
text1 text2 label querer salgado
comida rapido fastfood
1.0
ervilha enlatar
movel
0.1
preciso loja artigo esporte aquatico
servico area educacao
0.1
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 32per_device_eval_batch_size
: 32learning_rate
: 0.0001weight_decay
: 0.1warmup_ratio
: 0.1warmup_steps
: 246fp16
: Trueload_best_model_at_end
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 0.0001weight_decay
: 0.1adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 3max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 246log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | Validation Loss | eval-similarity_spearman_cosine |
---|---|---|---|---|
0.0081 | 5 | 0.1965 | - | - |
0.0162 | 10 | 0.2125 | - | - |
0.0244 | 15 | 0.1944 | - | - |
0.0325 | 20 | 0.1674 | - | - |
0.0406 | 25 | 0.1518 | - | - |
0.0487 | 30 | 0.1381 | - | - |
0.0568 | 35 | 0.1385 | - | - |
0.0649 | 40 | 0.109 | - | - |
0.0731 | 45 | 0.1054 | - | - |
0.0812 | 50 | 0.0963 | - | - |
0.0893 | 55 | 0.0917 | - | - |
0.0974 | 60 | 0.0797 | - | - |
0.1055 | 65 | 0.0877 | - | - |
0.1136 | 70 | 0.0755 | - | - |
0.1218 | 75 | 0.0773 | - | - |
0.1299 | 80 | 0.0605 | - | - |
0.1380 | 85 | 0.0669 | - | - |
0.1461 | 90 | 0.0698 | - | - |
0.1542 | 95 | 0.0595 | - | - |
0.1623 | 100 | 0.0382 | - | - |
0.1705 | 105 | 0.0723 | - | - |
0.1786 | 110 | 0.0448 | - | - |
0.1867 | 115 | 0.0703 | - | - |
0.1948 | 120 | 0.0694 | - | - |
0.2029 | 125 | 0.0515 | - | - |
0.2110 | 130 | 0.0581 | - | - |
0.2192 | 135 | 0.0458 | - | - |
0.2273 | 140 | 0.0643 | - | - |
0.2354 | 145 | 0.0602 | - | - |
0.2435 | 150 | 0.0651 | - | - |
0.2516 | 155 | 0.0662 | - | - |
0.2597 | 160 | 0.0712 | - | - |
0.2679 | 165 | 0.0546 | - | - |
0.2760 | 170 | 0.0419 | - | - |
0.2841 | 175 | 0.061 | - | - |
0.2922 | 180 | 0.0549 | - | - |
0.3003 | 185 | 0.0523 | - | - |
0.3084 | 190 | 0.0579 | - | - |
0.3166 | 195 | 0.0595 | - | - |
0.3247 | 200 | 0.0478 | - | - |
0.3328 | 205 | 0.0507 | - | - |
0.3409 | 210 | 0.0312 | - | - |
0.3490 | 215 | 0.041 | - | - |
0.3571 | 220 | 0.0528 | - | - |
0.3653 | 225 | 0.0386 | - | - |
0.3734 | 230 | 0.0656 | - | - |
0.3815 | 235 | 0.0567 | - | - |
0.3896 | 240 | 0.0673 | - | - |
0.3977 | 245 | 0.103 | - | - |
0.4058 | 250 | 0.1704 | - | - |
0.4140 | 255 | 0.0844 | - | - |
0.4221 | 260 | 0.0883 | - | - |
0.4302 | 265 | 0.0728 | - | - |
0.4383 | 270 | 0.0531 | - | - |
0.4464 | 275 | 0.0715 | - | - |
0.4545 | 280 | 0.0623 | - | - |
0.4627 | 285 | 0.0679 | - | - |
0.4708 | 290 | 0.0577 | - | - |
0.4789 | 295 | 0.0781 | - | - |
0.4870 | 300 | 0.0541 | - | - |
0.4951 | 305 | 0.0876 | - | - |
0.5032 | 310 | 0.0648 | - | - |
0.5114 | 315 | 0.0583 | - | - |
0.5195 | 320 | 0.0506 | - | - |
0.5276 | 325 | 0.051 | - | - |
0.5357 | 330 | 0.0633 | - | - |
0.5438 | 335 | 0.0764 | - | - |
0.5519 | 340 | 0.0753 | - | - |
0.5601 | 345 | 0.0701 | - | - |
0.5682 | 350 | 0.0688 | - | - |
0.5763 | 355 | 0.0691 | - | - |
0.5844 | 360 | 0.0497 | - | - |
0.5925 | 365 | 0.0606 | - | - |
0.6006 | 370 | 0.0544 | - | - |
0.6088 | 375 | 0.0587 | - | - |
0.6169 | 380 | 0.0432 | - | - |
0.625 | 385 | 0.0768 | - | - |
0.6331 | 390 | 0.0701 | - | - |
0.6412 | 395 | 0.0421 | - | - |
0.6494 | 400 | 0.0415 | - | - |
0.6575 | 405 | 0.0419 | - | - |
0.6656 | 410 | 0.0613 | - | - |
0.6737 | 415 | 0.0442 | - | - |
0.6818 | 420 | 0.0487 | - | - |
0.6899 | 425 | 0.0443 | - | - |
0.6981 | 430 | 0.0493 | - | - |
0.7062 | 435 | 0.0429 | - | - |
0.7143 | 440 | 0.0464 | - | - |
0.7224 | 445 | 0.0541 | - | - |
0.7305 | 450 | 0.0539 | - | - |
0.7386 | 455 | 0.0497 | - | - |
0.7468 | 460 | 0.0471 | - | - |
0.75 | 462 | - | 0.0457 | 0.8234 |
0.7549 | 465 | 0.0514 | - | - |
0.7630 | 470 | 0.0457 | - | - |
0.7711 | 475 | 0.0315 | - | - |
0.7792 | 480 | 0.0491 | - | - |
0.7873 | 485 | 0.0619 | - | - |
0.7955 | 490 | 0.0298 | - | - |
0.8036 | 495 | 0.0725 | - | - |
0.8117 | 500 | 0.043 | - | - |
0.8198 | 505 | 0.0392 | - | - |
0.8279 | 510 | 0.0275 | - | - |
0.8360 | 515 | 0.0509 | - | - |
0.8442 | 520 | 0.0508 | - | - |
0.8523 | 525 | 0.0394 | - | - |
0.8604 | 530 | 0.0309 | - | - |
0.8685 | 535 | 0.0601 | - | - |
0.8766 | 540 | 0.0524 | - | - |
0.8847 | 545 | 0.0491 | - | - |
0.8929 | 550 | 0.0626 | - | - |
0.9010 | 555 | 0.0395 | - | - |
0.9091 | 560 | 0.0655 | - | - |
0.9172 | 565 | 0.045 | - | - |
0.9253 | 570 | 0.0394 | - | - |
0.9334 | 575 | 0.0521 | - | - |
0.9416 | 580 | 0.0324 | - | - |
0.9497 | 585 | 0.0426 | - | - |
0.9578 | 590 | 0.032 | - | - |
0.9659 | 595 | 0.0425 | - | - |
0.9740 | 600 | 0.0458 | - | - |
0.9821 | 605 | 0.0341 | - | - |
0.9903 | 610 | 0.0339 | - | - |
0.9984 | 615 | 0.0444 | - | - |
1.0065 | 620 | 0.0364 | - | - |
1.0146 | 625 | 0.0277 | - | - |
1.0227 | 630 | 0.0372 | - | - |
1.0308 | 635 | 0.0254 | - | - |
1.0390 | 640 | 0.0382 | - | - |
1.0471 | 645 | 0.0333 | - | - |
1.0552 | 650 | 0.0312 | - | - |
1.0633 | 655 | 0.0366 | - | - |
1.0714 | 660 | 0.0341 | - | - |
1.0795 | 665 | 0.0146 | - | - |
1.0877 | 670 | 0.0362 | - | - |
1.0958 | 675 | 0.0225 | - | - |
1.1039 | 680 | 0.038 | - | - |
1.1120 | 685 | 0.0406 | - | - |
1.1201 | 690 | 0.0392 | - | - |
1.1282 | 695 | 0.0343 | - | - |
1.1364 | 700 | 0.0494 | - | - |
1.1445 | 705 | 0.021 | - | - |
1.1526 | 710 | 0.0358 | - | - |
1.1607 | 715 | 0.034 | - | - |
1.1688 | 720 | 0.0288 | - | - |
1.1769 | 725 | 0.0224 | - | - |
1.1851 | 730 | 0.0324 | - | - |
1.1932 | 735 | 0.0378 | - | - |
1.2013 | 740 | 0.0446 | - | - |
1.2094 | 745 | 0.0293 | - | - |
1.2175 | 750 | 0.0314 | - | - |
1.2256 | 755 | 0.0444 | - | - |
1.2338 | 760 | 0.0283 | - | - |
1.2419 | 765 | 0.0207 | - | - |
1.25 | 770 | 0.0413 | - | - |
1.2581 | 775 | 0.0317 | - | - |
1.2662 | 780 | 0.0382 | - | - |
1.2744 | 785 | 0.0363 | - | - |
1.2825 | 790 | 0.0324 | - | - |
1.2906 | 795 | 0.0225 | - | - |
1.2987 | 800 | 0.0316 | - | - |
1.3068 | 805 | 0.0438 | - | - |
1.3149 | 810 | 0.0298 | - | - |
1.3231 | 815 | 0.0395 | - | - |
1.3312 | 820 | 0.0388 | - | - |
1.3393 | 825 | 0.0289 | - | - |
1.3474 | 830 | 0.0233 | - | - |
1.3555 | 835 | 0.022 | - | - |
1.3636 | 840 | 0.016 | - | - |
1.3718 | 845 | 0.0488 | - | - |
1.3799 | 850 | 0.0519 | - | - |
1.3880 | 855 | 0.033 | - | - |
1.3961 | 860 | 0.025 | - | - |
1.4042 | 865 | 0.0212 | - | - |
1.4123 | 870 | 0.0184 | - | - |
1.4205 | 875 | 0.0335 | - | - |
1.4286 | 880 | 0.0308 | - | - |
1.4367 | 885 | 0.028 | - | - |
1.4448 | 890 | 0.0352 | - | - |
1.4529 | 895 | 0.0255 | - | - |
1.4610 | 900 | 0.0243 | - | - |
1.4692 | 905 | 0.0355 | - | - |
1.4773 | 910 | 0.0267 | - | - |
1.4854 | 915 | 0.0263 | - | - |
1.4935 | 920 | 0.0275 | - | - |
1.5 | 924 | - | 0.0313 | 0.8414 |
1.5016 | 925 | 0.0294 | - | - |
1.5097 | 930 | 0.0514 | - | - |
1.5179 | 935 | 0.0321 | - | - |
1.5260 | 940 | 0.0306 | - | - |
1.5341 | 945 | 0.0279 | - | - |
1.5422 | 950 | 0.0334 | - | - |
1.5503 | 955 | 0.0337 | - | - |
1.5584 | 960 | 0.0266 | - | - |
1.5666 | 965 | 0.036 | - | - |
1.5747 | 970 | 0.0328 | - | - |
1.5828 | 975 | 0.0224 | - | - |
1.5909 | 980 | 0.0404 | - | - |
1.5990 | 985 | 0.0293 | - | - |
1.6071 | 990 | 0.016 | - | - |
1.6153 | 995 | 0.0177 | - | - |
1.6234 | 1000 | 0.0216 | - | - |
1.6315 | 1005 | 0.029 | - | - |
1.6396 | 1010 | 0.0306 | - | - |
1.6477 | 1015 | 0.0291 | - | - |
1.6558 | 1020 | 0.032 | - | - |
1.6640 | 1025 | 0.0277 | - | - |
1.6721 | 1030 | 0.0191 | - | - |
1.6802 | 1035 | 0.0353 | - | - |
1.6883 | 1040 | 0.0304 | - | - |
1.6964 | 1045 | 0.0385 | - | - |
1.7045 | 1050 | 0.0315 | - | - |
1.7127 | 1055 | 0.0428 | - | - |
1.7208 | 1060 | 0.0338 | - | - |
1.7289 | 1065 | 0.0258 | - | - |
1.7370 | 1070 | 0.0303 | - | - |
1.7451 | 1075 | 0.0171 | - | - |
1.7532 | 1080 | 0.0229 | - | - |
1.7614 | 1085 | 0.0278 | - | - |
1.7695 | 1090 | 0.0246 | - | - |
1.7776 | 1095 | 0.0241 | - | - |
1.7857 | 1100 | 0.0182 | - | - |
1.7938 | 1105 | 0.0366 | - | - |
1.8019 | 1110 | 0.0204 | - | - |
1.8101 | 1115 | 0.0208 | - | - |
1.8182 | 1120 | 0.01 | - | - |
1.8263 | 1125 | 0.0239 | - | - |
1.8344 | 1130 | 0.0228 | - | - |
1.8425 | 1135 | 0.0228 | - | - |
1.8506 | 1140 | 0.0176 | - | - |
1.8588 | 1145 | 0.0278 | - | - |
1.8669 | 1150 | 0.0242 | - | - |
1.875 | 1155 | 0.0174 | - | - |
1.8831 | 1160 | 0.0248 | - | - |
1.8912 | 1165 | 0.0192 | - | - |
1.8994 | 1170 | 0.0293 | - | - |
1.9075 | 1175 | 0.017 | - | - |
1.9156 | 1180 | 0.0212 | - | - |
1.9237 | 1185 | 0.0214 | - | - |
1.9318 | 1190 | 0.025 | - | - |
1.9399 | 1195 | 0.0246 | - | - |
1.9481 | 1200 | 0.0202 | - | - |
1.9562 | 1205 | 0.021 | - | - |
1.9643 | 1210 | 0.0183 | - | - |
1.9724 | 1215 | 0.0313 | - | - |
1.9805 | 1220 | 0.0211 | - | - |
1.9886 | 1225 | 0.0299 | - | - |
1.9968 | 1230 | 0.0222 | - | - |
2.0049 | 1235 | 0.0154 | - | - |
2.0130 | 1240 | 0.018 | - | - |
2.0211 | 1245 | 0.0212 | - | - |
2.0292 | 1250 | 0.0123 | - | - |
2.0373 | 1255 | 0.013 | - | - |
2.0455 | 1260 | 0.0213 | - | - |
2.0536 | 1265 | 0.0125 | - | - |
2.0617 | 1270 | 0.0175 | - | - |
2.0698 | 1275 | 0.0092 | - | - |
2.0779 | 1280 | 0.0209 | - | - |
2.0860 | 1285 | 0.0135 | - | - |
2.0942 | 1290 | 0.0295 | - | - |
2.1023 | 1295 | 0.0175 | - | - |
2.1104 | 1300 | 0.0252 | - | - |
2.1185 | 1305 | 0.0071 | - | - |
2.1266 | 1310 | 0.0139 | - | - |
2.1347 | 1315 | 0.0104 | - | - |
2.1429 | 1320 | 0.0125 | - | - |
2.1510 | 1325 | 0.0103 | - | - |
2.1591 | 1330 | 0.0171 | - | - |
2.1672 | 1335 | 0.0083 | - | - |
2.1753 | 1340 | 0.0185 | - | - |
2.1834 | 1345 | 0.0141 | - | - |
2.1916 | 1350 | 0.0177 | - | - |
2.1997 | 1355 | 0.0189 | - | - |
2.2078 | 1360 | 0.0254 | - | - |
2.2159 | 1365 | 0.0198 | - | - |
2.2240 | 1370 | 0.0162 | - | - |
2.2321 | 1375 | 0.0139 | - | - |
2.2403 | 1380 | 0.013 | - | - |
2.2484 | 1385 | 0.0201 | - | - |
2.25 | 1386 | - | 0.0292 | 0.8443 |
2.2565 | 1390 | 0.0202 | - | - |
2.2646 | 1395 | 0.0169 | - | - |
2.2727 | 1400 | 0.0105 | - | - |
2.2808 | 1405 | 0.0136 | - | - |
2.2890 | 1410 | 0.0125 | - | - |
2.2971 | 1415 | 0.0168 | - | - |
2.3052 | 1420 | 0.0108 | - | - |
2.3133 | 1425 | 0.0297 | - | - |
2.3214 | 1430 | 0.0233 | - | - |
2.3295 | 1435 | 0.0164 | - | - |
2.3377 | 1440 | 0.0178 | - | - |
2.3458 | 1445 | 0.0203 | - | - |
2.3539 | 1450 | 0.0112 | - | - |
2.3620 | 1455 | 0.0156 | - | - |
2.3701 | 1460 | 0.0151 | - | - |
2.3782 | 1465 | 0.0097 | - | - |
2.3864 | 1470 | 0.0196 | - | - |
2.3945 | 1475 | 0.0148 | - | - |
2.4026 | 1480 | 0.0154 | - | - |
2.4107 | 1485 | 0.0069 | - | - |
2.4188 | 1490 | 0.0145 | - | - |
2.4269 | 1495 | 0.0204 | - | - |
2.4351 | 1500 | 0.0225 | - | - |
2.4432 | 1505 | 0.0165 | - | - |
2.4513 | 1510 | 0.0079 | - | - |
2.4594 | 1515 | 0.0183 | - | - |
2.4675 | 1520 | 0.0196 | - | - |
2.4756 | 1525 | 0.0085 | - | - |
2.4838 | 1530 | 0.0109 | - | - |
2.4919 | 1535 | 0.0168 | - | - |
2.5 | 1540 | 0.0124 | - | - |
2.5081 | 1545 | 0.0218 | - | - |
2.5162 | 1550 | 0.0164 | - | - |
2.5244 | 1555 | 0.0234 | - | - |
2.5325 | 1560 | 0.0115 | - | - |
2.5406 | 1565 | 0.0135 | - | - |
2.5487 | 1570 | 0.0179 | - | - |
2.5568 | 1575 | 0.0104 | - | - |
2.5649 | 1580 | 0.0188 | - | - |
2.5731 | 1585 | 0.0166 | - | - |
2.5812 | 1590 | 0.0228 | - | - |
2.5893 | 1595 | 0.015 | - | - |
2.5974 | 1600 | 0.0171 | - | - |
2.6055 | 1605 | 0.0207 | - | - |
2.6136 | 1610 | 0.009 | - | - |
2.6218 | 1615 | 0.0111 | - | - |
2.6299 | 1620 | 0.0109 | - | - |
2.6380 | 1625 | 0.0175 | - | - |
2.6461 | 1630 | 0.0155 | - | - |
2.6542 | 1635 | 0.0193 | - | - |
2.6623 | 1640 | 0.0189 | - | - |
2.6705 | 1645 | 0.0123 | - | - |
2.6786 | 1650 | 0.0102 | - | - |
2.6867 | 1655 | 0.0097 | - | - |
2.6948 | 1660 | 0.0116 | - | - |
2.7029 | 1665 | 0.0134 | - | - |
2.7110 | 1670 | 0.0218 | - | - |
2.7192 | 1675 | 0.0148 | - | - |
2.7273 | 1680 | 0.0137 | - | - |
2.7354 | 1685 | 0.0062 | - | - |
2.7435 | 1690 | 0.0075 | - | - |
2.7516 | 1695 | 0.0078 | - | - |
2.7597 | 1700 | 0.0151 | - | - |
2.7679 | 1705 | 0.0157 | - | - |
2.7760 | 1710 | 0.0153 | - | - |
2.7841 | 1715 | 0.0088 | - | - |
2.7922 | 1720 | 0.0093 | - | - |
2.8003 | 1725 | 0.0154 | - | - |
2.8084 | 1730 | 0.0124 | - | - |
2.8166 | 1735 | 0.0128 | - | - |
2.8247 | 1740 | 0.0088 | - | - |
2.8328 | 1745 | 0.0144 | - | - |
2.8409 | 1750 | 0.0184 | - | - |
2.8490 | 1755 | 0.0114 | - | - |
2.8571 | 1760 | 0.0043 | - | - |
2.8653 | 1765 | 0.0151 | - | - |
2.8734 | 1770 | 0.0089 | - | - |
2.8815 | 1775 | 0.014 | - | - |
2.8896 | 1780 | 0.0095 | - | - |
2.8977 | 1785 | 0.0106 | - | - |
2.9058 | 1790 | 0.007 | - | - |
2.9140 | 1795 | 0.0275 | - | - |
2.9221 | 1800 | 0.0185 | - | - |
2.9302 | 1805 | 0.0158 | - | - |
2.9383 | 1810 | 0.0134 | - | - |
2.9464 | 1815 | 0.0068 | - | - |
2.9545 | 1820 | 0.0144 | - | - |
2.9627 | 1825 | 0.0134 | - | - |
2.9708 | 1830 | 0.0109 | - | - |
2.9789 | 1835 | 0.0114 | - | - |
2.9870 | 1840 | 0.0097 | - | - |
2.9951 | 1845 | 0.0076 | - | - |
3.0 | 1848 | - | 0.0269 | 0.8467 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.47.1
- PyTorch: 2.5.1+cu121
- Accelerate: 1.2.1
- Datasets: 2.14.4
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}