|
--- |
|
library_name: peft |
|
license: mit |
|
base_model: xlm-roberta-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
model-index: |
|
- name: emotion-model11_2 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# emotion-model11_2 |
|
|
|
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.0629 |
|
- Accuracy: 0.5583 |
|
- F1: 0.4935 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| |
|
| No log | 1.0 | 41 | 1.3051 | 0.4356 | 0.2643 | |
|
| 1.3528 | 2.0 | 82 | 1.2167 | 0.4540 | 0.3105 | |
|
| 1.277 | 3.0 | 123 | 1.1665 | 0.4908 | 0.4415 | |
|
| 1.1653 | 4.0 | 164 | 1.0812 | 0.5276 | 0.4454 | |
|
| 1.1339 | 5.0 | 205 | 1.1394 | 0.5092 | 0.4484 | |
|
| 1.1339 | 6.0 | 246 | 1.1019 | 0.5153 | 0.4553 | |
|
| 1.1081 | 7.0 | 287 | 1.0528 | 0.5399 | 0.4727 | |
|
| 1.0794 | 8.0 | 328 | 1.0629 | 0.5583 | 0.4935 | |
|
| 1.0727 | 9.0 | 369 | 1.0426 | 0.5399 | 0.4737 | |
|
| 1.0608 | 10.0 | 410 | 1.0567 | 0.5399 | 0.4856 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.15.2 |
|
- Transformers 4.52.4 |
|
- Pytorch 2.6.0+cu124 |
|
- Datasets 3.6.0 |
|
- Tokenizers 0.21.1 |