SenhorDasMoscas
commited on
Add new SentenceTransformer model.
Browse files- 1_Pooling/config.json +10 -0
- README.md +782 -0
- config.json +32 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +65 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 1024,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,782 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- sentence-transformers
|
4 |
+
- sentence-similarity
|
5 |
+
- feature-extraction
|
6 |
+
- generated_from_trainer
|
7 |
+
- dataset_size:19697
|
8 |
+
- loss:CosineSimilarityLoss
|
9 |
+
base_model: neuralmind/bert-large-portuguese-cased
|
10 |
+
widget:
|
11 |
+
- source_sentence: procurar sapato social masculino
|
12 |
+
sentences:
|
13 |
+
- beleza autocuidado
|
14 |
+
- moda acessorio
|
15 |
+
- doce chocolate
|
16 |
+
- source_sentence: livro ultimo adeus cynthia hand
|
17 |
+
sentences:
|
18 |
+
- livro material literario
|
19 |
+
- item colecao
|
20 |
+
- joia bijuterio
|
21 |
+
- source_sentence: relogio pulso
|
22 |
+
sentences:
|
23 |
+
- servico reparo eletronico
|
24 |
+
- hortifruti
|
25 |
+
- hortifruti
|
26 |
+
- source_sentence: medicamento antipulga gato
|
27 |
+
sentences:
|
28 |
+
- produto pet animal domestico
|
29 |
+
- hortifruti
|
30 |
+
- padaria confeitaria
|
31 |
+
- source_sentence: guitarra gibson Les Paul
|
32 |
+
sentences:
|
33 |
+
- moda acessorio
|
34 |
+
- tinta
|
35 |
+
- peixaria pescado
|
36 |
+
pipeline_tag: sentence-similarity
|
37 |
+
library_name: sentence-transformers
|
38 |
+
metrics:
|
39 |
+
- pearson_cosine
|
40 |
+
- spearman_cosine
|
41 |
+
model-index:
|
42 |
+
- name: SentenceTransformer based on neuralmind/bert-large-portuguese-cased
|
43 |
+
results:
|
44 |
+
- task:
|
45 |
+
type: semantic-similarity
|
46 |
+
name: Semantic Similarity
|
47 |
+
dataset:
|
48 |
+
name: eval similarity
|
49 |
+
type: eval-similarity
|
50 |
+
metrics:
|
51 |
+
- type: pearson_cosine
|
52 |
+
value: 0.932130151806209
|
53 |
+
name: Pearson Cosine
|
54 |
+
- type: spearman_cosine
|
55 |
+
value: 0.8467496824207882
|
56 |
+
name: Spearman Cosine
|
57 |
+
---
|
58 |
+
|
59 |
+
# SentenceTransformer based on neuralmind/bert-large-portuguese-cased
|
60 |
+
|
61 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [neuralmind/bert-large-portuguese-cased](https://huggingface.co/neuralmind/bert-large-portuguese-cased). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
62 |
+
|
63 |
+
## Model Details
|
64 |
+
|
65 |
+
### Model Description
|
66 |
+
- **Model Type:** Sentence Transformer
|
67 |
+
- **Base model:** [neuralmind/bert-large-portuguese-cased](https://huggingface.co/neuralmind/bert-large-portuguese-cased) <!-- at revision aa302f6ea73b759f7df9cad58bd272127b67ec28 -->
|
68 |
+
- **Maximum Sequence Length:** 512 tokens
|
69 |
+
- **Output Dimensionality:** 1024 dimensions
|
70 |
+
- **Similarity Function:** Cosine Similarity
|
71 |
+
<!-- - **Training Dataset:** Unknown -->
|
72 |
+
<!-- - **Language:** Unknown -->
|
73 |
+
<!-- - **License:** Unknown -->
|
74 |
+
|
75 |
+
### Model Sources
|
76 |
+
|
77 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
78 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
79 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
80 |
+
|
81 |
+
### Full Model Architecture
|
82 |
+
|
83 |
+
```
|
84 |
+
SentenceTransformer(
|
85 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
86 |
+
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
87 |
+
)
|
88 |
+
```
|
89 |
+
|
90 |
+
## Usage
|
91 |
+
|
92 |
+
### Direct Usage (Sentence Transformers)
|
93 |
+
|
94 |
+
First install the Sentence Transformers library:
|
95 |
+
|
96 |
+
```bash
|
97 |
+
pip install -U sentence-transformers
|
98 |
+
```
|
99 |
+
|
100 |
+
Then you can load this model and run inference.
|
101 |
+
```python
|
102 |
+
from sentence_transformers import SentenceTransformer
|
103 |
+
|
104 |
+
# Download from the 🤗 Hub
|
105 |
+
model = SentenceTransformer("SenhorDasMoscas/acho-ptbr-e3-lr0.0001-08-01-2025")
|
106 |
+
# Run inference
|
107 |
+
sentences = [
|
108 |
+
'guitarra gibson Les Paul',
|
109 |
+
'tinta',
|
110 |
+
'peixaria pescado',
|
111 |
+
]
|
112 |
+
embeddings = model.encode(sentences)
|
113 |
+
print(embeddings.shape)
|
114 |
+
# [3, 1024]
|
115 |
+
|
116 |
+
# Get the similarity scores for the embeddings
|
117 |
+
similarities = model.similarity(embeddings, embeddings)
|
118 |
+
print(similarities.shape)
|
119 |
+
# [3, 3]
|
120 |
+
```
|
121 |
+
|
122 |
+
<!--
|
123 |
+
### Direct Usage (Transformers)
|
124 |
+
|
125 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
126 |
+
|
127 |
+
</details>
|
128 |
+
-->
|
129 |
+
|
130 |
+
<!--
|
131 |
+
### Downstream Usage (Sentence Transformers)
|
132 |
+
|
133 |
+
You can finetune this model on your own dataset.
|
134 |
+
|
135 |
+
<details><summary>Click to expand</summary>
|
136 |
+
|
137 |
+
</details>
|
138 |
+
-->
|
139 |
+
|
140 |
+
<!--
|
141 |
+
### Out-of-Scope Use
|
142 |
+
|
143 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
144 |
+
-->
|
145 |
+
|
146 |
+
## Evaluation
|
147 |
+
|
148 |
+
### Metrics
|
149 |
+
|
150 |
+
#### Semantic Similarity
|
151 |
+
|
152 |
+
* Dataset: `eval-similarity`
|
153 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
154 |
+
|
155 |
+
| Metric | Value |
|
156 |
+
|:--------------------|:-----------|
|
157 |
+
| pearson_cosine | 0.9321 |
|
158 |
+
| **spearman_cosine** | **0.8467** |
|
159 |
+
|
160 |
+
<!--
|
161 |
+
## Bias, Risks and Limitations
|
162 |
+
|
163 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
164 |
+
-->
|
165 |
+
|
166 |
+
<!--
|
167 |
+
### Recommendations
|
168 |
+
|
169 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
170 |
+
-->
|
171 |
+
|
172 |
+
## Training Details
|
173 |
+
|
174 |
+
### Training Dataset
|
175 |
+
|
176 |
+
#### Unnamed Dataset
|
177 |
+
|
178 |
+
|
179 |
+
* Size: 19,697 training samples
|
180 |
+
* Columns: <code>text1</code>, <code>text2</code>, and <code>label</code>
|
181 |
+
* Approximate statistics based on the first 1000 samples:
|
182 |
+
| | text1 | text2 | label |
|
183 |
+
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
184 |
+
| type | string | string | float |
|
185 |
+
| details | <ul><li>min: 3 tokens</li><li>mean: 7.78 tokens</li><li>max: 17 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 6.17 tokens</li><li>max: 11 tokens</li></ul> | <ul><li>min: 0.1</li><li>mean: 0.55</li><li>max: 1.0</li></ul> |
|
186 |
+
* Samples:
|
187 |
+
| text1 | text2 | label |
|
188 |
+
|:----------------------------------------------------|:----------------------------------|:-----------------|
|
189 |
+
| <code>fritadeira eletrico em esse loja festa</code> | <code>decoracao festa</code> | <code>0.1</code> |
|
190 |
+
| <code>vinho</code> | <code>papelaria escritorio</code> | <code>0.1</code> |
|
191 |
+
| <code>forno eletrico Fischer</code> | <code>eletrodomestico</code> | <code>1.0</code> |
|
192 |
+
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
|
193 |
+
```json
|
194 |
+
{
|
195 |
+
"loss_fct": "torch.nn.modules.loss.MSELoss"
|
196 |
+
}
|
197 |
+
```
|
198 |
+
|
199 |
+
### Evaluation Dataset
|
200 |
+
|
201 |
+
#### Unnamed Dataset
|
202 |
+
|
203 |
+
|
204 |
+
* Size: 2,189 evaluation samples
|
205 |
+
* Columns: <code>text1</code>, <code>text2</code>, and <code>label</code>
|
206 |
+
* Approximate statistics based on the first 1000 samples:
|
207 |
+
| | text1 | text2 | label |
|
208 |
+
|:--------|:--------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
209 |
+
| type | string | string | float |
|
210 |
+
| details | <ul><li>min: 3 tokens</li><li>mean: 7.7 tokens</li><li>max: 18 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 6.16 tokens</li><li>max: 11 tokens</li></ul> | <ul><li>min: 0.1</li><li>mean: 0.52</li><li>max: 1.0</li></ul> |
|
211 |
+
* Samples:
|
212 |
+
| text1 | text2 | label |
|
213 |
+
|:--------------------------------------------------|:------------------------------------|:-----------------|
|
214 |
+
| <code>querer salgado</code> | <code>comida rapido fastfood</code> | <code>1.0</code> |
|
215 |
+
| <code>ervilha enlatar</code> | <code>movel</code> | <code>0.1</code> |
|
216 |
+
| <code>preciso loja artigo esporte aquatico</code> | <code>servico area educacao</code> | <code>0.1</code> |
|
217 |
+
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
|
218 |
+
```json
|
219 |
+
{
|
220 |
+
"loss_fct": "torch.nn.modules.loss.MSELoss"
|
221 |
+
}
|
222 |
+
```
|
223 |
+
|
224 |
+
### Training Hyperparameters
|
225 |
+
#### Non-Default Hyperparameters
|
226 |
+
|
227 |
+
- `eval_strategy`: steps
|
228 |
+
- `per_device_train_batch_size`: 32
|
229 |
+
- `per_device_eval_batch_size`: 32
|
230 |
+
- `learning_rate`: 0.0001
|
231 |
+
- `weight_decay`: 0.1
|
232 |
+
- `warmup_ratio`: 0.1
|
233 |
+
- `warmup_steps`: 246
|
234 |
+
- `fp16`: True
|
235 |
+
- `load_best_model_at_end`: True
|
236 |
+
|
237 |
+
#### All Hyperparameters
|
238 |
+
<details><summary>Click to expand</summary>
|
239 |
+
|
240 |
+
- `overwrite_output_dir`: False
|
241 |
+
- `do_predict`: False
|
242 |
+
- `eval_strategy`: steps
|
243 |
+
- `prediction_loss_only`: True
|
244 |
+
- `per_device_train_batch_size`: 32
|
245 |
+
- `per_device_eval_batch_size`: 32
|
246 |
+
- `per_gpu_train_batch_size`: None
|
247 |
+
- `per_gpu_eval_batch_size`: None
|
248 |
+
- `gradient_accumulation_steps`: 1
|
249 |
+
- `eval_accumulation_steps`: None
|
250 |
+
- `torch_empty_cache_steps`: None
|
251 |
+
- `learning_rate`: 0.0001
|
252 |
+
- `weight_decay`: 0.1
|
253 |
+
- `adam_beta1`: 0.9
|
254 |
+
- `adam_beta2`: 0.999
|
255 |
+
- `adam_epsilon`: 1e-08
|
256 |
+
- `max_grad_norm`: 1.0
|
257 |
+
- `num_train_epochs`: 3
|
258 |
+
- `max_steps`: -1
|
259 |
+
- `lr_scheduler_type`: linear
|
260 |
+
- `lr_scheduler_kwargs`: {}
|
261 |
+
- `warmup_ratio`: 0.1
|
262 |
+
- `warmup_steps`: 246
|
263 |
+
- `log_level`: passive
|
264 |
+
- `log_level_replica`: warning
|
265 |
+
- `log_on_each_node`: True
|
266 |
+
- `logging_nan_inf_filter`: True
|
267 |
+
- `save_safetensors`: True
|
268 |
+
- `save_on_each_node`: False
|
269 |
+
- `save_only_model`: False
|
270 |
+
- `restore_callback_states_from_checkpoint`: False
|
271 |
+
- `no_cuda`: False
|
272 |
+
- `use_cpu`: False
|
273 |
+
- `use_mps_device`: False
|
274 |
+
- `seed`: 42
|
275 |
+
- `data_seed`: None
|
276 |
+
- `jit_mode_eval`: False
|
277 |
+
- `use_ipex`: False
|
278 |
+
- `bf16`: False
|
279 |
+
- `fp16`: True
|
280 |
+
- `fp16_opt_level`: O1
|
281 |
+
- `half_precision_backend`: auto
|
282 |
+
- `bf16_full_eval`: False
|
283 |
+
- `fp16_full_eval`: False
|
284 |
+
- `tf32`: None
|
285 |
+
- `local_rank`: 0
|
286 |
+
- `ddp_backend`: None
|
287 |
+
- `tpu_num_cores`: None
|
288 |
+
- `tpu_metrics_debug`: False
|
289 |
+
- `debug`: []
|
290 |
+
- `dataloader_drop_last`: False
|
291 |
+
- `dataloader_num_workers`: 0
|
292 |
+
- `dataloader_prefetch_factor`: None
|
293 |
+
- `past_index`: -1
|
294 |
+
- `disable_tqdm`: False
|
295 |
+
- `remove_unused_columns`: True
|
296 |
+
- `label_names`: None
|
297 |
+
- `load_best_model_at_end`: True
|
298 |
+
- `ignore_data_skip`: False
|
299 |
+
- `fsdp`: []
|
300 |
+
- `fsdp_min_num_params`: 0
|
301 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
302 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
303 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
304 |
+
- `deepspeed`: None
|
305 |
+
- `label_smoothing_factor`: 0.0
|
306 |
+
- `optim`: adamw_torch
|
307 |
+
- `optim_args`: None
|
308 |
+
- `adafactor`: False
|
309 |
+
- `group_by_length`: False
|
310 |
+
- `length_column_name`: length
|
311 |
+
- `ddp_find_unused_parameters`: None
|
312 |
+
- `ddp_bucket_cap_mb`: None
|
313 |
+
- `ddp_broadcast_buffers`: False
|
314 |
+
- `dataloader_pin_memory`: True
|
315 |
+
- `dataloader_persistent_workers`: False
|
316 |
+
- `skip_memory_metrics`: True
|
317 |
+
- `use_legacy_prediction_loop`: False
|
318 |
+
- `push_to_hub`: False
|
319 |
+
- `resume_from_checkpoint`: None
|
320 |
+
- `hub_model_id`: None
|
321 |
+
- `hub_strategy`: every_save
|
322 |
+
- `hub_private_repo`: None
|
323 |
+
- `hub_always_push`: False
|
324 |
+
- `gradient_checkpointing`: False
|
325 |
+
- `gradient_checkpointing_kwargs`: None
|
326 |
+
- `include_inputs_for_metrics`: False
|
327 |
+
- `include_for_metrics`: []
|
328 |
+
- `eval_do_concat_batches`: True
|
329 |
+
- `fp16_backend`: auto
|
330 |
+
- `push_to_hub_model_id`: None
|
331 |
+
- `push_to_hub_organization`: None
|
332 |
+
- `mp_parameters`:
|
333 |
+
- `auto_find_batch_size`: False
|
334 |
+
- `full_determinism`: False
|
335 |
+
- `torchdynamo`: None
|
336 |
+
- `ray_scope`: last
|
337 |
+
- `ddp_timeout`: 1800
|
338 |
+
- `torch_compile`: False
|
339 |
+
- `torch_compile_backend`: None
|
340 |
+
- `torch_compile_mode`: None
|
341 |
+
- `dispatch_batches`: None
|
342 |
+
- `split_batches`: None
|
343 |
+
- `include_tokens_per_second`: False
|
344 |
+
- `include_num_input_tokens_seen`: False
|
345 |
+
- `neftune_noise_alpha`: None
|
346 |
+
- `optim_target_modules`: None
|
347 |
+
- `batch_eval_metrics`: False
|
348 |
+
- `eval_on_start`: False
|
349 |
+
- `use_liger_kernel`: False
|
350 |
+
- `eval_use_gather_object`: False
|
351 |
+
- `average_tokens_across_devices`: False
|
352 |
+
- `prompts`: None
|
353 |
+
- `batch_sampler`: batch_sampler
|
354 |
+
- `multi_dataset_batch_sampler`: proportional
|
355 |
+
|
356 |
+
</details>
|
357 |
+
|
358 |
+
### Training Logs
|
359 |
+
<details><summary>Click to expand</summary>
|
360 |
+
|
361 |
+
| Epoch | Step | Training Loss | Validation Loss | eval-similarity_spearman_cosine |
|
362 |
+
|:-------:|:--------:|:-------------:|:---------------:|:-------------------------------:|
|
363 |
+
| 0.0081 | 5 | 0.1965 | - | - |
|
364 |
+
| 0.0162 | 10 | 0.2125 | - | - |
|
365 |
+
| 0.0244 | 15 | 0.1944 | - | - |
|
366 |
+
| 0.0325 | 20 | 0.1674 | - | - |
|
367 |
+
| 0.0406 | 25 | 0.1518 | - | - |
|
368 |
+
| 0.0487 | 30 | 0.1381 | - | - |
|
369 |
+
| 0.0568 | 35 | 0.1385 | - | - |
|
370 |
+
| 0.0649 | 40 | 0.109 | - | - |
|
371 |
+
| 0.0731 | 45 | 0.1054 | - | - |
|
372 |
+
| 0.0812 | 50 | 0.0963 | - | - |
|
373 |
+
| 0.0893 | 55 | 0.0917 | - | - |
|
374 |
+
| 0.0974 | 60 | 0.0797 | - | - |
|
375 |
+
| 0.1055 | 65 | 0.0877 | - | - |
|
376 |
+
| 0.1136 | 70 | 0.0755 | - | - |
|
377 |
+
| 0.1218 | 75 | 0.0773 | - | - |
|
378 |
+
| 0.1299 | 80 | 0.0605 | - | - |
|
379 |
+
| 0.1380 | 85 | 0.0669 | - | - |
|
380 |
+
| 0.1461 | 90 | 0.0698 | - | - |
|
381 |
+
| 0.1542 | 95 | 0.0595 | - | - |
|
382 |
+
| 0.1623 | 100 | 0.0382 | - | - |
|
383 |
+
| 0.1705 | 105 | 0.0723 | - | - |
|
384 |
+
| 0.1786 | 110 | 0.0448 | - | - |
|
385 |
+
| 0.1867 | 115 | 0.0703 | - | - |
|
386 |
+
| 0.1948 | 120 | 0.0694 | - | - |
|
387 |
+
| 0.2029 | 125 | 0.0515 | - | - |
|
388 |
+
| 0.2110 | 130 | 0.0581 | - | - |
|
389 |
+
| 0.2192 | 135 | 0.0458 | - | - |
|
390 |
+
| 0.2273 | 140 | 0.0643 | - | - |
|
391 |
+
| 0.2354 | 145 | 0.0602 | - | - |
|
392 |
+
| 0.2435 | 150 | 0.0651 | - | - |
|
393 |
+
| 0.2516 | 155 | 0.0662 | - | - |
|
394 |
+
| 0.2597 | 160 | 0.0712 | - | - |
|
395 |
+
| 0.2679 | 165 | 0.0546 | - | - |
|
396 |
+
| 0.2760 | 170 | 0.0419 | - | - |
|
397 |
+
| 0.2841 | 175 | 0.061 | - | - |
|
398 |
+
| 0.2922 | 180 | 0.0549 | - | - |
|
399 |
+
| 0.3003 | 185 | 0.0523 | - | - |
|
400 |
+
| 0.3084 | 190 | 0.0579 | - | - |
|
401 |
+
| 0.3166 | 195 | 0.0595 | - | - |
|
402 |
+
| 0.3247 | 200 | 0.0478 | - | - |
|
403 |
+
| 0.3328 | 205 | 0.0507 | - | - |
|
404 |
+
| 0.3409 | 210 | 0.0312 | - | - |
|
405 |
+
| 0.3490 | 215 | 0.041 | - | - |
|
406 |
+
| 0.3571 | 220 | 0.0528 | - | - |
|
407 |
+
| 0.3653 | 225 | 0.0386 | - | - |
|
408 |
+
| 0.3734 | 230 | 0.0656 | - | - |
|
409 |
+
| 0.3815 | 235 | 0.0567 | - | - |
|
410 |
+
| 0.3896 | 240 | 0.0673 | - | - |
|
411 |
+
| 0.3977 | 245 | 0.103 | - | - |
|
412 |
+
| 0.4058 | 250 | 0.1704 | - | - |
|
413 |
+
| 0.4140 | 255 | 0.0844 | - | - |
|
414 |
+
| 0.4221 | 260 | 0.0883 | - | - |
|
415 |
+
| 0.4302 | 265 | 0.0728 | - | - |
|
416 |
+
| 0.4383 | 270 | 0.0531 | - | - |
|
417 |
+
| 0.4464 | 275 | 0.0715 | - | - |
|
418 |
+
| 0.4545 | 280 | 0.0623 | - | - |
|
419 |
+
| 0.4627 | 285 | 0.0679 | - | - |
|
420 |
+
| 0.4708 | 290 | 0.0577 | - | - |
|
421 |
+
| 0.4789 | 295 | 0.0781 | - | - |
|
422 |
+
| 0.4870 | 300 | 0.0541 | - | - |
|
423 |
+
| 0.4951 | 305 | 0.0876 | - | - |
|
424 |
+
| 0.5032 | 310 | 0.0648 | - | - |
|
425 |
+
| 0.5114 | 315 | 0.0583 | - | - |
|
426 |
+
| 0.5195 | 320 | 0.0506 | - | - |
|
427 |
+
| 0.5276 | 325 | 0.051 | - | - |
|
428 |
+
| 0.5357 | 330 | 0.0633 | - | - |
|
429 |
+
| 0.5438 | 335 | 0.0764 | - | - |
|
430 |
+
| 0.5519 | 340 | 0.0753 | - | - |
|
431 |
+
| 0.5601 | 345 | 0.0701 | - | - |
|
432 |
+
| 0.5682 | 350 | 0.0688 | - | - |
|
433 |
+
| 0.5763 | 355 | 0.0691 | - | - |
|
434 |
+
| 0.5844 | 360 | 0.0497 | - | - |
|
435 |
+
| 0.5925 | 365 | 0.0606 | - | - |
|
436 |
+
| 0.6006 | 370 | 0.0544 | - | - |
|
437 |
+
| 0.6088 | 375 | 0.0587 | - | - |
|
438 |
+
| 0.6169 | 380 | 0.0432 | - | - |
|
439 |
+
| 0.625 | 385 | 0.0768 | - | - |
|
440 |
+
| 0.6331 | 390 | 0.0701 | - | - |
|
441 |
+
| 0.6412 | 395 | 0.0421 | - | - |
|
442 |
+
| 0.6494 | 400 | 0.0415 | - | - |
|
443 |
+
| 0.6575 | 405 | 0.0419 | - | - |
|
444 |
+
| 0.6656 | 410 | 0.0613 | - | - |
|
445 |
+
| 0.6737 | 415 | 0.0442 | - | - |
|
446 |
+
| 0.6818 | 420 | 0.0487 | - | - |
|
447 |
+
| 0.6899 | 425 | 0.0443 | - | - |
|
448 |
+
| 0.6981 | 430 | 0.0493 | - | - |
|
449 |
+
| 0.7062 | 435 | 0.0429 | - | - |
|
450 |
+
| 0.7143 | 440 | 0.0464 | - | - |
|
451 |
+
| 0.7224 | 445 | 0.0541 | - | - |
|
452 |
+
| 0.7305 | 450 | 0.0539 | - | - |
|
453 |
+
| 0.7386 | 455 | 0.0497 | - | - |
|
454 |
+
| 0.7468 | 460 | 0.0471 | - | - |
|
455 |
+
| 0.75 | 462 | - | 0.0457 | 0.8234 |
|
456 |
+
| 0.7549 | 465 | 0.0514 | - | - |
|
457 |
+
| 0.7630 | 470 | 0.0457 | - | - |
|
458 |
+
| 0.7711 | 475 | 0.0315 | - | - |
|
459 |
+
| 0.7792 | 480 | 0.0491 | - | - |
|
460 |
+
| 0.7873 | 485 | 0.0619 | - | - |
|
461 |
+
| 0.7955 | 490 | 0.0298 | - | - |
|
462 |
+
| 0.8036 | 495 | 0.0725 | - | - |
|
463 |
+
| 0.8117 | 500 | 0.043 | - | - |
|
464 |
+
| 0.8198 | 505 | 0.0392 | - | - |
|
465 |
+
| 0.8279 | 510 | 0.0275 | - | - |
|
466 |
+
| 0.8360 | 515 | 0.0509 | - | - |
|
467 |
+
| 0.8442 | 520 | 0.0508 | - | - |
|
468 |
+
| 0.8523 | 525 | 0.0394 | - | - |
|
469 |
+
| 0.8604 | 530 | 0.0309 | - | - |
|
470 |
+
| 0.8685 | 535 | 0.0601 | - | - |
|
471 |
+
| 0.8766 | 540 | 0.0524 | - | - |
|
472 |
+
| 0.8847 | 545 | 0.0491 | - | - |
|
473 |
+
| 0.8929 | 550 | 0.0626 | - | - |
|
474 |
+
| 0.9010 | 555 | 0.0395 | - | - |
|
475 |
+
| 0.9091 | 560 | 0.0655 | - | - |
|
476 |
+
| 0.9172 | 565 | 0.045 | - | - |
|
477 |
+
| 0.9253 | 570 | 0.0394 | - | - |
|
478 |
+
| 0.9334 | 575 | 0.0521 | - | - |
|
479 |
+
| 0.9416 | 580 | 0.0324 | - | - |
|
480 |
+
| 0.9497 | 585 | 0.0426 | - | - |
|
481 |
+
| 0.9578 | 590 | 0.032 | - | - |
|
482 |
+
| 0.9659 | 595 | 0.0425 | - | - |
|
483 |
+
| 0.9740 | 600 | 0.0458 | - | - |
|
484 |
+
| 0.9821 | 605 | 0.0341 | - | - |
|
485 |
+
| 0.9903 | 610 | 0.0339 | - | - |
|
486 |
+
| 0.9984 | 615 | 0.0444 | - | - |
|
487 |
+
| 1.0065 | 620 | 0.0364 | - | - |
|
488 |
+
| 1.0146 | 625 | 0.0277 | - | - |
|
489 |
+
| 1.0227 | 630 | 0.0372 | - | - |
|
490 |
+
| 1.0308 | 635 | 0.0254 | - | - |
|
491 |
+
| 1.0390 | 640 | 0.0382 | - | - |
|
492 |
+
| 1.0471 | 645 | 0.0333 | - | - |
|
493 |
+
| 1.0552 | 650 | 0.0312 | - | - |
|
494 |
+
| 1.0633 | 655 | 0.0366 | - | - |
|
495 |
+
| 1.0714 | 660 | 0.0341 | - | - |
|
496 |
+
| 1.0795 | 665 | 0.0146 | - | - |
|
497 |
+
| 1.0877 | 670 | 0.0362 | - | - |
|
498 |
+
| 1.0958 | 675 | 0.0225 | - | - |
|
499 |
+
| 1.1039 | 680 | 0.038 | - | - |
|
500 |
+
| 1.1120 | 685 | 0.0406 | - | - |
|
501 |
+
| 1.1201 | 690 | 0.0392 | - | - |
|
502 |
+
| 1.1282 | 695 | 0.0343 | - | - |
|
503 |
+
| 1.1364 | 700 | 0.0494 | - | - |
|
504 |
+
| 1.1445 | 705 | 0.021 | - | - |
|
505 |
+
| 1.1526 | 710 | 0.0358 | - | - |
|
506 |
+
| 1.1607 | 715 | 0.034 | - | - |
|
507 |
+
| 1.1688 | 720 | 0.0288 | - | - |
|
508 |
+
| 1.1769 | 725 | 0.0224 | - | - |
|
509 |
+
| 1.1851 | 730 | 0.0324 | - | - |
|
510 |
+
| 1.1932 | 735 | 0.0378 | - | - |
|
511 |
+
| 1.2013 | 740 | 0.0446 | - | - |
|
512 |
+
| 1.2094 | 745 | 0.0293 | - | - |
|
513 |
+
| 1.2175 | 750 | 0.0314 | - | - |
|
514 |
+
| 1.2256 | 755 | 0.0444 | - | - |
|
515 |
+
| 1.2338 | 760 | 0.0283 | - | - |
|
516 |
+
| 1.2419 | 765 | 0.0207 | - | - |
|
517 |
+
| 1.25 | 770 | 0.0413 | - | - |
|
518 |
+
| 1.2581 | 775 | 0.0317 | - | - |
|
519 |
+
| 1.2662 | 780 | 0.0382 | - | - |
|
520 |
+
| 1.2744 | 785 | 0.0363 | - | - |
|
521 |
+
| 1.2825 | 790 | 0.0324 | - | - |
|
522 |
+
| 1.2906 | 795 | 0.0225 | - | - |
|
523 |
+
| 1.2987 | 800 | 0.0316 | - | - |
|
524 |
+
| 1.3068 | 805 | 0.0438 | - | - |
|
525 |
+
| 1.3149 | 810 | 0.0298 | - | - |
|
526 |
+
| 1.3231 | 815 | 0.0395 | - | - |
|
527 |
+
| 1.3312 | 820 | 0.0388 | - | - |
|
528 |
+
| 1.3393 | 825 | 0.0289 | - | - |
|
529 |
+
| 1.3474 | 830 | 0.0233 | - | - |
|
530 |
+
| 1.3555 | 835 | 0.022 | - | - |
|
531 |
+
| 1.3636 | 840 | 0.016 | - | - |
|
532 |
+
| 1.3718 | 845 | 0.0488 | - | - |
|
533 |
+
| 1.3799 | 850 | 0.0519 | - | - |
|
534 |
+
| 1.3880 | 855 | 0.033 | - | - |
|
535 |
+
| 1.3961 | 860 | 0.025 | - | - |
|
536 |
+
| 1.4042 | 865 | 0.0212 | - | - |
|
537 |
+
| 1.4123 | 870 | 0.0184 | - | - |
|
538 |
+
| 1.4205 | 875 | 0.0335 | - | - |
|
539 |
+
| 1.4286 | 880 | 0.0308 | - | - |
|
540 |
+
| 1.4367 | 885 | 0.028 | - | - |
|
541 |
+
| 1.4448 | 890 | 0.0352 | - | - |
|
542 |
+
| 1.4529 | 895 | 0.0255 | - | - |
|
543 |
+
| 1.4610 | 900 | 0.0243 | - | - |
|
544 |
+
| 1.4692 | 905 | 0.0355 | - | - |
|
545 |
+
| 1.4773 | 910 | 0.0267 | - | - |
|
546 |
+
| 1.4854 | 915 | 0.0263 | - | - |
|
547 |
+
| 1.4935 | 920 | 0.0275 | - | - |
|
548 |
+
| 1.5 | 924 | - | 0.0313 | 0.8414 |
|
549 |
+
| 1.5016 | 925 | 0.0294 | - | - |
|
550 |
+
| 1.5097 | 930 | 0.0514 | - | - |
|
551 |
+
| 1.5179 | 935 | 0.0321 | - | - |
|
552 |
+
| 1.5260 | 940 | 0.0306 | - | - |
|
553 |
+
| 1.5341 | 945 | 0.0279 | - | - |
|
554 |
+
| 1.5422 | 950 | 0.0334 | - | - |
|
555 |
+
| 1.5503 | 955 | 0.0337 | - | - |
|
556 |
+
| 1.5584 | 960 | 0.0266 | - | - |
|
557 |
+
| 1.5666 | 965 | 0.036 | - | - |
|
558 |
+
| 1.5747 | 970 | 0.0328 | - | - |
|
559 |
+
| 1.5828 | 975 | 0.0224 | - | - |
|
560 |
+
| 1.5909 | 980 | 0.0404 | - | - |
|
561 |
+
| 1.5990 | 985 | 0.0293 | - | - |
|
562 |
+
| 1.6071 | 990 | 0.016 | - | - |
|
563 |
+
| 1.6153 | 995 | 0.0177 | - | - |
|
564 |
+
| 1.6234 | 1000 | 0.0216 | - | - |
|
565 |
+
| 1.6315 | 1005 | 0.029 | - | - |
|
566 |
+
| 1.6396 | 1010 | 0.0306 | - | - |
|
567 |
+
| 1.6477 | 1015 | 0.0291 | - | - |
|
568 |
+
| 1.6558 | 1020 | 0.032 | - | - |
|
569 |
+
| 1.6640 | 1025 | 0.0277 | - | - |
|
570 |
+
| 1.6721 | 1030 | 0.0191 | - | - |
|
571 |
+
| 1.6802 | 1035 | 0.0353 | - | - |
|
572 |
+
| 1.6883 | 1040 | 0.0304 | - | - |
|
573 |
+
| 1.6964 | 1045 | 0.0385 | - | - |
|
574 |
+
| 1.7045 | 1050 | 0.0315 | - | - |
|
575 |
+
| 1.7127 | 1055 | 0.0428 | - | - |
|
576 |
+
| 1.7208 | 1060 | 0.0338 | - | - |
|
577 |
+
| 1.7289 | 1065 | 0.0258 | - | - |
|
578 |
+
| 1.7370 | 1070 | 0.0303 | - | - |
|
579 |
+
| 1.7451 | 1075 | 0.0171 | - | - |
|
580 |
+
| 1.7532 | 1080 | 0.0229 | - | - |
|
581 |
+
| 1.7614 | 1085 | 0.0278 | - | - |
|
582 |
+
| 1.7695 | 1090 | 0.0246 | - | - |
|
583 |
+
| 1.7776 | 1095 | 0.0241 | - | - |
|
584 |
+
| 1.7857 | 1100 | 0.0182 | - | - |
|
585 |
+
| 1.7938 | 1105 | 0.0366 | - | - |
|
586 |
+
| 1.8019 | 1110 | 0.0204 | - | - |
|
587 |
+
| 1.8101 | 1115 | 0.0208 | - | - |
|
588 |
+
| 1.8182 | 1120 | 0.01 | - | - |
|
589 |
+
| 1.8263 | 1125 | 0.0239 | - | - |
|
590 |
+
| 1.8344 | 1130 | 0.0228 | - | - |
|
591 |
+
| 1.8425 | 1135 | 0.0228 | - | - |
|
592 |
+
| 1.8506 | 1140 | 0.0176 | - | - |
|
593 |
+
| 1.8588 | 1145 | 0.0278 | - | - |
|
594 |
+
| 1.8669 | 1150 | 0.0242 | - | - |
|
595 |
+
| 1.875 | 1155 | 0.0174 | - | - |
|
596 |
+
| 1.8831 | 1160 | 0.0248 | - | - |
|
597 |
+
| 1.8912 | 1165 | 0.0192 | - | - |
|
598 |
+
| 1.8994 | 1170 | 0.0293 | - | - |
|
599 |
+
| 1.9075 | 1175 | 0.017 | - | - |
|
600 |
+
| 1.9156 | 1180 | 0.0212 | - | - |
|
601 |
+
| 1.9237 | 1185 | 0.0214 | - | - |
|
602 |
+
| 1.9318 | 1190 | 0.025 | - | - |
|
603 |
+
| 1.9399 | 1195 | 0.0246 | - | - |
|
604 |
+
| 1.9481 | 1200 | 0.0202 | - | - |
|
605 |
+
| 1.9562 | 1205 | 0.021 | - | - |
|
606 |
+
| 1.9643 | 1210 | 0.0183 | - | - |
|
607 |
+
| 1.9724 | 1215 | 0.0313 | - | - |
|
608 |
+
| 1.9805 | 1220 | 0.0211 | - | - |
|
609 |
+
| 1.9886 | 1225 | 0.0299 | - | - |
|
610 |
+
| 1.9968 | 1230 | 0.0222 | - | - |
|
611 |
+
| 2.0049 | 1235 | 0.0154 | - | - |
|
612 |
+
| 2.0130 | 1240 | 0.018 | - | - |
|
613 |
+
| 2.0211 | 1245 | 0.0212 | - | - |
|
614 |
+
| 2.0292 | 1250 | 0.0123 | - | - |
|
615 |
+
| 2.0373 | 1255 | 0.013 | - | - |
|
616 |
+
| 2.0455 | 1260 | 0.0213 | - | - |
|
617 |
+
| 2.0536 | 1265 | 0.0125 | - | - |
|
618 |
+
| 2.0617 | 1270 | 0.0175 | - | - |
|
619 |
+
| 2.0698 | 1275 | 0.0092 | - | - |
|
620 |
+
| 2.0779 | 1280 | 0.0209 | - | - |
|
621 |
+
| 2.0860 | 1285 | 0.0135 | - | - |
|
622 |
+
| 2.0942 | 1290 | 0.0295 | - | - |
|
623 |
+
| 2.1023 | 1295 | 0.0175 | - | - |
|
624 |
+
| 2.1104 | 1300 | 0.0252 | - | - |
|
625 |
+
| 2.1185 | 1305 | 0.0071 | - | - |
|
626 |
+
| 2.1266 | 1310 | 0.0139 | - | - |
|
627 |
+
| 2.1347 | 1315 | 0.0104 | - | - |
|
628 |
+
| 2.1429 | 1320 | 0.0125 | - | - |
|
629 |
+
| 2.1510 | 1325 | 0.0103 | - | - |
|
630 |
+
| 2.1591 | 1330 | 0.0171 | - | - |
|
631 |
+
| 2.1672 | 1335 | 0.0083 | - | - |
|
632 |
+
| 2.1753 | 1340 | 0.0185 | - | - |
|
633 |
+
| 2.1834 | 1345 | 0.0141 | - | - |
|
634 |
+
| 2.1916 | 1350 | 0.0177 | - | - |
|
635 |
+
| 2.1997 | 1355 | 0.0189 | - | - |
|
636 |
+
| 2.2078 | 1360 | 0.0254 | - | - |
|
637 |
+
| 2.2159 | 1365 | 0.0198 | - | - |
|
638 |
+
| 2.2240 | 1370 | 0.0162 | - | - |
|
639 |
+
| 2.2321 | 1375 | 0.0139 | - | - |
|
640 |
+
| 2.2403 | 1380 | 0.013 | - | - |
|
641 |
+
| 2.2484 | 1385 | 0.0201 | - | - |
|
642 |
+
| 2.25 | 1386 | - | 0.0292 | 0.8443 |
|
643 |
+
| 2.2565 | 1390 | 0.0202 | - | - |
|
644 |
+
| 2.2646 | 1395 | 0.0169 | - | - |
|
645 |
+
| 2.2727 | 1400 | 0.0105 | - | - |
|
646 |
+
| 2.2808 | 1405 | 0.0136 | - | - |
|
647 |
+
| 2.2890 | 1410 | 0.0125 | - | - |
|
648 |
+
| 2.2971 | 1415 | 0.0168 | - | - |
|
649 |
+
| 2.3052 | 1420 | 0.0108 | - | - |
|
650 |
+
| 2.3133 | 1425 | 0.0297 | - | - |
|
651 |
+
| 2.3214 | 1430 | 0.0233 | - | - |
|
652 |
+
| 2.3295 | 1435 | 0.0164 | - | - |
|
653 |
+
| 2.3377 | 1440 | 0.0178 | - | - |
|
654 |
+
| 2.3458 | 1445 | 0.0203 | - | - |
|
655 |
+
| 2.3539 | 1450 | 0.0112 | - | - |
|
656 |
+
| 2.3620 | 1455 | 0.0156 | - | - |
|
657 |
+
| 2.3701 | 1460 | 0.0151 | - | - |
|
658 |
+
| 2.3782 | 1465 | 0.0097 | - | - |
|
659 |
+
| 2.3864 | 1470 | 0.0196 | - | - |
|
660 |
+
| 2.3945 | 1475 | 0.0148 | - | - |
|
661 |
+
| 2.4026 | 1480 | 0.0154 | - | - |
|
662 |
+
| 2.4107 | 1485 | 0.0069 | - | - |
|
663 |
+
| 2.4188 | 1490 | 0.0145 | - | - |
|
664 |
+
| 2.4269 | 1495 | 0.0204 | - | - |
|
665 |
+
| 2.4351 | 1500 | 0.0225 | - | - |
|
666 |
+
| 2.4432 | 1505 | 0.0165 | - | - |
|
667 |
+
| 2.4513 | 1510 | 0.0079 | - | - |
|
668 |
+
| 2.4594 | 1515 | 0.0183 | - | - |
|
669 |
+
| 2.4675 | 1520 | 0.0196 | - | - |
|
670 |
+
| 2.4756 | 1525 | 0.0085 | - | - |
|
671 |
+
| 2.4838 | 1530 | 0.0109 | - | - |
|
672 |
+
| 2.4919 | 1535 | 0.0168 | - | - |
|
673 |
+
| 2.5 | 1540 | 0.0124 | - | - |
|
674 |
+
| 2.5081 | 1545 | 0.0218 | - | - |
|
675 |
+
| 2.5162 | 1550 | 0.0164 | - | - |
|
676 |
+
| 2.5244 | 1555 | 0.0234 | - | - |
|
677 |
+
| 2.5325 | 1560 | 0.0115 | - | - |
|
678 |
+
| 2.5406 | 1565 | 0.0135 | - | - |
|
679 |
+
| 2.5487 | 1570 | 0.0179 | - | - |
|
680 |
+
| 2.5568 | 1575 | 0.0104 | - | - |
|
681 |
+
| 2.5649 | 1580 | 0.0188 | - | - |
|
682 |
+
| 2.5731 | 1585 | 0.0166 | - | - |
|
683 |
+
| 2.5812 | 1590 | 0.0228 | - | - |
|
684 |
+
| 2.5893 | 1595 | 0.015 | - | - |
|
685 |
+
| 2.5974 | 1600 | 0.0171 | - | - |
|
686 |
+
| 2.6055 | 1605 | 0.0207 | - | - |
|
687 |
+
| 2.6136 | 1610 | 0.009 | - | - |
|
688 |
+
| 2.6218 | 1615 | 0.0111 | - | - |
|
689 |
+
| 2.6299 | 1620 | 0.0109 | - | - |
|
690 |
+
| 2.6380 | 1625 | 0.0175 | - | - |
|
691 |
+
| 2.6461 | 1630 | 0.0155 | - | - |
|
692 |
+
| 2.6542 | 1635 | 0.0193 | - | - |
|
693 |
+
| 2.6623 | 1640 | 0.0189 | - | - |
|
694 |
+
| 2.6705 | 1645 | 0.0123 | - | - |
|
695 |
+
| 2.6786 | 1650 | 0.0102 | - | - |
|
696 |
+
| 2.6867 | 1655 | 0.0097 | - | - |
|
697 |
+
| 2.6948 | 1660 | 0.0116 | - | - |
|
698 |
+
| 2.7029 | 1665 | 0.0134 | - | - |
|
699 |
+
| 2.7110 | 1670 | 0.0218 | - | - |
|
700 |
+
| 2.7192 | 1675 | 0.0148 | - | - |
|
701 |
+
| 2.7273 | 1680 | 0.0137 | - | - |
|
702 |
+
| 2.7354 | 1685 | 0.0062 | - | - |
|
703 |
+
| 2.7435 | 1690 | 0.0075 | - | - |
|
704 |
+
| 2.7516 | 1695 | 0.0078 | - | - |
|
705 |
+
| 2.7597 | 1700 | 0.0151 | - | - |
|
706 |
+
| 2.7679 | 1705 | 0.0157 | - | - |
|
707 |
+
| 2.7760 | 1710 | 0.0153 | - | - |
|
708 |
+
| 2.7841 | 1715 | 0.0088 | - | - |
|
709 |
+
| 2.7922 | 1720 | 0.0093 | - | - |
|
710 |
+
| 2.8003 | 1725 | 0.0154 | - | - |
|
711 |
+
| 2.8084 | 1730 | 0.0124 | - | - |
|
712 |
+
| 2.8166 | 1735 | 0.0128 | - | - |
|
713 |
+
| 2.8247 | 1740 | 0.0088 | - | - |
|
714 |
+
| 2.8328 | 1745 | 0.0144 | - | - |
|
715 |
+
| 2.8409 | 1750 | 0.0184 | - | - |
|
716 |
+
| 2.8490 | 1755 | 0.0114 | - | - |
|
717 |
+
| 2.8571 | 1760 | 0.0043 | - | - |
|
718 |
+
| 2.8653 | 1765 | 0.0151 | - | - |
|
719 |
+
| 2.8734 | 1770 | 0.0089 | - | - |
|
720 |
+
| 2.8815 | 1775 | 0.014 | - | - |
|
721 |
+
| 2.8896 | 1780 | 0.0095 | - | - |
|
722 |
+
| 2.8977 | 1785 | 0.0106 | - | - |
|
723 |
+
| 2.9058 | 1790 | 0.007 | - | - |
|
724 |
+
| 2.9140 | 1795 | 0.0275 | - | - |
|
725 |
+
| 2.9221 | 1800 | 0.0185 | - | - |
|
726 |
+
| 2.9302 | 1805 | 0.0158 | - | - |
|
727 |
+
| 2.9383 | 1810 | 0.0134 | - | - |
|
728 |
+
| 2.9464 | 1815 | 0.0068 | - | - |
|
729 |
+
| 2.9545 | 1820 | 0.0144 | - | - |
|
730 |
+
| 2.9627 | 1825 | 0.0134 | - | - |
|
731 |
+
| 2.9708 | 1830 | 0.0109 | - | - |
|
732 |
+
| 2.9789 | 1835 | 0.0114 | - | - |
|
733 |
+
| 2.9870 | 1840 | 0.0097 | - | - |
|
734 |
+
| 2.9951 | 1845 | 0.0076 | - | - |
|
735 |
+
| **3.0** | **1848** | **-** | **0.0269** | **0.8467** |
|
736 |
+
|
737 |
+
* The bold row denotes the saved checkpoint.
|
738 |
+
</details>
|
739 |
+
|
740 |
+
### Framework Versions
|
741 |
+
- Python: 3.10.12
|
742 |
+
- Sentence Transformers: 3.3.1
|
743 |
+
- Transformers: 4.47.1
|
744 |
+
- PyTorch: 2.5.1+cu121
|
745 |
+
- Accelerate: 1.2.1
|
746 |
+
- Datasets: 2.14.4
|
747 |
+
- Tokenizers: 0.21.0
|
748 |
+
|
749 |
+
## Citation
|
750 |
+
|
751 |
+
### BibTeX
|
752 |
+
|
753 |
+
#### Sentence Transformers
|
754 |
+
```bibtex
|
755 |
+
@inproceedings{reimers-2019-sentence-bert,
|
756 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
757 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
758 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
759 |
+
month = "11",
|
760 |
+
year = "2019",
|
761 |
+
publisher = "Association for Computational Linguistics",
|
762 |
+
url = "https://arxiv.org/abs/1908.10084",
|
763 |
+
}
|
764 |
+
```
|
765 |
+
|
766 |
+
<!--
|
767 |
+
## Glossary
|
768 |
+
|
769 |
+
*Clearly define terms in order to be accessible across audiences.*
|
770 |
+
-->
|
771 |
+
|
772 |
+
<!--
|
773 |
+
## Model Card Authors
|
774 |
+
|
775 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
776 |
+
-->
|
777 |
+
|
778 |
+
<!--
|
779 |
+
## Model Card Contact
|
780 |
+
|
781 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
782 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/content/models/bert-ptbr-e3-lr0.0001",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"directionality": "bidi",
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 1024,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 4096,
|
14 |
+
"layer_norm_eps": 1e-12,
|
15 |
+
"max_position_embeddings": 512,
|
16 |
+
"model_type": "bert",
|
17 |
+
"num_attention_heads": 16,
|
18 |
+
"num_hidden_layers": 24,
|
19 |
+
"output_past": true,
|
20 |
+
"pad_token_id": 0,
|
21 |
+
"pooler_fc_size": 768,
|
22 |
+
"pooler_num_attention_heads": 12,
|
23 |
+
"pooler_num_fc_layers": 3,
|
24 |
+
"pooler_size_per_head": 128,
|
25 |
+
"pooler_type": "first_token_transform",
|
26 |
+
"position_embedding_type": "absolute",
|
27 |
+
"torch_dtype": "float32",
|
28 |
+
"transformers_version": "4.47.1",
|
29 |
+
"type_vocab_size": 2,
|
30 |
+
"use_cache": true,
|
31 |
+
"vocab_size": 29794
|
32 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.3.1",
|
4 |
+
"transformers": "4.47.1",
|
5 |
+
"pytorch": "2.5.1+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1b9295a352b6546e15d0512747f3a7c04eb8027a4410ba2ef4b8be6db9b69581
|
3 |
+
size 1337630536
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": false,
|
48 |
+
"extra_special_tokens": {},
|
49 |
+
"mask_token": "[MASK]",
|
50 |
+
"max_length": 512,
|
51 |
+
"model_max_length": 512,
|
52 |
+
"never_split": null,
|
53 |
+
"pad_to_multiple_of": null,
|
54 |
+
"pad_token": "[PAD]",
|
55 |
+
"pad_token_type_id": 0,
|
56 |
+
"padding_side": "right",
|
57 |
+
"sep_token": "[SEP]",
|
58 |
+
"stride": 0,
|
59 |
+
"strip_accents": null,
|
60 |
+
"tokenize_chinese_chars": true,
|
61 |
+
"tokenizer_class": "BertTokenizer",
|
62 |
+
"truncation_side": "right",
|
63 |
+
"truncation_strategy": "longest_first",
|
64 |
+
"unk_token": "[UNK]"
|
65 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|